题目: Rational points on loxodromic K3 surfaces
报告人: 谢俊逸 (北京大学)
时间:1月13日9:45-10:25
地点:哈尔滨工业大学中俄联合校园主楼301学术报告厅
摘要: This talk is based on the work with Damian Gvirtz-Chen, Zhizhong Huang and Zhuchao Ji. We establish the potential Hilbert property for all K3 surfaces over number fields which admit an automorphism of positive entropy. Our method draws ingredients from both algebraic geometry and holomorphic dynamics.
报告人简介:谢俊逸,北京大学北京国际数学研究中心教授,2026年国际数学家大会(ICM)45分钟报告人。从事算术动力系统与丢番图几何方面的研究,在几何Bogomolov猜想、动力学Mordell-Lang猜想、动力学André-Oort猜想(DAO)、Zariski稠密轨道猜想等问题取得突破性成果。在顶级期刊《Acta Mathematica》、《The Journal of the American Mathematical Society》、《Inventiones mathematicae》均有论文发表。