Vladimir Al. Osipov——Integrability in random matrix theory and its applications

Release time:2022-08-26Views:565

Title: Integrability in random matrix theory and its applications 


SpeakerVladimir Al. Osipov Faculty of Sciences, Holon Institute of Technology)

 

Time: Wednesday, August 31, 2022, 16:00-17:30 (UTC+8).  

 

Online access: Zoom Meeting ID: 882 8540 7533 , Password: 028422, 

Link: https://zoom.us/j/88285407533?pwd=NFlsWlZlb2F3c3VmMHBqOXVud1NpQT09

 

AbstractRandom matrices are widely used to model quantum systems with chaos and disorder. In such models, the observable is expressed as a quantum operator averaged over an ensemble of random matrices with a given probability measure. In my talk, I demonstrate a general approach, “the random matrix integrable theory”, to the nonperturbative calculation of the random-matrix integrals. With this approach, the internal symmetries of the integration measure, expressed in terms of highly non-trivial nonlinear relations for the original integral (the Toda lattice hierarchy, the Kadomtsev-Petviashvili hierarchy) and the relations following from the deformation of the integration measure (Virasoro constraints), are used to represent the integral as a solution of differential equations, where the differentials are taken over the internal (physical) parameters of the model [1,2]. This method represents a particular implementation of results obtained within a more general theory of τ -functions. In particular, the central theorem of this theory states the existence of the Toda lattice and Kadomtsev-Petviashvili hierarchies for the typical random-matrix integrals.The particular implementation of the integrable theory will be discussed in the example of the physical problem of quantum transport in chaotic cavities [3,4]. A brief introduction to the physics of the problem and the advantage of the integrable theory method for calculation of the conductance cumulants, and of the shot-noise-conductance joint cumulants are going to be presented. In particular, we demonstrate how the conductance cumulant generation function can be expressed in terms of the solution of the Painleve V transcendent equation. In addition, the results of the integrable theory implementation to the averaged random-matrix characteristic polynomials [1], and also for the problem of the power spectrum of the eigenlevel sequences in the quantum chaotic system [2,5] will be discussed.

[1] V.Al.Osipov, E.Kanzieper, “Correlations of RMT characteristic polynomials and integrability: Random Hermitian matrices”, Annals of Physics
325 (2010) 2251
[2] R.Riser, V.Al.Osipov, E.Kanzieper, “Nonperturbative theory of power spectrum in complex systems”, Annals of Physics 413 (2020) 168065
[3] V.Al.Osipov, E.Kanzieper, “Integrable theory of quantum transport in chaotic cavities”, Phys.Rev.Let. 101 (2008) 176804
[4] V.Al.Osipov, E.Kanzieper, “Statistics of thermal to shot noise crossover in chaotic cavities”, J.Phys.A:Math.Theor. 42 (2009) 475101
[5] R.Riser, V.Al.Osipov, E.Kanzieper, “Power-spectrum of long eigenlevel sequences in quantum chaology”, Phys.Rev.Let. 118 (2017) 204101


Integrability in random matrix theory and its applications.pdf


More information about the Functional Analysis Seminar can be found here.


Copyright (C)2017 Institute for Advanced Study in Mathematics of HIT All Rights Reserved.
Recruitment:
Contact Us:
Tel:86413107      Email:IASM@hit.edu.cn
Add:NO.92 West Da Zhi St. Harbin China
Technical support:Net & Information Center,HIT