Boundedness of operator-valued commutators involving martingale paraproducts

发布时间:2024-04-18浏览次数:245

题目:Boundedness of operator-valued commutators involving martingale paraproducts  


报告人:魏振国(哈尔滨工业大学)


时间:2024年4月26日(星期五)10:00-11:00 


地点:明德楼B区201-1报告厅


摘要:Let $1<p<\infty$. We show the boundedness of operator-valued commutators $[\pi_a,M_b]$ on the noncommutative $L_p(L_\infty(\mathbb{R})\otimes \mathcal{M})$ for any von Neumann algebra $\mathcal{M}$, where $\pi_a$ is the $d$-adic martingale paraproduct with symbol $a\in BMO^d(\mathbb{R})$ and $M_b$ is the noncommutative left multiplication operator with $b\in BMO^d_\mathcal{M}(\mathbb{R})$. Besides, we consider the extrapolation property of semicommutative $d$-adic martingale paraproducts in terms of the $BMO^d_\mathcal{M}(\mathbb{R})$ space.


更多信息:研究生研讨班



Copyright (C)2023 哈尔滨工业大学数学研究院版权所有
人才招聘:
联系我们:
电话:86413107      邮箱:IASM@hit.edu.cn
地址:哈尔滨市南岗区西大直街92号
技术支持:哈尔滨工业大学网络安全和信息化办公室