谭福成——P-adic Hodge theory and applications

发布时间:2019-02-22浏览次数:2094


题目P-adic Hodge theory and applications


报告人谭福成京都大学数学科学研究所


时间: 2月28日,14:30-15:30


地点:明德楼B区201学术报告厅


摘要This talk is an introduction to several topics centered in p-adic Hodge theory. P-adic Hodge theory, initiated by Serre, Tate and Grothendieck, became a central topic in Arithmetic Geometry soon after Wiles' work on the Taniyama-Shimura conjecture. After recalling the basics in Galois representations and modular forms, I will explain some aspects of the modularity conjectures and the etale-crystalline comparison theorems.Time permitting, I will mention certain developments in Anabelian Geometry, which is in some sense an application of p-adic Hodge theory.




Copyright (C)2023 哈尔滨工业大学数学研究院版权所有
人才招聘:
联系我们:
电话:86413107      邮箱:IASM@hit.edu.cn
地址:哈尔滨市南岗区西大直街92号
技术支持:哈尔滨工业大学网络安全和信息化办公室