Lingmin Liao——Fuglede conjecture and tilings in the field of p-adic numbers Anna Marciniak-Czochra

发布时间:2016-07-21浏览次数:921


题目:Fuglede conjecture and tilings in the field of p-adic numbers Anna Marciniak-Czochra


报告人:Lingmin Liao(Université Paris-Est-Créteil)


时间:7月21日,15:15-15:55


地点:哈工大活动中心327会议室


摘要:A Borel subset in R^d of positive and finite Lebesgue measure is called a spectral set if the spece of square integrable functions on it admits an orthogonal basis consisting of exponential functions. Fuglede conjecture (1974) states that a Borel set is a spectral set if and only if it tiles the whole space R^d by translation. Though the conjecture is false for higher dimensions, it is still open for R^1 and R^2. We prove the Fuglede conjecture in the one dimensional p-adic space, i.e., a Borel set of positive and finite Haar measure in the field Q_p of p-adic numbers is a spectral set if and only if it tiles Q_p by translation. This is a joint work with Ai-Hua Fan, Shilei Fan and Ruxi Shi.


Copyright (C)2023 哈尔滨工业大学数学研究院版权所有
人才招聘:
联系我们:
电话:86413107      邮箱:IASM@hit.edu.cn
地址:哈尔滨市南岗区西大直街92号
技术支持:哈尔滨工业大学网络安全和信息化办公室