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Preliminary

Non-commutative Lp-space

LetM be a von Neumann algebra equipped with a normal semifinite faithful trace τ . Let S+
M be the

set of all positive x ∈M such that

τ(s(x)) <∞,

where s(x) denotes the support of x, that is, the least projection e ∈ M such that exe = x. Let SM
be the linear span of S+

M. For any p ∈ (0, ∞), we define

‖x‖p = (τ |x|p)1/p, x ∈ SM,

where |x| = (x∗x)1/2. The usual non-commutative Lp-space, Lp(M), associated with (M, τ), is the

completion of (SM, ‖ ·‖p). For convenience, we set L∞(M) =M equipped with operator norm ‖ ·‖M.
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Preliminary

Column and row spaces
Let (Ω, dµ) be a measurable space. We say that f is a SM-valued simple function on (Ω, dµ) if

f =

n∑
i=1

mi · χAi
,

where each mi ∈ SM and Ai’s are disjoint measurable subsets of Ω with µ(Ai) <∞. Let p ∈ [1, ∞).

For a SM-valued simple function f , we define

‖f‖Lp(M;Lc
2(Ω)) :=

∥∥∥∥∥
(∫

Ω

f∗f

)1/2
∥∥∥∥∥
Lp(M)

, ‖f‖Lp(M;Lr
2(Ω)) :=

∥∥∥∥∥
(∫

Ω

ff∗
)1/2

∥∥∥∥∥
Lp(M)

.

The column space Lp(M; Lc2(Ω)) (resp. row space Lp(M; Lr2(Ω))) is defined to be the completion

of the space of all SM-valued simple functions under the Lp(M; Lc2(Ω)) (resp. Lp(M; Lr2(Ω))) norm.
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Preliminary

Column and row spaces

Remark 1.1
When Ω is a countable set such as Z, N and D, equipped with a counting mea-

sure, Lp(M; Lc2(Ω)) (resp. Lp(M; Lr2(Ω))) will be denoted by Lp(M; `c2) (resp.

Lp(M; `r2)). Moreover, the space Lp(M; `c2) can be regarded as a space of sequences

of elements of Lp(M).
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Operator-Valued Hardy Spaces on Rn

Operator-Valued Hardy Spaces

Let P be the Poisson kernel of Rn: P (x) = C̃ 1

(|x|2+1)
n+1
2

with C̃ being a normalizing constant. For

y > 0, let

Py(x) :=
1

yn
P (
x

y
) = C̃

y

(|x|2 + y2)
n+1
2

.

For any function f on Rn with values in M, its Poisson integral, whenever exists, will be denoted by

f(x, y): f(x, y) :=
∫
Rn Py(x− t)f(t) dt, (x, y) ∈ Rn × R+. For any SM-valued simple function f ,

the Lusin area functions of f are defined by

Sc(f)(t) :=

(∫ ∫
Γ

∣∣∣∣ ∂∂y f(x+ t, y)

∣∣∣∣2 dxdy

yn−1

)1/2

and Sr(f)(t) := Sc(f∗)(t).

where Γ := {(x, y) ∈ Rn × R+ : |x| < y}.
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Operator-Valued Hardy Spaces on Rn

Operator-Valued Hardy Spaces

For p ∈ [1, ∞), we set

‖f‖Hc
p(Rn,M) := ‖Sc(f)‖Lp(L∞(Rn)⊗M) and ‖f‖Hr

p(Rn,M) := ‖f∗‖Hc
p(Rn,M).

The column Hardy spaceHc
p(Rn,M) (resp. the row Hardy spaceHr

p(Rn,M)) is defined

to be the completion of the space of all SM-valued simple functions under theHc
p(Rn,M)

(resp. Hr
p(Rn,M)) norm.

[1] T. Mei, Operator-valued Hardy spaces, Mem. Amer. Math. Soc., 188 (2007), 1-64.
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Operator-Valued Hardy Spaces on Rn

Define the mixture space Hp(Rn,M) as follows: For p ∈ [1, 2),

Hp(Rn,M) := Hc
p(Rn,M) +Hr

p(Rn,M)

equipped with the sum norm

‖f‖Hp(Rn,M)

:= inf
{
‖g‖Hc

p(Rn,M) + ‖h‖Hr
p(Rn,M) : f = g + h, g ∈ Hc

p(Rn,M), h ∈ Hr
p(Rn,M)

}
.

