The relative Auslander-Reiten theory over an infinite-dimensional coalgebra

发布时间:2024-10-24浏览次数:13

题目: The relative Auslander-Reiten theory over an infinite-dimensional coalgebra

报告人:李烨暄 (中北大学)


摘要: In this talk, we will cover several aspects: Firstly, we will delve into the higher-dimensional Auslander-Reiten theory over an infinite-dimensional coalgebra; the finite-dimensional case by duality reduces to that of finite-dimensional algebra. We will introduce the n-transpose of a finitely n-copresented comodule and n-Auslander-Reiten translations, and then prove the n-Auslander-Reiten formula on n-cluster-tilting subcategories of comodule categories. Secondly, we will introduce the Gorenstein transpose via a minimal Gorenstein injective copresentation of a quasi-finite comodule, and explore the relations between the Gorenstein transpose of comodules and the transpose of the same comodule. As an application, we will construct the almost split sequences in terms of Gorenstein transpose. Finally, we will generalize the notion of the Auslander transpose of comodules to that of the transpose with respect to a semidualizing bicomodule T and showcase some nice homological properties of T-transpose. Additionally, we will provide a Foxby equivalence of comodule categories and investigate a characterization of T-reflexive comodules. This work is joint with Prof. Hailou Yao.


时间:10月26日,10:00-12:00

地点:明德楼B201-1 报告厅


更多相关信息请参见HSAGA研讨班


Copyright (C)2023 哈尔滨工业大学数学研究院版权所有
人才招聘:
联系我们:
电话:86413107      邮箱:IASM@hit.edu.cn
地址:哈尔滨市南岗区西大直街92号
技术支持:哈尔滨工业大学网络安全和信息化办公室