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Non-commutative Lp-space

Let M be a von Neumann algebra equipped with a normal semifinite faithful trace 7. Let S}\"A be the
set of all positive x € M such that
7(s(z)) < 00,

where s(x) denotes the support of x, that is, the least projection e € M such that exe = z. Let Sy

be the linear span of S/J{A. For any p € (0, 00), we define
lzllp = (7]2[")"/?, @€ Sm,

where |2| = (2*x)'/2. The usual non-commutative L,-space, L,(M), associated with (M, 7), is the

completion of (Sa4, || - ||»). For convenience, we set Lo, (M) = M equipped with operator norm || - || os.
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Column and row spaces

Let (€2, du) be a measurable space. We say that f is a Sp-valued simple function on (£, du) if

f = Zmz XA
=1

where each m; € Sy and A;'s are disjoint measurable subsets of Q2 with 1(A;) < co. Let p € [1, 00).
For a Saq-valued simple function f, we define

1l vt oy = H ( /Q f*f> 1l s gy = H < /Q ff*)

The column space L,(M; L5(Q)) (resp. row space L,(M; L5(f2))) is defined to be the completion

1/2 1/2

Lp(M) Lp(M)

of the space of all Sxq-valued simple functions under the L, (M; L5(S2)) (resp. L,(M; L5(£2))) norm.
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Column and row spaces

Remark 1.1
When €) is a countable set such as 7Z, N and D, equipped with a counting mea-

sure, Ly(M; L5(Q)) (resp. L,(M; L5(Q2))) will be denoted by L,(M; (5) (resp.
L,(M; 05)). Moreover, the space L,(M; (5) can be regarded as a space of sequences
of elements of L,(M).

v
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Operator-Valued Hardy Spaces

Let P be the Poisson kernel of R™: P(z) = CN'W with C being a normalizing constant. For
x|?+1
y >0, let .
x & Y
Pya)i= —P(X)=G— Y .
Ty (el )

For any function f on R™ with values in M, its Poisson integral, whenever exists, will be denoted by

flz,y): f = [an Py t)f(t)dt, (x,y) € R™ x Ry. For any S -valued simple function f,
the Lusin area functlons of f are defined by

o=/ 1l

where I' := {(z, y) € R" x Ry : |z < y}.

1/2
Fla+t,y ‘fo’) and ST(F)(t) = S°(f)(8).
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Operator-Valued Hardy Spaces

For p € [1, 00), we set

@, M) = 1S U, e@mzrg and ([ fllap@e, a0 = 1" | grn, m)-

/]

The column Hardy space H;(R", M) (resp. the row Hardy space H(R", M)) is defined
to be the completion of the space of all S\ -valued simple functions under the HS(R”, M)

(resp. H,(R™, M)) norm.

@ [1] T. Mei, Operator-valued Hardy spaces, Mem. Amer. Math. Soc., 188 (2007), 1-64.
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- BameelelBheie i |
Define the mixture space H,(R™, M) as follows: For p € [1, 2),

equipped with the sum norm

1S [ 2, (2, M)
::inf{||g||H§(Rn,M) + [hll e, pmy 0 f =9+ h, g€ Hy(R", M), h € H)(R", M)} .

For p € [2, ), define
Hy(R", M) := HE(R™, M) N H,(R", M)

equipped with the intersection norm

11| 22, &, A1) = maX{”f”H;(R”,M)a ||f||H;(]R<n,M)}-

8/55



A wavelet basis of Lo(IR™) is a complete orthonormal system {w;}rep, where {w;r}rep is a 1-regular
basis and w is a real-valued function on R"™ satisfying the properties for Meyer's construction in [2], here

and hereafter, let D denote the collection of all dyadic intervals in R"™, that is,
D:={I;:1;,=277(00, )" +k),j €EZ, k€ Z"}
and
wr, () = 222 — k), for any j, k € Z".