For p ∈ [2, ∞), define

Hp(Rn,M) := Hc
p(Rn,M) ∩Hr

p(Rn,M)

equipped with the intersection norm

‖f‖Hp(Rn,M) := max
{
‖f‖Hc

p(Rn,M), ‖f‖Hr
p(Rn,M)

}
.
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Operator-Valued Hardy Spaces on Rn

A wavelet basis of L2(Rn) is a complete orthonormal system {ωI}I∈D, where {ωI}I∈D is a 1-regular

basis and ω is a real-valued function on Rn satisfying the properties for Meyer’s construction in [2], here

and hereafter, let D denote the collection of all dyadic intervals in Rn, that is,

D :=
{
Ij, k : Ij, k = 2−j([0, 1)n + k), j ∈ Z, k ∈ Zn

}
and

ωIj, k(x) := 2jn/2ω(2jx− k), for any j, k ∈ Zn.

The wavelet basis {ωI}I∈D is called 1-regular if |∂αω(x)| ≤ Cm(1 + |x|)−m and
∫
Rn x

αω(x) dx = 0

for all |α| ≤ 1 and m ∈ N.

[2] Y. Meyer, Wavelets and Operators, Cambridge Studies in Advanced Mathematics 37, Cambridge

University Press, Cambridge, 1992.
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Operator-Valued Hardy Spaces on Rn

As in [2], we may assume that there exists some cube Aγ ⊂ [0, 1)n such that

|Aγ| = γ > 0 and |ω(x)| ≥ c0, ∀x ∈ Aγ, (2.1)

for some fixed positive constants c0 and γ. In what follows, for any j ∈ Z, k ∈ Zn,
define

Ĩj, k := 2−j(Aγ + k). (2.2)

[3] G. Hong and Z. Yin, Wavelet approach to operator-valued Hardy spaces, Rev. Mat. Iberoam.,

29 2013, 293-313.

10 / 55



Operator-Valued Hardy Spaces on Rn

Theorem 2.1 (Hong-Wang-Wu, IMRN, 2022)
Let p ∈ [1, ∞) and {ωI}I∈D be a 1-regular wavelet basis of L2(Rn). Then the following conditions are

equivalent for any Lp(M)-valued distribution f ,

f =
∑
I∈D
〈f, ωI〉ωI in the sense of distribution :

(i) f ∈ Hc
p(Rn,M);

(ii) ‖
(∑

I∈D |〈f, ωI〉|
2 |ωI |2

)1/2

‖Lp(L∞(Rn)⊗M) <∞;

(iii) ‖
(∑

I∈D
|〈f, ωI〉|2
|I| χI

)1/2

‖Lp(L∞(Rn)⊗M) <∞;

(iv) ‖
(∑

I∈D
|〈f, ωI〉|2
|I| χĨ

)1/2

‖Lp(L∞(Rn)⊗M) <∞;

where D denotes the collection of all dyadic cubes in Rn and for every I ∈ D, the definition of Ĩ is as

in (2.2).
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Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

Let ϕ, ψ ∈ S(Rn),
∫
ϕ = 0,

∫
ψ = 0, and satisfy, for any ξ ∈ Rn\{0n},∫ ∞

0

ϕ̂(tξ)ψ̂(tξ)
dt

t
= 1, (3.1)

where ϕ̂ denotes the Fourier transform of ϕ. In what follows, for ϕ ∈ S(Rn), t > 0 and x ∈ Rn, let
ϕt(x) := t−nϕ

(
x
t

)
.

For any SM-valued simple function f , the Lusin area functions of f is defined by

gcϕ(f)(x) :=

(∫ ∞
0

|f ∗ ϕt(x)|2 dt
t

)1/2

and

Scϕ(f)(x) :=

(∫ ∫
Γx

|f ∗ ϕt(y)|2 dydt
tn+1

)1/2

,

where Γx := {(y, t) ∈ Rn × R+ : |x− y| < t} with x ∈ Rn.
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Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

A New Characterization

Theorem 3.1 (Xia-Xiong-Xu, Adv. Math. 2016)

Let p ∈ [1, ∞). Then f ∈ Hc
p(Rn,M) iff Scϕ(f) ∈ Lp(L∞(Rn)⊗M) iff scϕ(f) ∈

Lp(L∞(Rn)⊗M), and

‖f‖Hc
p(Rn,M) ∼ ‖scϕ(f)‖Lp(L∞(Rn)⊗M) ∼ ‖Scϕ(f)‖Lp(L∞(Rn)⊗M)

Similarly, these results also holds for row and mixture Hardy spaces.
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Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

Let ϕ, ψ ∈ S(Rn),
∫
ϕ = 0,

∫
ψ = 0 and satisfy, for any ξ ∈ Rn\{0n},

∞∑
j=−∞

ϕ̂(2jξ)ψ̂(2jξ)
dt

t
= 1, (3.2)

where ϕ̂ denotes the Fourier transform of ϕ. In what follows, for ϕ ∈ S(Rn), j ∈ Z and x ∈ Rn, let
ϕ2j (x) := 2−jnϕ

(
x
2j

)
.

