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Geometric disciplines

Parallels between disciplines:

e
Commeam
Commomr>
e

topological algebras
of polynomials P (M)

topological algebras of
holomorphic functions O (M)

topological algebras of
smooth functions £(M)

topological algebras of
continuous functions C(M)
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observation tools

/)
1ot

Algebraic Geometry

Complex Geometry

Differential Geometry

Topology
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Polynomial algebras,
key example: P(M)

holomorphic envelope

smooth envelope

continuous envelope

Holomorphic algebras,
key example: O(M)

Topological algebras

Smooth algebras,
key example: £(M)

Continuous algebras,
key example: C(M)
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Monoidal category

Key example:

Category Vectc of vector spaces over C.

1) acategory M,
2) a covariant furctor ® : M x M — M called the tensor product:

Ixgy =1x®1y,  (x®X)o(p®¢)=(xop)® (X o¢’)
3) an isomorphism of functors
o: ((x, Y,Z) > (X®Y) @Z) - ((x, Y,Z) > X® (Y®Z)), called the
associativity isomorphism, such that VA, B, C, D

9A,BRC,D

(A®(B®C))®D AR (B®C)® D)
DA,B,C®1DT \L1A®DB,C,D
(A®B)®C)®D AR (B® (C® D))

Dm %,C@D

(A®B)®(C®D)
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4) an object / called the unit object in the category M, and two isomorphisms of
functors < : (XH I®X) — (XH x), and & : (XH X@I) — (XH x),
called the left identity and the right identity, such that

(<1 1@1— 1) = (=1: 11— 1),

XIN®Y — = X (®Y)

OxX,1,Y

>X®1V\ 1x®=y
XQY
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Symmetric monoidal category

5) an isomorphism of functors ¢ : ((X, Y)—» X® Y) — ((X, Y)—» Y® X) called
the symmetry, such that

I®X—>X®I

D

Xoy — X L xey

om %jx

Y®X

X@(YO2) s (YO ®X

XV ©Zz Y®(Z®X)

Ox,m %X,Z

(Yex)®z m Y®(X®2)
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Closed symmetric monoidal category

6) a bifunctor (X,Y) — % : M x M — M, contravariant in the first variable and
covariant in the second:

1y X oy
<L =1y,
1x X pox
7) an isomorphism of functors

X,Y,2) > 2B (X@ V) - (X, V. 2) > £ 3 x),
Y

Y X = Mor(X,Y)

Y
— = Hom(X,Y
X (X.Y)

Mor(X® Y, Z) =~ Mor(X, Hom(Y, Z))
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Pure algebra vs Topological algebra

Pure algebra: Topological algebra:
The category Vectc Only the category Ban¢
of vector spaces over C of Banach spaces over C
is closed monoidal: is closed monoidal:
LX®Y,Z)~LX,L(Y,2)) | BIXQY,Z) =~ B(X,B(Y,2))

4

Topological algebra is a “non-categorical theory”: only its “Banach branch” is
categorical, but the problem is that there are not so many Banach algebras, for
example, the algebras C* (M), Diff(M) are not Banach.
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Stereotype spaces

A stereotype space is a topological vector space X over C such that the natural map
ix : X — X**, ix(x)(f) = f(x), xeX, fe X"

is an isomorphism of topological vector spaces (i.e. a linear and a homeomorphic
map). Here the dual space X* is defined as the space of all linear continuous
functionals f : X — C endowed with the topology of uniform convergence on totally
bounded sets in X, and the second dual space X** is the space dual to X* in the same
sense.

A set D ¢ X is said to be capacious if for each totally bounded set A € X there is a
finite set F < X suchthat Ac D+ F.

A topological vector space X is said to be
@ pseudocomplete, if each totally bounded Cauchy net in X converges,

@ pseudosaturated, if each closed convex balanced capacious set D in X is a
neighborhood of zero in X.

