徐邦——Maximal singular integral operators acting on noncommutative Lp-spaces

发布时间:2020-08-17浏览次数:1364

题目:Maximal singular integral operators acting on noncommutative Lp-spaces


报告人:徐邦(武汉大学)


时间:8月21号,15:00-16:00


地点:腾讯会议,会议ID:943 221 490


摘要:In this talk, we study the boundedness theory for maximal Calderon-Zygmund operators acting on noncommutative Lp-spaces. Our first result is a criterion for the weak type (1,1) estimate of noncommutative maximal Calderon-Zygmund operators; as an application, we obtain the weak type (1,1) estimates of operator-valued maximal convolution singular integrals under proper regularity conditions. These are the first noncommutative maximal results for families of linear operators that can’t be reduced to positive ones. For homogeneous singular integrals, the strong type (p, p) (1< p < ) maximal estimates are shown to be true even for rough kernels. 

As a byproduct of the criteria, we obtain the noncommutative weak type (1,1) estimate for Calderon-Zygmund operators with integral regularity condition which is slightly stronger than the Hormander condition; this provides some evidence to an affirmative answer of an open question posed by Parcet. This is joint work with Guixiang Hong and Xudong Lai.


Copyright (C)2023 哈尔滨工业大学数学研究院版权所有
人才招聘:
联系我们:
电话:86413107      邮箱:IASM@hit.edu.cn
地址:哈尔滨市南岗区西大直街92号
技术支持:哈尔滨工业大学网络安全和信息化办公室