For any SM-valued simple function f , the Lusin area functions of f is defined by

gc,Dϕ (f)(x) :=

 ∞∑
j=−∞

|f ∗ ϕ2j (x)|2
1/2

and

Sc,Dϕ (f)(x) :=

 ∞∑
j=−∞

2−nj
∫
B(x, 2j)

|f ∗ ϕ2j (y)|2 dy

1/2

.
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Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

Theorem 3.2 (Xia-Xiong-Xu, Adv. Math. 2016)

Let p ∈ [1, ∞). Then f ∈ Hc
p(Rn,M) iff Scϕ(f) ∈ Lp(L∞(Rn)⊗M) iff scϕ(f) ∈

Lp(L∞(Rn)⊗M), and

‖f‖Hc
p(Rn,M) ∼ ‖sc,Dϕ (f)‖Lp(L∞(Rn)⊗M) ∼ ‖Sc,Dϕ (f)‖Lp(L∞(Rn)⊗M)

Similarly, these results also holds for row and mixture Hardy spaces.
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Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

Anisotropic dilations
(I) Isotropic ball cover {x+ 2kBn : x ∈ Rn, k ∈ Z}, where Bn is the unit ball in Rn,

ρ(x, y) = |x− y|n.

(II) Anisotropic ellipsoid cover [Bownik, Mem. Amer. Math. Soc., 2003]

{x+ AkBn∗ : x ∈ Rn, k ∈ Z}, where A is a fixed matrix with all eigenvalues |λ| > 1 and Bn∗ is some

fixed ellipsoid.

For example,

A :=


2a1 0 · · · 0

0 2a2 · · · 0
...

...
. . .

...

0 0 · · · 2an

 , ai > 0.

16 / 55



Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

♠ Classical isotropic Hardy space (Fefferman, Stein)

♠ Parabolic Hardy space (Calderón and Torchinsky, Adv. Math. 1975)

♠ Anisotropic Hardy space (Bownik, Mem. Amer. Math. Soc, 2003)

♠ Anisotropic weak Hardy space, (Y. Ding, S. Lan, Sci. China Ser. A, 2008)

♠ Weighted anisotropic Hardy space (Bownik, B. Li, D. Yang, Y. Zhou, Indiana Univ. Math. J. 2008)

♠ Weighted anisotropic product Hardy spaces, (B. Li, Bownik, D. Yang, JFA, 2014)

♠ Anisotropic Hardy spaces of Musielak-Orlicz type (B. Li, D. Yang, W. Yuan, The Scientific World

Journal, 2014)

♠ Anisotropic Hardy space with variable exponent (J. Liu, F. Weisz, D. Yang, W. Yuan, Taiwanese J.

Math. 2018)

♠ Anisotropic mixed-norm Hardy space (L. Huang, J. Liu, D. Yang, W. Yuan, CPAA, 2020)

♠ · · · · · · · · ·
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Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

♠ Dahmen, Dekel and Petrushev, [Numer. Math., 2007]: Anisotropic ellipsoid cover

applied to solve elliptic boundary value problems.

♠ Jakab and Mitrea, [Math. Res. Lett., 2006]: Parabolic initial boundary value problems

in nonsmooth cylinders with data in anisotropic Besov spaces.

♠ Zhang and Li, [Turkish J. Math., 2018]: Unconditional wavelet bases in Lebesgue

spaces.

♠ Bownik and Wang, [arXiv:2011.10651, 2020]: A PDE Characterization of Anisotropic

Hardy Spaces.

♠ · · · · · · · · ·
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Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

A real n× n matrix A is called an expansive matrix, if minλ∈σ(A) |λ| > 1, where σ(A) denotes the

set of all eigenvalues of A. Let λ− and λ+ be two positive numbers such that

1 < λ− < min{|λ| : λ ∈ σ(A)} ≤ max{|λ| : λ ∈ σ(A)} < λ+.

Bownik [4, Lemma 2.2] proved that, for a fixed dilation A, there exist a number r ∈ (1, ∞) and a set

∆ := {x ∈ Rn : |Px| < 1}, where P is some non-degenerate n× n matrix, such that ∆ ⊂ r∆ ⊂ A∆,

and we can additionally assume that |∆| = 1, where |∆| denotes the n-dimensional Lebesgue
measure of the set ∆. For k ∈ Z, let Bk := Ak∆. Then Bk is open, Bk ⊂ rBk ⊂ Bk+1 and

|Bk| = bk, here and hereafter, b := |detA|. An ellipsoid x+Bk for some x ∈ Rn and k ∈ Z is called

a dilated ball. Define

B := {x+Bk : x ∈ Rn, k ∈ Z}. (3.3)

[4] M. Bownik, Anisotropic Hardy spaces and wavelets, [M]. Mem. Amer. Math. Soc., 2003, 164:

781. 19 / 55



Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

Lemma 3.1
Let σ be the smallest integer such that 2B0 ⊂ AσB0. Then, for all k, j ∈ Z with k ≤ j,

it holds true that

Bk +Bj ⊂ Bj+σ, (3.4)

Bk + (Bk+σ){ ⊂ (Bk)
{, (3.5)

where E + F denotes the algebraic sum {x+ y : x ∈ E, y ∈ F} of sets E, F ⊂ Rn.
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Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

For any A and B(x, r) := {y ∈ Rn : |x− y| < r} ⊂ Rn, we have AB(x, r) ⊃ B(x, r). However,

for any x ∈ Rn,
|Ax|n = |detA||x|n?

