Rank, symmetric rank and their decompositions of tensors over arbitrary fields

Release time:2022-11-11Views:495

Title:Rank, symmetric rank and their decompositions of tensors over arbitrary fields


Speaker:Xiaoyu SongHarbin Institute of Technology

 

Time:Tuesday, November 15, 2022, 9:00-10:00 

  

Location: B201-1, Mingde Building


Abstract:Comon’s Conjecture asserts that for a symmetric tensor, the rank is equal to the symmetric rank. However, the symmetric rank does not always exist. We give a necessary and sufficient condition for symmetric tensors to have symmetric rank, and give some sufficient conditions for this conjecture to be true. Moreover, we propose an algebraic method to compute the symmetric rank and symmetric rank decomposition for symmetric tensors over the binary field. Finally, we completely characterize the maximum rank of m×n×2 tensors over an arbitrary field.


More information: Graduate Student Seminar

 

Copyright (C)2017 Institute for Advanced Study in Mathematics of HIT All Rights Reserved.
Recruitment:
Contact Us:
Tel:86413107      Email:IASM@hit.edu.cn
Add:NO.92 West Da Zhi St. Harbin China
Technical support:Net & Information Center,HIT