Title: Crossing Probabilities in 2D Critical Lattice Models
Speaker: Hao Wu (Yau Mathematical Science Center, Tsinghua University)
Time: 10:00-11:00, June19
Location: Tencent Meeting, Tencent Meeting ID: 423 732 065
Abstract: The planar Ising model is one of the most studied lattice models in statistical physics. It was introduced in the 1920s by W. Lenz as a model for magnetic materials. R. Peierls showed in 1936, in two (and higher) dimensions, an order-disorder phase transition in fact occurs at a certain critical temperature. Ever since, there has been active research to understand the 2D Ising model at criticality, where it enjoys conformal invariance in the scaling limit. In this talk, we give crossing probabilities of multiple interfaces in the critical planar Ising model with alternating boundary conditions. Besides, we also explain that a similar formula on the crossing probabilities also holds for critical Percolation and level lines of Gaussian Free Field.
Meeting Link: https://www.bilibili.com/video/bv1Pv411B7xk
Slides: Crossing Probabilities in 2D Critical Lattice Models.pdf