Potential theory and combinatorics

发布时间:2023-10-17浏览次数:400

题目:Potential theory and combinatorics


报告人:Sami Mustapha(巴黎索邦大学)

  

时间:1027星期五),16:15-17:15


地点:明德楼B201-1报告厅


摘要:“... But the most general and direct method for resolving questions of probability consists of making them depend on difference equations ...” 

The aim of this talk is to illustrate this quote from Laplace (Philosophical essay on probabilities) by developing certain aspects of the theory of discrete potential theory attached to a random walk in 𝑍 𝑑 ; the difference equations playing in this framework the same role played by the PDEs in the theory of the classical potential theory. Although the presentation will be mainly limited to simple walks in quadrants, some extensions to walks in discrete Lipschitzian domains and to inhomogeneous walks will be discussed. The emphasis will be placed on the role that tools from discrete potential theory can play (harmonic functions and discrete caloric functions, maximum principle, Harnack inequalities, boundary Harnack inequalities at the boundary) in establishing optimal estimates for the number of paths confined to a region as well as the number of excursions.



报告人简介:

Sami Mustapha现任法国索邦大学教授,数学学院院长。Sami Mustapha教授是世界著名调和分析专家,在群上的调和分析及随机游走等领域作出杰出贡献










更多相关信息请参见 杰出学者讲座



Copyright (C)2023 哈尔滨工业大学数学研究院版权所有
人才招聘:
联系我们:
电话:86413107      邮箱:IASM@hit.edu.cn
地址:哈尔滨市南岗区西大直街92号
技术支持:哈尔滨工业大学网络安全和信息化办公室