Resource-dependent complexity of quantum channels



题目:Resource-dependent complexity of quantum channels




Zoom会议,会议号:995 9561 4888,密码:461559

摘要:Quantum complexity theory is concerned with the amount of elementary quantum resources needed to build a quantum system or a quantum operation. The fundamental question in quantum complexity is to define and quantify suitable complexity measures. In this talk, combining the approach introduced by Li-Bu-Koh-Jaffe-Lloyd and well-established tools from noncommutative geometry, we propose a unified framework for resource-dependent complexity measures of general quantum channels, also known as Lipschitz complexity. This framework is suitable to study the complexity of both open and closed quantum systems. The central class of examples in this paper is the so-called Wasserstein complexity. We use geometric methods to provide upper and lower bounds on this class of complexity measures. Finally, we study the Lipschitz complexity of random quantum circuits and dynamics of open quantum systems in finite dimensional setting. In particular, we show that generically the complexity grows linearly in time before the return time. This is the same qualitative behavior conjecture by Brown and Susskind . We also provide an infinite dimensional example where linear growth does not hold.

报告人简介:Peixue Wu got his BS in mathematics at Fudan university. He received his PhD in mathematics in 2023, with a concentration in quantum information theory. He is currently a postdoc in Institute for Quantum Computing at University of Waterloo.



Copyright (C)2023 哈尔滨工业大学数学研究院版权所有
电话:86413107      邮箱