题目:康托定理在没有选择公理的集合论中的推广
报告人:申国桢(武汉大学)
时间:2023年11月26日(星期日),16:30-17:30
地点:明德楼B201-1
摘要:1873年,康托证明了自然数集和实数集之间不存在双射。1891年,康托证明了一个更一般的定理:对每个集合A,A和A的幂集之间都不存在双射。我们介绍历史上对康托定理在没有选择公理的集合论中的推广,并探索这种推广的限度。
题目:康托定理在没有选择公理的集合论中的推广
报告人:申国桢(武汉大学)
时间:2023年11月26日(星期日),16:30-17:30
地点:明德楼B201-1
摘要:1873年,康托证明了自然数集和实数集之间不存在双射。1891年,康托证明了一个更一般的定理:对每个集合A,A和A的幂集之间都不存在双射。我们介绍历史上对康托定理在没有选择公理的集合论中的推广,并探索这种推广的限度。