Casey's theorem in hyperbolic geometry

发布时间:2024-04-11浏览次数:10

题目:Casey's theorem in hyperbolic geometry


报告人:Nikolay Abrosimov (索伯列夫数学研究所,新西伯利亚)


时间:2024年4月15日(星期一),14:30-15:30


地点:明德楼B201-1


摘要:In 1881 Irish mathematician John Casey generalized Ptolemy’s theorem in the following way (see  [1], p. 103).  Casey’s theorem. Let circles O1, O2, O3, Oon a plane touch given circle O in vertices p1, p2, p3,  pof a convex quadrilateral. Denote by tij the length of a common tangent of the circles Oand Oj.  If O separates Oand Othen the internal tangent should be taken as tij else the external tangent  should be taken. In both cases we assume that the tangents are exist. Then

In our paper [2], we produce hyperbolic version of Casey’s theorem.

Theorem 1. Let circles O1, O2, O3, Oon the hyperbolic plane Htouch given circle O in vertices  p1, p2, p3, pof a convex quadrilateral. Denote by tij the length of a common tangent of the circles  Oand Oj. If O separates Oand Othen the internal tangent should be taken as tij else the external  tangent should be taken. In both cases we assume that the tangents are exist. Then

References:
[1] J. Casey, A sequel to the first six books of the Elements of Euclid, containing an easy introduction to modern geometry, with numerous examples, 5th. ed., Hodges, Figgis and Co., Dublin 1888.
[2] N.V. Abrosimov, L.A. Mikaiylova, Casey’s theorem in hyperbolic geometry //  Siberian Electronic Mathematical Reports, 12 (2015), 354-360.  DOI: https://doi.org/10.17377/semi.2015.12.029



Copyright (C)2023 哈尔滨工业大学数学研究院版权所有
人才招聘:
联系我们:
电话:86413107      邮箱:IASM@hit.edu.cn
地址:哈尔滨市南岗区西大直街92号
技术支持:哈尔滨工业大学网络安全和信息化办公室