Criterion: a locally convex space X is stereotype if and only if it is pseudocomplete
and pseudosaturated.
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STEREOTYPE SPACES

quasicomplete barreled spaces

Fréchet spaces

Banach spaces
reflexive

spaces
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Category "Ste" of stereotype spaces

The class Ste of stereotype spaces forms a category with linear continuous maps as
morphisms and with the following properties:

@ Ste is pre-abelian, i.e. additive with kernels and cokernels;
@ Ste is bicomplete, i.e. has projective and injective limits;
@ Ste has nodal decomposition:

X—F sy
o ~
Stronngl\P | StrongMono
! Y/
Epi n Mono

@ Ste is a *-autonomous category, i.e. symmetric closed monoidal with the duality
functor x, and

X* =X, XoY®el)=XeY) oz
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Algebras in monoidal categories

Key example:
Algebra C(M) of continuous functions on a (locally compact) topological space M.

An algebra in a monoidal category M is a triple (A, u, ¢) such that

ADA QA — M 40 (A®A) A® A

p®1a 14®n I®A W AR

St

I3 I3

ARA A ARA

A left module over (A, u, 1) is a pair (X, £) such that

AQA QX — 2% AR (A®X AR X
( @1/
p®1x 14®¢ 1®X £
3 13 &
AR X X AR X X
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Stereotype algebras and modules

As a symmetric monoidal category Ste generates the notions of stereotype algebra A
and of stereotype module over A. Analytical definitions:

@ Ais a stereotype algebra if the multiplication (a, b) — a- b is continuous as a
bilinear mapping,

@ M s a left stereotype module over A if the multiplication (a, x) — a- x is
continuous as a bilinear mapping,

@ M s a right stereotype module over A if the multiplication (x, a) — x - ais
continuous as a bilinear mapping,

Theorem. The categories 4 Ste and Ste4 of left and right stereotype modules over A
are enriched categories over Ste.
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Hopf algebras in monoidal categories

Key example:

Algebra C(G) of continuous functions on a (locally compact) topological group G.

A Hopf algebra in a symmetric monoidal category M is a sextuple (H, u, ¢, >, €, 0):
pn:H®H— H (multiplication),
1l — H (unit),
»:H—>H®H (comultiplication),
e:H— 1 (counit),
oc:H— H (antipode)
1) the triple (H, p,¢) is @ monoid in M,

~

OH,H,H
HOIH)@H ——  H® (H® H) %HQ@H{‘H\@L
M®1Hi J/1H®M I® Ml H®I
He H 7 H Iz H&H \H/
2) the triple (H, », €) is a comonoid in M,
OH,H,H
HOH)@H ————  H® (H®H) 1y HOH _ 1,40
@t Tex  IQHS «| T Hel
H®H = H—= 3H®H :\Hﬁ
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3) the morphisms »c: H > H® H and ¢ : H — [ are homomorphisms of monoids, and
the morphisms p: H® H — H and ¢ : | — H are homomorphisms of comonoids:

SH,H,H,H

HOIH)@(H®H) ——— (H®H)® (H® H)

V Hu

1

I el . HeH'SsH . H
Ll . lb@b E®El - lg 7\1/ €
H—H®H IQ1—1 | ——— 1

4) axiom of antipode:

»

1 o
HoH " He H
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Hopf algebras C(G) and C*(G)
The identity

C(Gx H)=C(G)B®C(H)
implies that for each locally compact group G
(i) C(G) is a Hopf algebra in (ste,®) with

u:C(Gx G) — C(G), w(w)(t) = w(t,t) (multiplication)
t:C— C(G), cA)() = A (unit)

x:C(G) — C(G x G), x(U)(s,t) =u(s-t) (comultiplication)
e:C(G) — C, e(u)y =u(1g) (counit)

o:C(G) — C(G), ou)(t) = u(t™") (antipode)

(i) C*(G) is a Hopt algebra in (Ste, @) with
[t CH(G) > CH(Gx G),  pu(a)(w) = fG w(t.t) a(dt)  (comultiplication)
S CH(G) > C, (a) = JG1 a(at) (countt)
W CHG X G) > CH(G), (y) = LXG u(s- 1) ~(ds,dt)  (multiplication)

e :C - C*(G), e"(\) = X\-d'e (unit)
o* : C*(G) —» C*(G), oc*(a) =aoco (antipode)

Sergei Akbarov Stereotype dualities in Geometry



C*(G) as a group algebra

A continuous representation of a locally compact group G in a stereotype algebra A is
an arbitrary continuous multiplicative map = : G — A:

m(1g) = 14, w(s-t) =mn(s) w(t), s, te G.

