Vergara Ignacio--Radial Schur multipliers

Release time:2018-07-16Views:1633




Speaker: Vergara Ignacio, Universite Claude Bernard-Lyon 1


Time: 18 July, 8:30--9:30, Place: 503 Gewu Buidling


Abstract: Given a set $X$, a Schur multiplier on $X$ is function $\phi:X\times X\to\mathbb{C}$ defining a bounded operator on $\mathcal{B}(\ell_2(X))$ by multiplication of the matrix coefficients: $T=(T_{xy})_{x,y\in X}\mapsto (\phi(x,y)T_{xy})_{x,y\in X}$. In this talk I will focus on the case when $X$ is (the set of vertices of) an infinite graph and the function $\phi$ depends only on the distance between each pair of vertices. Such a function is said to be radial.


For homogeneous trees, Haagerup, Steenstrup and Szwarc gave a characterisation of radial Schur multipliers in terms of certain Hankel matrices associated to the radial functions. I will discuss some extensions of this result to products of trees, products of hyperbolic graphs and CAT(0) cube complexes.


Copyright (C)2017 Institute for Advanced Study in Mathematics of HIT All Rights Reserved.
Recruitment:
Contact Us:
Tel:86413107      Email:IASM@hit.edu.cn
Add:NO.92 West Da Zhi St. Harbin China
Technical support:Net & Information Center,HIT