Some results on strongly indefinite variational problems (1)

发布时间:2017-07-16浏览次数:984

Speaker: Professor Yanheng Ding

Institution:  Institute of Mathematics, AMSS, Chinese Academy of Sciences

Time: 2017.07.16. 14:30--15:30

Location: Room 503, Gewu Building

Title: Some results on strongly indefinite variational problems (1)

Abstract: Consider the following general nonlinear system   

Au = N(u)                 (1)
where H is a Hilbert space, A is a self-adjoint operator, and N is a (nonlinear) gradient operator. Typical example are Dirac equations and reaction-diffusion systems where \sigma(A) (the spectrum) is unbounded from below and above, and particularly, \sigma_e(A)\cap\mathbb R^{\pm}\not=\empty. The talk focus on

     1)  to establish general variational setting for (1) by using the operator interpolation theory;

     2) certain critical point theory;

     3) the existence, concentration and exponential decay for semi-classical solutions of Dirac equation and the reaction-diffusion systems, etc.;

     4) bifurcation of Dirac equation on spin manifolds.


Copyright (C)2023 哈尔滨工业大学数学研究院版权所有
人才招聘:
联系我们:
电话:86413107      邮箱:IASM@hit.edu.cn
地址:哈尔滨市南岗区西大直街92号
技术支持:哈尔滨工业大学网络安全和信息化办公室