In other words, | · | is not valid.

21 / 55



Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

Definition 3.1
A quasi-norm, associated with dilation A, is a Borel measurable mapping ρA : Rn →
[0,∞), for simplicity, denoted by ρ, satisfying

(i) ρ(x) > 0 for all x ∈ Rn \ {0n}, here and hereafter, 0n denotes the origin of Rn;

(ii) ρ(Ax) = bρ(x) for any x ∈ Rn, where b := | detA|;

(iii) ρ(x + y) ≤ CA [ρ(x) + ρ(y)] for all x, y ∈ Rn, where CA ∈ [1, ∞) is a constant

independent of x and y.

When A := 2In×n, ρA(x) := |x|n, for any x ∈ Rn, ρA is a quasi-norm, associated

with dilation A.
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Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

In [4, Lemma 2.4], M. Bownik also showed that all homogeneous quasi-norms associated

with a fixed dilation A are equivalent. Therefore, for a fixed dilation A, in what follows,

we always use the step homogeneous quasi-norm ρ defined by

ρ(x) :=
∑
k∈Z

bkχBk+1\Bk
(x) if x 6= 0n, or else ρ(0n) := 0.
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Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

Definition 3.2
Let ϕ ∈ S(Rn) be a radial real-valued function satisfying∫

Rn

ϕ(x) dx = 0 (3.6)

and, for any ξ ∈ Rn\{0n}, ∑
j∈Z

∣∣ϕ̂((AT )jξ)
∣∣2 = 1, (3.7)

where ϕ̂ denotes the Fourier transform of ϕ and AT is the transpose of A. In what

follows, every ϕ ∈ S(Rn) always satisfies (3.6) and (3.7). For ϕ ∈ S(Rn), k ∈ Z and

x ∈ Rn, let ϕk(x) := b−kϕ
(
A−kx

)
.
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Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

For any SM-valued simple function f , the anisotropic Lusin area functions of f is defined by

Scϕ(f)(x) :=

(∑
k∈Z

b−k
∫
x+Bk

|f ∗ ϕk(y)|2 dy

)1/2

and

Srϕ(f)(x) :=

(∑
k∈Z

b−k
∫
x+Bk

|f∗ ∗ ϕk(y)|2 dy

)1/2

.
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Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

Definition 3.3
Let p ∈ [1, ∞) and f be an SM-valued simple function. We define the Hp,cA (Rn,M)

and Hp,rA (Rn,M) norms of f by

‖f‖Hp,c
A (Rn,M) :=

∥∥Scϕ(f)
∥∥
Lp(L∞(Rn)⊗M)

, ‖f‖Hp,r
A (Rn,M) := ‖f∗‖Hp,c

A (Rn,M).

Define the anisotropic column Hardy space Hp,cA (Rn,M) (resp. anisotropic row Hardy

space Hp,rA (Rn,M)) to be the completion of the space of all SM-valued simple functions

with finite Hp,cA (Rn,M) (resp. Hp,rA (Rn,M)) norm.
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Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

Definition 3.4
Define the anisotropic mixture space HpA(Rn,M) as follows: if p ∈ [1, 2),

HpA(Rn,M) := Hp,cA (Rn,M) +Hp,rA (Rn,M)

equipped with the sum norm

‖f‖Hp
A(Rn,M)

:= inf
{
‖g‖Hp,c

A (Rn,M) + ‖h‖Hp,r
A (Rn,M) : f = g + h, g ∈ Hp,cA (Rn,M), h ∈ Hp,rA (Rn,M)

}
where the infimum is taken over all the decompositions of f as above. If p ∈ [2, ∞), define

HpA(Rn,M) := Hp,cA (Rn,M) ∩Hp,rA (Rn,M)

equipped with the intersection norm ‖f‖Hp
A(Rn,M) := max

{
‖f‖Hp,c

A (Rn,M), ‖f‖Hp,r
A (Rn,M)

}
.
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Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

Remark 3.1
(i) When it comes back to the commutative setting, i.e., M := C, these spaces are

reduced to the anisotropic Hardy space Hp
A(Rn) studied by Bownik, where p ∈

[1, ∞).

