Random Forests and Deep Neural Networks for Euclidean and non-Euclidean regression

发布时间:2023-04-19浏览次数:387

题目:Random Forests and Deep Neural Networks for Euclidean and non-Euclidean regression


报告人:於州(华东师范大学 经济管理学院


时间:4月21星期五),11:00-12:00


地点:明德楼,报告厅B201-1 


摘要:Neural networks and random forests are popular and promising tools for machine learning. We explore the proper integration of these two approaches for nonparametric regression to improve the performance of a single approach.It naturally synthesizes the local relation adaptivity of random forests and the strong global approximation ability of neural networks. By utilizing advanced U-process theory and an appropriate network structure, we obtain the minimax convergence rate for the estimator.  Moreover, we propose the novel random forest weighted local Frechet regression paradigm for regression with non-Euclidean responses. We establish the consistency, rate of convergence, and asymptotic normality for the non-Euclidean random forests based estimator.



Copyright (C)2023 哈尔滨工业大学数学研究院版权所有
人才招聘:
联系我们:
电话:86413107      邮箱:IASM@hit.edu.cn
地址:哈尔滨市南岗区西大直街92号
技术支持:哈尔滨工业大学网络安全和信息化办公室