Noncommutative formal geometry of a contractive quantum plane

发布时间:2024-10-31浏览次数:122

分析学研讨班


题目:Noncommutative formal geometry of a contractive quantum plane

报告人:Anar Dosi (Harbin Engineering University) 


时间:2024年11月13日(星期三),16:00-17:30


地点:致知楼22

Zoom会议,会议号:947 0981 8605,密码:477439


摘要:

The present talk is devoted to the noncommutative complex analytic geometry of a contractive quantum plane from the formal completion point of view. The formal completion of an Arens-Michael envelope of the quantum plane possesses the same spectrum to be the union of two copies of the complex plane. It turns out that it can be extended up to an Arens-Michael-Fréchet algebra sheaf, which results in the noncommutative analytic space, whose base topological space is the same spectrum. Moreover, that sheaf can be obtained as the deformation quantization of the related commutative analytic space. As the basic tool we use the fibered products of the Fréchet sheaves. To find out a key link between the transversality relation of the noncommutative sections versus to a left Fréchet module we discuss the related topological homology problems, and the related noncommutative Taylor spectrum of the module.


更多相关信息请参见分析学研讨班网页


Copyright (C)2023 哈尔滨工业大学数学研究院版权所有
人才招聘:
联系我们:
电话:86413107      邮箱:IASM@hit.edu.cn
地址:哈尔滨市南岗区西大直街92号
技术支持:哈尔滨工业大学网络安全和信息化办公室