韩国牛——Combinatorial proofs of some properties of tangent and Genocchi numbers

发布时间:2018-05-09浏览次数:1099


题目Combinatorial proofs of some properties of tangent and Genocchi numbers


报告人:韩国牛(University of Strasbourg


时间:5月10日,15:00-16:00


地点:格物楼522学术报告厅


摘要The tangent number T_{2n+1} is equal to the number of increasing labelled complete binary trees with 2n + 1 vertices. This combinatorial interpretation immediately proves that T_{2n+1} is divisible by 2^n. However, a stronger divisibility property is known in the studies of Bernoulli and Genocchi numbers, namely, the divisibility of (n + 1)T_{2n+1} by 2^(2n). The traditional proofs of this fact need significant calculations. In the present paper, we provide a combinatorial proof of the latter divisibility by using the hook length formula for trees. Furthermore, our method is extended to k-ary trees, leading to a new generalization of the Genocchi numbers. This is a joint work with Jing-Yi Liu.




Copyright (C)2023 哈尔滨工业大学数学研究院版权所有
人才招聘:
联系我们:
电话:86413107      邮箱:IASM@hit.edu.cn
地址:哈尔滨市南岗区西大直街92号
技术支持:哈尔滨工业大学网络安全和信息化办公室