(ii) When it comes back to the isotropic setting, i.e., A := 2In×n, the operator-valued

Hardy spaces Hp,cA (Rn,M), Hp,rA (Rn,M) and HpA(Rn,M), introduced in this

article, coincide the operator-valued Hardy spaces Hp,c(Rn,M), Hp,r(Rn,M) and

Hp(Rn,M) with equivalent norms, respectively, where p ∈ [1, ∞).

(iii) When p = 2, we know that

H2,c
A (Rn,M) = H2,r

A (Rn,M) = H2
A(Rn,M) = L2(L∞(Rn)⊗M).
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Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

Operator-Valued BMO Spaces Associated with

Anisotropic Dilations

In what follows, for any B ∈ B and function g with values inM, gB denotes its mean over B, that is,

gB :=
1

|B|

∫
B

g(x) dx.
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Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

Definition 3.5

Let A be a dilation. The anisotropic column BMO space BMOcA(Rn,M) is defined as

BMOcA(Rn,M) := {g ∈ L∞(M; L2
c(Rn,

dx

1 + [ρ(x)]2
)) : ‖g‖BMOc

A(Rn,M) <∞},

where

‖g‖BMOc
A(Rn,M) := sup

B∈B
‖
(

1

|B|

∫
B

|g(y)− gB|2 dy
)1/2

‖M.

Similarly, we define the anisotropic row BMO space BMOrA(Rn,M) as the space of g such that

g∗ ∈ BMOcA(Rn,M) with the norm ‖g‖BMOr
A(Rn,M) := ‖g∗‖BMOc

A(Rn,M), and

BMOA(Rn,M) := BMOcA(Rn,M) ∩ BMOrA(Rn,M)

with the norm ‖g‖BMOA(Rn,M) := max
{
‖g‖BMOc

A(Rn,M), ‖g‖BMOr
A(Rn,M)

}
.

30 / 55



Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

Theorem 3.3

Let A be a dilation. Then we have

(H1,c
A (Rn,M))∗ = BMOcA(Rn,M)

in the following sense:

(i) Every g ∈ BMOcA(Rn,M) defines a continuous linear functional Lg on H1,c
A (Rn,M) by

Lg(f) := τ

∫
Rn

f(x)g∗(x) dx, for any SM − valued simple function f.

(ii) For any L ∈ (H1,c
A (Rn,M))∗, then there exists some g ∈ BMOcA(Rn,M) such that L = Lg.

Moreover, there exists an universal positive constant C such that

C−1‖g‖BMOc
A(Rn,M) ≤ ‖Lg‖(H1,c

A (Rn,M))∗ ≤ C‖g‖BMOc
A(Rn,M).

Similarly, the duality holds between H1,r
A (Rn,M) and BMOrA(Rn,M), and between H1

A(Rn,M)

and BMOA(Rn,M), with equivalent norms.
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Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

Let us recall the definition of maximal norms. Let p ∈ (0, ∞] and x = {xi}i∈N be a sequence of

elements in Lp(M). Define

‖x‖Lp(M; `∞) := inf
xi=ayib

{
‖a‖L2p(M)‖b‖L2p(M) sup

i∈N
‖xi‖M

}
,

where the infimum is taken over all a, b ∈ L2p(M) and {yi}i∈N ⊂ M such that xi = ayib. As

usual, ‖x‖Lp(M; `∞) is conventionally denoted by
∥∥sup+

i∈N xi
∥∥
Lp(M)

. However, we should point out

that sup+
i∈N xi is just a notation, since it does not make any sense in the non-commutative setting. We

just use this notation for convenience. If p ∈ (1, ∞) and {xi}i∈N is a sequence of positive operators, it

was proved by Junge that

∥∥∥∥ +
sup
i∈N

xi

∥∥∥∥
Lp(M)

= sup

∑
i∈N

τ(xiyi) : yi ∈ Lq(M), yi ≥ 0,

∥∥∥∥∥∑
i∈N

yi

∥∥∥∥∥
Lq(M)

≤ 1

 . (3.8)
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Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

Let g ∈ Lq(M;L2
c(Rn, dx

1+[ρ(x)]2 )). For any x + Bk ∈ B with x ∈ Rn, k ∈ Z and B as in (3.3),
denote

g]k(x) :=
1

|x+Bk|

∫
x+Bk

|g(y)− gx+Bk
|2 dy,

where gx+Bk
:= 1
|x+Bk|

∫
x+Bk

g(y) dy. For q ∈ (2, ∞), define

‖g‖LqMOc
A(Rn,M) :=

∥∥∥∥ +
sup
k∈Z

g]k

∥∥∥∥1/2

L
q
2 (L∞(Rn)⊗M)

and

‖g‖LqMOr
A(Rn,M) := ‖g∗‖LqMOc

A(Rn,M).

