Cyril Houdayer——Noncommutative ergodic theory of lattices in higher rank simple algebraic groups

发布时间:2022-04-13浏览次数:1017

题目Noncommutative ergodic theory of lattices in higher rank simple algebraic groups


报告人:Cyril Houdayer (University of Paris-Saclay)  


时间420日(星期三),16:00-17:30


地点Zoom会议,会议号:938 5012 7691,密码:123399


摘要:In this talk, I will present a noncommutative Nevo-Zimmer theorem for actions of lattices in higher rank simple algebraic groups on von Neumann algebras. This extends to the realm of algebraic groups defined over arbitrary local fields the noncommutative Nevo-Zimmer theorem we obtained with Rémi Boutonnet in 2019 for real Lie groups.


I will discuss various applications of the above theorem to topological dynamics, unitary representations and operator algebras. I will also present a noncommutative analogue of Margulis’ factor theorem and discuss its relevance regarding Connes’ rigidity conjecture for group von Neumann algebras of higher rank lattices.


This is based on joint work with Uri Bader and Rémi Boutonnet (arXiv:2112.01337)


更多相关信息请参见泛函分析研讨班网页


Copyright (C)2023 哈尔滨工业大学数学研究院版权所有
人才招聘:
联系我们:
电话:86413107      邮箱:IASM@hit.edu.cn
地址:哈尔滨市南岗区西大直街92号
技术支持:哈尔滨工业大学网络安全和信息化办公室