Vergara Ignacio——Radial Schur multipliers

发布时间:2018-07-16浏览次数:1205


题目Radial Schur multipliers


报告人Vergara Ignacio(Universite Claude Bernard-Lyon 1)


时间:7月18日,8:30--9:30


地点:格物楼503学术报告厅


摘要:Given a set $X$, a Schur multiplier on $X$ is function $\phi:X\times X\to\mathbb{C}$ defining a bounded operator on $\mathcal{B}(\ell_2(X))$ by multiplication of the matrix coefficients: $T=(T_{xy})_{x,y\in X}\mapsto (\phi(x,y)T_{xy})_{x,y\in X}$. In this talk I will focus on the case when $X$ is (the set of vertices of) an infinite graph and the function $\phi$ depends only on the distance between each pair of vertices. Such a function is said to be radial. For homogeneous trees, Haagerup, Steenstrup and Szwarc gave a characterisation of radial Schur multipliers in terms of certain Hankel matrices associated to the radial functions. I will discuss some extensions of this result to products of trees, products of hyperbolic graphs and CAT(0) cube complexes.


Copyright (C)2023 哈尔滨工业大学数学研究院版权所有
人才招聘:
联系我们:
电话:86413107      邮箱:IASM@hit.edu.cn
地址:哈尔滨市南岗区西大直街92号
技术支持:哈尔滨工业大学网络安全和信息化办公室