Lixin Yan——Almost everywhere convergence of Bochner-Riesz means for the Hermite operator

Release time:2021-12-21Views:739

Title: Almost everywhere convergence of Bochner-Riesz means for the Hermite operator


Speaker: Lixin Yan (Zhongshan University)


Time: 16:00-17:30, July3


Location: Tecent Meeting, Tecent Meeting ID: 352 563 564


Abstract: In this talk I will discuss almost everywhere convergence of Bochner-Riesz means for the Hermite operator $H = -\Delta + |x|^2$.  We prove that $ $ \lim\limits_{R\to \infty} S_R^{\lambda}(H) f(x)=f(x) \     \text{a.e.}$ $ for $f\in L^p(\mathbb R^n)$ provided that $p\geq 2$ and $ \lambda> 2^{-1}\max\big\{ n\big({1/2}-{1/p}\big)-{1/ 2}, \, 0\big\}.$  Surprisingly, for the dimensions $n\geq 2$ our result reduces the borderline summability index $\lambda$ for a.e. convergence as small as only half of the critical index required for a.e. convergence of the classical Bochner-Riesz means for the Laplacian. This is a joint work with Peng Chen, Xuan Thinh Duong, Danqing He and Sanghyuk Lee.


Meeting Link:https://meeting.tencent.com/s/vORFGj8FpYMP


Copyright (C)2017 Institute for Advanced Study in Mathematics of HIT All Rights Reserved.
Recruitment:
Contact Us:
Tel:86413107      Email:IASM@hit.edu.cn
Add:NO.92 West Da Zhi St. Harbin China
Technical support:Net & Information Center,HIT