Mahler equations for Zeckendorf numeration

发布时间:2024-10-16浏览次数:96

题目:Mahler equations for Zeckendorf numeration


报告人:Olivier Carton(巴黎西岱大学)


摘要:

Let U = (u_n) be a Pisot numeration system. A sequence (f_n) taking values over a commutative ring R, possibly infinite, is said to be U-regular if there exists a weighted automaton which outputs f_n when it reads (n)_U. For base-q numeration, with q ∈ ℕ, q-regular sequences were introduced and studied by Allouche and Shallit, and they are a generalisation of q-automatic sequences (f_n), where f_n is the output of a deterministic automaton when it reads (n)_q. Becker, and also Dumas, made the connection between q-regular sequences, and q-Mahler type equations. In particular a q-regular sequence gives a solution to an equation of q-Mahler type, and conversely, the solution of an isolating, or Becker, equation of q-Mahler type is q-regular.

 

We define generalised equations of Z-Mahler type, based on the Zeckendorf numeration system~Z. We show that if a sequence over a commutative ring is Z-regular, then it is the sequence of coefficients of a series which is a solution of a Z-Mahler equation. Conversely, if the Z-Mahler equation is isolating, then its solutions define Z-regular sequences. We provide an example to show that there exist non-isolating Z-Mahler equations whose solutions do not define Z-regular sequences. Our proof yields a new construction of weighted automata that generate classical q-regular sequences.

 

This is joint work with Reem Yassawi.


 

时间:10月22日,下午15:00-16:00

地点:ZOOM会议:993 8441 9798       密码:874560



Copyright (C)2023 哈尔滨工业大学数学研究院版权所有
人才招聘:
联系我们:
电话:86413107      邮箱:IASM@hit.edu.cn
地址:哈尔滨市南岗区西大直街92号
技术支持:哈尔滨工业大学网络安全和信息化办公室