On Sobolev maps between manifolds and branched transportation

Release time:2023-10-17Views:50

TitleOn Sobolev maps between manifolds and branched transportation

SpeakerFabcrice Béthuel(Sorbonne Université)

TimeFriday, October 2715:00-16:00

LocationMingde Building, B201-1

AbstractIn the talk, I wish to stress the link between branched transportation theory, and some issues in the study of Sobolev maps between manifold. In particular, I will present a counterexample to the sequential weak density of smooth maps between two manifolds 𝑀 and 𝑁 in the Sobolev space 𝑊1,𝑝 (𝑀, 𝑁), in the case 𝑝 is an integer. It has been shown quite a while ago that, if 𝑝 < 𝑚 = 𝑑𝑖𝑚(𝑀) is not an integer and the [𝑝]-th homotopy group 𝜋[𝑝] (𝑁) of 𝑁 is not trivial, [𝑝] denoting the largest integer less than 𝑝, then smooth maps are not sequentially weakly dense in 𝑊1,𝑝 (𝑀, 𝑁). On the other hand, in the case 𝑝 < 𝑚 is an integer, examples of specific manifolds 𝑀 and 𝑁 have been provided where smooth maps are sequentially weakly dense in 𝑊1,𝑝 (𝑀, 𝑁)with 𝜋[𝑝] (𝑁) ≠ 0, although they are not dense for the strong convergence. This is the case for instance for 𝑀 = 𝐵 𝑚. Such a property does not hold for arbitrary manifolds 𝑁 and integers 𝑝.

      The counterexample deals with the case 𝑝=3, 𝑚 ≥ 4 and 𝑁 = 𝑆 , for which 𝜋(𝑆 ) = 𝑍 is related to the Hopf fibration. We provide an explicit map which is not weakly approximable in 𝑊1,3 (𝑀, 𝑆 ), by smooth. One of the  
central ingredients in our argument is related to issues in branched transportation and irrigation theory in the critical exponent case.

About the speaker

Fabrice Béthuel现任法国索邦大学教授,数学硕士研究生负责人。Fabrice Béthuel是世界著名数值分析和偏微分方程专家,法国大学研究院院士,世界数学家大会特邀报告人,获得过众多国际大奖,比如法国科学院Mergier-Bourdeix Prize FERMAT PrizeIBM Prize担任或曾担任国际重要数学杂志编委,比如欧洲数学会杂志(Journal of European Mathematical Societty)和泛函分析杂志(Journal of Functional Analysis).

 More information about Distinguished Colloquium can be found here.

Copyright (C)2017 Institute for Advanced Study in Mathematics of HIT All Rights Reserved.
Contact Us:
Tel:86413107      Email:IASM@hit.edu.cn
Add:NO.92 West Da Zhi St. Harbin China
Technical support:Net & Information Center,HIT