讨论班和报告
当前位置:首页  讨论班和报告  报告
颜立新—— Almost everywhere convergence of Bochner-Riesz means for the Hermite operators
发布人:许全华  发布时间:2020-06-29   浏览次数:549

标题:Almost everywhere convergence of Bochner-Riesz means for the Hermite operator


报告人:颜立新(中山大学数学系)


时间:7月3日,16:00-17:30


地点:腾讯会议,会议 ID:352 563 564


摘要:In this talk I will discuss almost everywhere convergence of Bochner-Riesz means for the Hermite operator $H = -\Delta + |x|^2$.  We prove that $ $ \lim\limits_{R\to \infty} S_R^{\lambda}(H) f(x)=f(x) \     \text{a.e.}$ $ for $f\in L^p(\mathbb R^n)$ provided that $p\geq 2$ and $ \lambda> 2^{-1}\max\big\{ n\big({1/2}-{1/p}\big)-{1/ 2}, \, 0\big\}.$  Surprisingly, for the dimensions $n\geq 2$ our result reduces the borderline summability index $\lambda$ for a.e. convergence as small as only half of the critical index required for a.e. convergence of the classical Bochner-Riesz means for the Laplacian. This is a joint work with Peng Chen, Xuan Thinh Duong, Danqing He and Sanghyuk Lee.


会议链接:https://meeting.tencent.com/s/vORFGj8FpYMP