Obviously, these are two norms. Therefore, we define two spaces

LqMOcA(Rn,M) :=

{
g ∈ Lq(M;L2

c(Rn,
dx

1 + [ρ(x)]2
)) : ‖g‖LqMOc

A(Rn,M) <∞
}

and

LqMOrA(Rn,M) :=

{
g ∈ Lq(M;L2

r(Rn,
dx

1 + [ρ(x)]2
)) : ‖g‖LqMOr

A(Rn,M) <∞
}
.

Moreover, we also define the mixture space

LqMOA(Rn,M) := LqMOcA(Rn,M) ∩ LqMOrA(Rn,M),

equipped with the norm

‖g‖LqMOc
A(Rn,M) := max

{
‖g‖LqMOc

A(Rn,M), ‖g‖LqMOr
A(Rn,M)

}
.
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Moreover, we also define the mixture space

LqMOA(Rn,M) := LqMOcA(Rn,M) ∩ LqMOrA(Rn,M),

equipped with the norm

‖g‖LqMOc
A(Rn,M) := max

{
‖g‖LqMOc

A(Rn,M), ‖g‖LqMOr
A(Rn,M)

}
.
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Theorem 3.4

Let p ∈ (1, 2) and q be the conjugate index of p. Then we have

(Hp,cA (Rn,M))∗ = LqMOcA(Rn,M)

in the following sense:

(i) Every g ∈ LqMOcA(Rn,M) defines a continuous linear functional Lg on Hp,cA (Rn,M) by

Lg(f) := τ

∫
Rn

f(x)g∗(x) dx, for any SM−valued simple function f.

(ii) For any L ∈ (Hp,cA (Rn,M))∗, then there exists some g ∈ LqMOcA(Rn,M) such that L = Lg.

Moreover, there exists an universal positive constant C such that

C−1‖g‖LqMOc
A(Rn,M) ≤ ‖Lg‖(Hp,c

A (Rn,M))∗ ≤ C‖g‖LqMOc
A(Rn,M).
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Theorem 3.5
Let p ∈ (2, ∞). Then

Hp,cA (Rn,M) = LpMOcA(Rn,M)

with equivalent norms. Similarly, Hp,rA (Rn,M) = LpMOrA(Rn,M) and HpA(Rn,M) =

LpMOA(Rn,M) with equivalent norms.

Corollary 3.1
Let p ∈ (1, ∞) and q be the conjugate index of p. Then

(Hp,cA (Rn,M))∗ = Hq,cA (Rn,M)

with equivalent norms.

Similarly, (Hp,rA (Rn,M))∗ = Hq,rA (Rn,M) and (HpA(Rn,M))∗ = HqA(Rn,M) with equivalent

norms.
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Theorem 3.6

Let p ∈ (1, ∞). Then

HpA(Rn,M) = Lp(L∞(Rn)⊗M)

with equivalent norms.
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Theorem 3.7

Let p ∈ (1, ∞). Then [
BMOcA(Rn,M), H1,c

A (Rn,M)
]

1
p

= Hp,cA (Rn,M)

and

[X1, X2] 1
p

= Lp(L∞(Rn)⊗M),

where X1 = BMOA(Rn,M) or L∞(L∞(Rn)⊗M), X2 = H1
A(Rn,M) or L1(L∞(Rn)⊗M).

Theorem 3.8

Let p ∈ [1, ∞). Then

[X0, X1] 1
p , p

= Lp(L∞(Rn)⊗M),

where X0 = BMOA(Rn,M) or L∞(L∞(Rn)⊗M), X1 = H1
A(Rn,M) or L1(L∞(Rn)⊗M).
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Spaces of Homogeneous Type
Let us recall the definition of (X, d, µ) is a space of homogeneous type in the sense of Coifman and

Weiss [5], which means that X is a metric space with distance function d, and endows a nonnegative,

Borel, doubling measure µ. In what follows, for any ball Bd(x, r) := {y ∈ X : d(x, y) < r} ⊂ X, we
define the volume functions

Vr(x) := µ(Bd(x, r)) and V (x, y) := µ(Bd(x, d(x, y))).

We say the measure µ is doubling if there exists a positive constant C0 such that, for any x ∈ X and

r > 0,

V2r(x) ≤ C0Vr(x).

[5] R.R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, [M]. Bull.

Amer. Math. Soc., 1977, 83: 569-645.
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Lemma 4.1
Let (X, d, µ) is a space of homogeneous type. Then

(i) For any x ∈ X and r > 0, V (x, y) ∼ V (y, x) and

Vr(x) + Vr(y) + V (x, y) ∼ Vr(y) + V (x, y) ∼ Vr(x) + V (x, y) ∼ µ(B(x, r + d(x, y))),

where the equivalent positive constant are independently of x, y and r.