The delta-function § : G — C*(G).

For each locally compact group G and for each stereotype algebra A the diagram

G—23¢G)
AN s
TN ¥ - ®
establishes a bijection between

— continuous representations = of G in A, and
— homomorphisms ¢ of C*(G) into A.
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Hopf algebras £(G) and £*(G)
The identities

E(Gx H)=E(G)OEH) =E(G)®E(H)
imply that for each real Lie group G
(i) £(G) is a Hopf algebra in (ste,®) and in (Ste,®) with

w:E(Gx G)— E(G), w(w)(t) = w(tt) (multiplication)
1:C— E(G), () =A (unit)

x:E(G) — £(G x G), x(Uu)(s,t) = u(s-t) (comultiplication)
e:&(G) — C, e(u)y =u(1g) (counit)

o E(G) — £(G), ou)(t) = u(t™") (antipode)

(i) £*(G) is a Hopt algebra in (ste,®) and in (Ste, ®) with
[t ENG) - £ (G x G), ()W) = L w(t,t) a(dt)  (comultiplication)
S E4(G) > C, S (a) = Lj a(at) (countt)
W EN(G X G) > £4(G), #(y) = LXG u(s- 1) ~(ds,dt)  (multiplication)

e :C— £*(G), e"(\) =X\-d'e (unit)
o*: EX(G) - £7(G), oc*(a) =aoco (antipode)
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E*(@G) as a group algebra

A smooth representation of a real Lie group G in a stereotype algebra A is an arbitrary
continuous multiplicative map 7 : G — A

m(lg) =1a  w(s-t) =n(s)-n(f), st
that defines a continuous map

fe A* — fore&(G).
The delta-function § : G — O*(G).

For each real Lie group G and for each stereotype algebra A the diagram

G— 3 £%G)
AN s
T O\ k/gp

establishes a bijection between
— smooth representations 7 of G in A, and
— homomorphisms ¢ of £*(G) into A.
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Hopf algebras O(G) and O*(G)
The identities

O(Gx H)=O(G)©O(H) = O(G) ® O(H)
imply that for each Stein group G
(i) O(G) is a Hopf algebra in (ste,®) and in (ste,®) with

uw:0(Gx G) - O0(G), w(w)(t) = w(t,t) (multiplication)
t:C— 0(6), (A=A (unit)

»x:O0(G) - O(G x G), »(u)(s,t) =u(s-t) (comultiplication)
e:0(G) - C, e(u) =u(1g) (counit)

o: O(G) - 0(G), o(u)(t) = u(t™) (antipode)

(i) ©*(G) is a Hopf algebra in (Ste,®) and in (Ste, @) with
[ 0%(G) - O (Gx G),  u*(a)(w) = L w(t,t) a(dt)  (comultiplication)
S 0%(G) > C, () = fG1 a(at) (countt)
S 0%(Gx G) - O°(G), #*(y) = LXG u(s- 1) ~(ds,dt)  (multiplication)

e :C— 0*(G), e*(\) =\-d'e (unit)
o* : 0*(G) - 0*(G), oc*(a) =aoo (antipode)

Sergei Akbarov Stereotype dualities in Geometry



O*(G) as a group algebra

A holomorphic representation of a Stein group G in a stereotype algebra A is an
arbitrary continuous multiplicative map 7 : G — A

m(lg) =1a  w(s-t) ==(s)-n(f), s,teG
that defines a continuous map

fe A" — fore O(G).
The delta-function § : G — O*(G).

