Exponential Ergodicity in Certain Quantum Markov Semigroups

发布时间:2024-03-22浏览次数:229

分析学研讨班


题目:Exponential Ergodicity in Certain Quantum Markov Semigroups


报告人:李政 (米兰理工大学)


时间:2024年3月27日(星期三),16:00-17:30


Zoom会议,会议号:946 1307 0421,密码:371188


摘要:Quantum Markov semigroups play a crucial role in characterizing the dynamics of open quantum systems. In this presentation, we explore the ergodic properties of quantum Markov semigroups possessing a faithful normal invariant state, along with an induced generator exhibiting a spectral gap. We demonstrate the exponential convergence of all normal states in a dense subset to some normal invariant state, with the rate of convergence determined by the spectral gap. Furthermore, we analyze the quantum Ornstein-Uhlenbeck semigroups when restricted to the diagonal subalgebra of the number operator. We highlight their non-uniform exponential convergence and identify a normal state that deviates from exponential convergence concerning the rate provided by the spectral gap. Additionally, we discuss an application of these findings to the quantum annealing problem. 

  

 

更多相关信息请参见分析学研讨班网页




Copyright (C)2023 哈尔滨工业大学数学研究院版权所有
人才招聘:
联系我们:
电话:86413107      邮箱:IASM@hit.edu.cn
地址:哈尔滨市南岗区西大直街92号
技术支持:哈尔滨工业大学网络安全和信息化办公室