(ii) There exist two constants C > 0 and 0 ≤ γ ≤ n such that

Vr1(x) ≤ C
[
r1 + d(x, y)

r2

]γ
Vr2(y)

uniformly for any x, y ∈ X and r1, r2 > 0.
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Main Assumptions. Let (X, d, µ) be a space of homogeneous space type and ε1 ∈ (0, 1] and

ε2 ∈ (0, ∞). Then there exists a calderón reproducing formula of order (ε1, ε2) on L2(X), that

is, there exists a family of bounded linear operators, {Dt}t>0, on L2(X) is called a Calderón reproducing

formula of order (ε1, ε2) (for short, (ε1, ε2)-CRF) in L2(X) if, for all f ∈ L2(X),

f =

∫ ∞
0

D2
t (f)

dt

t
,

and moreover, for all f ∈ L2(X) and x ∈ X,

Dt(f)(x) =

∫
X
Dt(x, y)f(y) dµ(y),

[6] Y. Han, D. Müller and D. Yang, Littlewood-Paley-Stein characterizations for Hardy spaces on

spaces of homogeneous type, [M]. Math. Nachr., 2006, 279: 1505-1537.
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where Dt(·, ·) is a measurable function from X×X to R satisfying the following conditions: there exists

a positive constant C1 such that, for all t ∈ R+ and all x, x′, y, y′ ∈ X with d(x, x′) ≤ [t+d(x,y)]
2 ,

(H1) |Dt(x, y)| ≤ C1
1

Vt(x)+Vt(y)+V (x, y)

[
t

t+d(x, y)

]ε2
;

(H2) |Dt(x, y)−Dt(x
′, y)| ≤ C1

[
d(x, x′)
t+d(x, y)

]ε1
1

Vt(x)+Vt(y)+V (x, y)

[
t

t+d(x, y)

]ε2
;

(H3) Property (H2) still holds true with the roles of x and y interchanged, and Dt(x, y) = Dt(y, x);

(H4)
∫
X Dt(x, y) dµ(x) = 0 =

∫
X Dt(x, y) dµ(y).
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Let {Dt}t>0 be an (ε1, ε1)-CRF with ε1 ∈ (0, 1] and ε2 ∈ (1
2 , ∞). For any SM-valued simple

function f , and x ∈ X, the Lusin area functions of f is defined by

Sc(f)(x) :=

(∫ ∫
Γx

|Dt(f)(y)|2 dµ(y)dt

Vt(x)t

)1/2

and Sr(f)(x) := Sc(f∗)(x),

where Γx := {(y, t) ∈ X× R+ : d(x, y) < t} with x ∈ X.

Let p ∈ [1, ∞). We define the Hcp(X,M) norms of f by

‖f‖Hc
p(X,M) := ‖Sc(f)‖Lp(L∞(X)⊗M) , ‖f‖Hr

p(X,M) := ‖Sr(f)‖Lp(L∞(X)⊗M) .

Define the column Hardy space Hcp(X,M) (resp. row Hardy space Hrp(X,M)) to be the com-

pletion of the space of all SM-valued simple functions with finite Hcp(X,M) (resp. Hrp(X,M)) norm.
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Define the mixture space Hcrp (Rn,M) as follows: when p ∈ [1, 2),

Hcrp (X,M) := Hcp(X,M) +Hrp(X,M)

equipped with the sum norm

‖f‖Hcr
p (X,M)

:= inf
{
‖f1‖Hc

p(X,M) + ‖f2‖Hr
p(X,M) : f = f1 + f2, f1 ∈ Hcp(X,M), f2 ∈ Hrp(X,M)

}
where the infimum is taken over all the decompositions of f as above. When p ∈ [2, ∞), define

Hcrp (X,M) := Hcp(X,M) ∩Hrp(X,M)

equipped with the intersection norm

‖f‖Hcr
p (X,M) := max

{
‖f‖Hc

p(X,M), ‖f‖Hr
p(X,M)

}
.
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Let V denote the all locally integrable functions on X with values in M. For any ball B ⊂ X and

operator-valued function g ∈ V , we define gB to be the mean of g on B, that is,

gB :=
1

µ(B)

∫
B

g(y) dµ(y).
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Definition 4.1

The column BMO space BMOc(X,M) is defined as

BMOc(X,M) :=
{
g ∈ V : ‖g‖BMOc(X,M) <∞

}
,

where

‖g‖BMOc(X,M) := sup
x∈X, r>0

‖

(
1

Vr(x)

∫
Bd(x, r)

|g(y)− gBd(x, r)|2 dµ(y)

)1/2

‖M.

