Lp-unconditional partitions of free group von Neumann algebras

发布时间:2023-08-15浏览次数:364

题目:Lp-unconditional partitions of free group von Neumann algebras


报告人:梅韬(贝勒大学)


时间:20238月17(星期四,10:45-11:45


地点:明德楼B区201-1报告厅


摘要:Let Fn,2 ≤ n ≤ ∞, be the non-abelian free group of n-free generators, and be the subsets of F(i) consisting of reduced words starting with the i-th generator.  The partition Fn = ∪1≤i≤nFn(i) ∪{e} implies the well-known nonameanablility of Fn. In a recent joint work with E. Ricard, we show that this partition is unconditional with respect to the noncommutative Lp-norm.This implies that the group von Neumann algebra of F∞ admits a Lp-unconditional partition with infinitely many components that satisfy a geometrical paradoxical property. It is a mystery whether the group von Neumann algebra of F2 ( or Fn for any finite n) admits such a partition. In this talk, I wish to introduce recent progress in this direction. Part of the talk is based on joint works with Z. Liu, E.Ricard, Q. Xu, and S. Yin.




Copyright (C)2023 哈尔滨工业大学数学研究院版权所有
人才招聘:
联系我们:
电话:86413107      邮箱:IASM@hit.edu.cn
地址:哈尔滨市南岗区西大直街92号
技术支持:哈尔滨工业大学网络安全和信息化办公室