Szlenk and w*-dentability indices of C*-algebras

Release time:2024-10-13Views:16

ANALYSIS SEMINAR



Title: Szlenk and  w ∗-dentability indices of C*-algebras 

Speaker:Zhizheng Yu (Harbin Institute of Technology) 


Time:2024-10-16(Wednesday),14:30-16:00


Venue:Minde Building B201-1 

Zoom ID:947 0981 8605,Password:477439


Abstract:

Let A be an infinite dimensional C*-algebra and 1<p< ∞ . We compute the Szlenk index of A and Lp(A), and show that Sz(A)= Γ '(i(A)) and Dz(A)=Sz(Lp(A))= ω Sz(A)= ω  Γ '(i(A)), where i(A) is the noncommutative Cantor-Bendixson index,  Γ '( ξ ) is the minimum ordinal number which is greater than  ξ  of the form  ω  ζ  for some  ζ  and we agree that  Γ '( ∞ )= ∞  and  ω  ⋅  ∞ = ∞ . As an application, we compute the Szlenk index [respectively, w ∗ -dentability index] of a C*-tensor product A ⊗  β B of non-zero C*-algebras A and B in terms of Sz(A) and Sz(B) [respectively, Dz(A) and Dz(B)]. When A is a separable C*-algebra, we show that there exists a ∈ Ah such that Sz(A)=Sz(C ∗ (a)) and Dz(A)=Dz(C ∗ (a)), where C ∗ (a) is the C*-subalgebra of A generated by a.


More information about the Analysis Seminar can be found here.

Copyright (C)2017 Institute for Advanced Study in Mathematics of HIT All Rights Reserved.
Recruitment:
Contact Us:
Tel:86413107      Email:IASM@hit.edu.cn
Add:NO.92 West Da Zhi St. Harbin China
Technical support:Net & Information Center,HIT