For each Stein group G and for each stereotype algebra A the diagram

G—2 3 0%(G)
AN s
T\ 1</<p

establishes a bijection between
— holomorphic representations 7 of G in A, and
— homomorphisms ¢ of O*(G) into A.
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Hopf algebras P(G) and P*(G)
The identities

P(G x H) = P(G) ©P(H) =~ P(G) ® P(H)
imply that for each complex affine algebraic group G
(i) P(G)is a Hopf algebrain (ste,®) and in (Ste,®) with

w:P(Gx G) - P(G), w(w)(t) = w(tt) (multiplication)
t:C— P(G), cA)() = A (unit)

»:P(G) - P(Gx G), x(U)(s,t) =u(s-t) (comultiplication)
e:P(G) - C, e(u)y =u(1g) (counit)

o :P(G) - P(G), ou)(t) = u(t™") (antipode)

(i) P*(G) is a Hopf algebra in (ste,®) and in (Ste, ®) with
W PHG) — PG X G), pt(a)(w)= L\ w(t,t) a(dt)  (comultiplication)
P(G) - C, () = | 1 et (count)
PG x G) - P*(G), »(7)= LXG u(s-t) y(ds,df) (multiplication)

e :C - P*(G), e*(\) = \-d'e (unit)
o* : P*(G) — P*(G), oc*(a) =aoo (antipode)
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P*(G) as a group algebra

A polynomial representation of a complex affine algebraic group G in a stereotype
algebra A is an arbitrary continuous multiplicative map 7 : G — A

m(1g) = 14, w(s-t) =mn(s) w(t), s,te G.
that defines a continuous map

fe A" — fore P(G).

The delta-function § : G — P*(G).

For each complex affine algebraic group G and for each stereotype algebra A the
diagram
G—25P*(G)
AN v
T\ x 7 ®

establishes a bijection between
— polynomial representations 7 of G in A, and
— homomorphisms ¢ of P*(G) into A.

V.

Sergei Akbarov Stereotype dualities in Geometry




Envelopes

e A morphism o : X — X’ is called an extension of the object X in the class of
morphisms 2 with respect to the class of morphisms &, if o € £2, and for any
morphism ¢ : X — B from the class ¢ there exists a uniqgue morphism
¢’ : X’ - B such that

Qa/ \«peqs

HI
e An extension p : X — E of an object X in the class of morphisms (2 with respect
to the class of morphisms & is called an envelope of X in 2 with respect to ®, if for
any other extension o : X — X’ (of X in 2 with respect to &) there is a unique
morphism v : X/ — E such that

/\

-~ — S E

v

Notations:
p=envgX, E=EngX
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Stone—Cech compactification

In the category of Tikhonov spaces the Stone—Cech compactification 5 : X — gXis
an envelope in the class of compact spaces with respect to the same class of spaces:

BX = Env&omx

Com

v
Completion

In the category of locally convex spaces the completion v : X — X" is an envelope in
the class of all locally convex spaces with respect to the class of Banach spaces:

X" = EnvEESX

Ban

Sergei Akbarov Stereotype dualities in Geometry



Continuous envelope

A continuous envelope env¢A : A — Env¢A of an involutive stereotype algebra A is its
envelope in the class DEpi of dense epimorphisms in the category InvSteAlg of
involutive stereotype algebras with respect to the class of all homomorphisms into
C*-algebras: _

EnvcA = EnvoiPA

Let A be an involutive subalgebra in C(M) and the mapping M — Spec(A) is an exact
covering. Then

EnveA = C(M)

Example: EnveE(M) = C(M).
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Differential morphisms

Let B be an involutive stereotype algebra, d € Nand m e N9, set
Im={xeB[[d]]: YVkeN? k<m =— x, =0}

(the ideal in the algebra B[[d]] of power series with coefficients in B). The quotient
algebra
B[m] := B[[d]]/Im

is called the algebra B with joined self-adjoint nilpotent elements (of order m).
Take
N[m] = {keN?: k < m}.

