Zeqian Chen--Singular states and mathematical formalism of quantum mechanics

Room 522, Gewu Building

Release time:2017-01-08Views:1452


Abstract: In this talk, we report a mathematical formalism of quantum mechanics based on the notion of a prototype. The main novelty of this formalism is that the theory includes both vector and singular states as quantum states for a quantum system and thus extends the conventional formulation of quantum mechanics merely involving vector states. That the prototype is introduced as a prime concept in quantum mechanics reflects the postulation of Bohr's complementary principle that one cannot make a measurement on two incompatible observables at a particular moment. Mathematically, for a quantum system Q with an associated Hilbert space H, a prototype of Q is defined by an orthonormal basis of H. The evolution of the system Q as described by prototypes is governed by Schrödinger's equation for the associated bases of H. Given a prototype with its associated basis (en), a quantum state is defined as a valuation of all self-adjoint operators on H diagonal under the basis (en). Although a quantum state is defined in a certain prototype, it can be uniquely extended to the whole system as proved respectively as being a vector state by Kadison and Singer in 1959, and as a singular state by Marcus, Spielman, and Srivastava recently. Consequently, we can apply the Copenhagen interpretation to a prototype for regarding a quantum state as an external observation, and thus obtain the Born rule of random outcomes. Moreover, a mathematical method for constructing some singular states is given by the so-called Banach limit. We expect that the singular states have helpful implications in the application of quantum mechanics to understanding the nature.


Copyright (C)2017 Institute for Advanced Study in Mathematics of HIT All Rights Reserved.
Recruitment:
Contact Us:
Tel:86413107      Email:IASM@hit.edu.cn
Add:NO.92 West Da Zhi St. Harbin China
Technical support:Net & Information Center,HIT