Similarly, we define the row BMO space BMOr(X,M) as the space of g ∈ V such that g∗ ∈
BMOc(X,M) with the norm ‖g‖BMOr(X,M) := ‖g∗‖BMOc(X,M), and the mixture BMO space

BMOcr(X,M) := BMOc(X,M) ∩ BMOr(X,M)

with the norm ‖g‖BMOcr(X,M) := max
{
‖g‖BMOc(X,M), ‖g‖BMOr(X,M)

}
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Theorem 4.1

We have

(Hc1(X,M))∗ = BMOc(X,M)

in the following sense:

(i) Each g ∈ BMOc(X,M) defines a continuous linear functional Lg on Hc1(X,M) by

Lg(f) := τ

∫
X
f(x)g∗(x) dµ(x), for any SM − valued simple function f.

(ii) If L ∈ (Hc1(X,M))∗, then there exists some g ∈ BMOc(X,M) such that L = Lg as the above.

Moreover, there exists a positive constant C such that

C−1‖g‖BMOc(X,M) ≤ ‖Lg‖(Hc
1(X,M))∗ ≤ C‖g‖BMOc(X,M).
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Let U denote the all locally integrable functions on X with values in Lq(M). For any g ∈ U and ball

B ⊂ X, set

g]B(x) :=
1

µ(B)

∫
B

|g(y)− gB|2 dµ(y), x ∈ B,

where gB := 1
µ(B)

∫
B
g(y) dµ(y).

Definition 4.2
Let q ∈ (2, ∞). We define the column BMO-type space

LqMOc(X,M) :=
{
g ∈ U : ‖g‖LqMOc(X,M) <∞

}
,

where

‖g‖LqMOc(X,M) :=

∥∥∥∥ +
sup

x∈B⊂X
g]B

∥∥∥∥1/2

L q
2

(L∞(X)⊗M)

.
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Theorem 4.2
Let p ∈ (1, 2) and q be the conjugate index of p. Then we have

(Hcp(X,M))∗ = LqMOc(X,M).

Similarly, the duality holds between Hrp(X,M) and LqMOr(X,M), and between

Hcrp (X,M) and LqMOcr(X,M) with equivalent norms.
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Corollary 4.1
Let p ∈ (1, ∞) and p′ be the conjugate index of p. Then

(Hcp(X,M))∗ = Hcp′(X,M)

with equivalent norms. Similarly, (Hrp(X,M))∗ = Hrp′(X,M) and (Hcrp (X,M))∗ = Hcrp′ (X,M) with

equivalent norms.
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Interpolations

Theorem 4.3

Let 1 ≤ q < p <∞. Then[
BMOc(X,M), Hcq(X,M)

]
q
p

= Hcp(X,M) (4.1)

and

[X , Y ] 1
p

= Lp(L∞(X)⊗M), (4.2)

where X = BMOcr(X,M) or L∞(L∞(X)⊗M), Y = Hcr1 (X,M) or

L1(L∞(X)⊗M).
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Theorem 4.4

Let 1 ≤ q < p <∞. Then

[
BMOc, Hcq(X,M)

]
q
p
, p

= Hcp(X,M)

with equivalent norms. Similar result also holds for row BMO and Hardy spaces.

Theorem 4.5

Let p ∈ [1, ∞). Then

[X0, X1] 1
p
, p = Lp(L∞(X)⊗M),

where X0 = BMOcr(X,M) or L∞(L∞(X)⊗M), X1 = Hcr1 (X,M) or

L1(L∞(X)⊗M).
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Let us recall that a linear operator T is a Calderón-Zygmund operator, if T is bounded on L2(L∞(X)⊗M)

with kernel K coinciding with a locally integrable M-valued function on X \ {(x, x) : x ∈ X}, and
satisfying that there exists a positive constant C such that, for any x, y ∈ X

‖K(x, y)‖M ≤ C
1

V (x, y)
;

for any x, x′, y ∈ X with d(x′, x) < d(x, y)
2 ,

‖K(x′, y)−K(x, y)‖M + ‖K(y, x′)−K(y, x)‖M ≤ C
[d(x′, x)]δ

V (x, y)[d(x, y)]δ
.

For any SM-valued simple function f on X, define the δ-type left Calderón-Zygmund operator by

T c(f)(x) :=

∫
X
K(x, y)f(y) dµ(y), x ∈ X.
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In what follows, we let BMOc, 0(X,M) to denote the subspace of BMOc(X,M) consisting of com-

pactly supported functions.

Theorem 4.6

Let T c be the left Calderón-Zygmund operator. Then T c is bounded from

BMOc, 0(X,M) to BMOc(X,M). Moreover, there exists a positive constant C such

that, for any f ∈ BMOc, 0(X,M),

‖T c(f)‖BMOc(X,M) ≤ C ‖f‖BMOc, 0(X,M).
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Thanks
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