For each homomorphism D : A — B[m] of involutive stereotype algebras its partial
derivatives are the operators

Dx:A— B, Di(a)=D@%, keN[m], acA

A homomorphism D : A — B[ml] is differential, if its partial derivatives {Dx; k € N[m]}
are differential operators from A into B with respect to the homomorphism Dy : A — B
with the orders, not greater than |k|:

Dy € Difflkl (Dg),

["‘[Dk7a0]7"'a|k‘:| = 07 a07"'7a‘k‘ €A7

with
[@,a](x) = P(a-x) — Dy(a) - 2(x), x e X.
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Smooth envelope

A smooth envelope envgA : A — EnvgA of an involutive stereotype algebra A is its
envelope in the class DEpi of dense epimorphisms in the category InvSteAlg of
involutive stereotype algebras with respect to the class DiffMor of all differential
homomorphisms into C*-algebras B[m] with the joined self-adjoint nilpotent elements:

_ DEpi
EnveA = EnvgigoA

Let A be an involutive subalgebra in £(M) and the mapping M — Spec(A) is an exact
covering, and for each s € M the mapping Ts(M) — Ts[A] is an isomorphism. Then

EnveA = (M)
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Holomorphic envelope

A holomorphic envelope envpA : A — Envp A of an involutive stereotype algebra A is
its envelope in the class DEpi of dense epimorphisms in the category SteAlg of
stereotype algebras with respect to the class Ban of all homomorphisms into Banach
algebras:

EnvpA = EnvEEPIA

Ban
Example: EnvoP(M) = O(M).
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Stereotype Dualities

Duality for finite groups

finite-dimensional H—H* finite-dimensional
—>
Hopf algebras Hopf algebras
Ca Ca
1 1
G G

finite groups finite groups

@ ®

‘ Abelian finite groups ‘ L ‘ Abelian finite groups ‘
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Duality in Topology

If G is a Moore group, then

Enve

c*(G) — EnveC*(G)

*I I*

Enve

C(G) — (EnveC*(G))*

If we denote
H' = (EnvcH)”,

then C*(G) becomes a Hopf algebra “reflexive with respect to the continuous

envelope™
HIT =~ H,

and we receive the following “diagram of functors”, which means that 1 generalizes the
usual Pontryagin duality e:
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Hopf algebras, Ho it Hopf algebras,
reflexive with respect to reflexive with respect to
the continuous envelope the continuous envelope

)
1
G

c*(G)
1
G

Abelian locally compact groups L} Abelian locally compact groups
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Duality in Differential Geometry

If G = C x K, where C is a compactly generated Abelian Lie group, and K a compact
Lie group, then

Enve

EX(G) — EnveE*(G)

*I I*

Envge

£(G) — (Enve€*(G))*

.

If we denote
H' = (EnvgH)”,

then £*(G) becomes a Hopf algebra “reflexive with respect to the smooth envelope”:
H'T ~ H,

and we receive the following “diagram of functors”, which means that 1 generalizes the
usual Pontryagin duality e:
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Hopf algebras, Hont Hopf algebras,
reflexive with respect to reflexive with respect to
the smooth envelope the smooth envelope

£%(G)
1
G
(3 (3
G—G*®

Abelian compactly generated Lie groups | —————— | Abelian compactly generated Lie groups
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Duality in Complex Geometry

If G is a finite extension of a connected complex linear group, then

Envep

O*(G) — Envp O*(G)

*1\ I*

Envp

O(G) —2 (Envo0*(G))*

If we denote
HT = (EnvoH)®,

then O*(G) becomes a Hopf algebra “reflexive with respect to the smooth envelope”:
H'T ~ H,

and we receive the following “diagram of functors”, which means that { generalizes the
usual Pontryagin duality e:
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reflexive witl

Hopf algebras,

the holomorphic envelope

Hopf algebras,

h respect to

O*(G)

G

finite extensions

of connected com

plex linear groups

Abelian finite groups

Hi—HT h .
reflexive with respect to
the holomorphic envelope
O*(G)
G
finite extensions
of connected complex linear groups

¢

G—G*®

Sergei Akbarov

Abelian finite groups
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