The wavelet basis {wr}rep is called 1-regular if |0%w(z)| < Crp(1 4 |2])™™ and [g, 2%w(x) dz =0
for all || <1 and m € N.

El [2] Y. Meyer, Wavelets and Operators, Cambridge Studies in Advanced Mathematics 37, Cambridge
University Press, Cambridge, 1992.
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As in [2], we may assume that there exists some cube AY C [0,1)" such that
|A7| =~ >0 and |w(x)| > co, Vo e A7, (2.1)

for some fixed positive constants ¢y and 7. In what follows, for any j € Z, k € Z",

define

—

Ly =277 (A" + k). (2.2)

B [3] G. Hong and Z. Yin, Wavelet approach to operator-valued Hardy spaces, Rev. Mat. Iberoam.,
29 2013, 293-313.
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_ Operator-Valued Hardy Spaces on X" |5
Theorem 2.1 (Hong-Wang-Wu, IMRN, 2022)

Let p € [1, o0) and {w;}1ep be a 1-regular wavelet basis of Lo(IR™). Then the following conditions are
equivalent for any L,(M)-valued distribution f,

f= Z(f, wr)wy in the sense of distribution :
I€D
(i) f e Hg (R, M);
.. 2 p\1/2
() 1 (Zre 1 @l Wrl?) " g, (gosceyman < o0
" 1/2
(iii) | (Zzeb f|1r|1>| ) |2 (L oo ®r)@AM) < 005

. 2
(19) 1 (Srep 0057) " iy g omney < o0

where D denotes the collection of all dyadic cubes in R™ and for every I € D, the definition of Iisas
in (2.2).
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_____ Operator-Valued Hardy Spaces Associated with Anisotropic Dilations [
Let ¢, ¥ € S(R™), [ ¢ =0, [¢ =0, and satisfy, for any £ € R"\{0,,},

/0 T auopunt =1, (3.1)

t

where $ denotes the Fourier transform of ¢. In what follows, for ¢ € S(R™), ¢ > 0 and z € R™, let
pu(x) =t (%).

For any Ss-valued simple function f, the Lusin area functions of f is defined by

95 (f) (@) = (/O“ o)l %m

dydt\ '/
([ [eer )

where T'; := {(y, t) e R x Ry : |z — y| < t} with z € R™.

and
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A New Characterization

Theorem 3.1 (Xia-Xiong-Xu, Adv. Math. 2016)

Let p € [1,00). Then f € Hy(R™, M) iff S;(f) € Lyp(Loo(R™)QM) iff sS,(f) €
L(Loo(RMEM), and

I.f1

as@®, M) ~ 16N L, w@mzrm) ~ 196 L, (2w @yzm)

Similarly, these results also holds for row and mixture Hardy spaces.
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Let ¢, ¢ € S(R™), [ =0, [¢ =0 and satisfy, for any £ € R"\{0,,},

o0

ORCCISTICTIL (32)

Jj=—00
where @ denotes the Fourier transform of . In what follows, for ¢ € S(R™), j € Z and z € R", let
pai(x) =270 (55).

For any Sa4-valued simple function f, the Lusin area functions of f is defined by

1/2

gZP(N@)=| Y |f*pula)

j=—o00

and
1/2

P = 3 2 ”J/B( ey

j=—0o0
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Theorem 3.2 (Xia-Xiong-Xu, Adv. Math. 2016)
Let p € [1, 00). Then f € HS(R™, M) iff S5(f) € Lp(Loo(R™")®M) iff s3(f) €
L,(Ls(R")@M), and

11

as®n, M) ~ 1857 (DI, @@y ~ 1557 (D o @mzan

Similarly, these results also holds for row and mixture Hardy spaces.
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Anisotropic dilations

(1) Isotropic ball cover {z + 2¥B" : 2 € R", k € Z}, where B" is the unit ball in R”,
plx, y) =l —y["

(I1) Anisotropic ellipsoid cover [Bownik, Mem. Amer. Math. Soc., 2003]

{x+ AF*B" : 2 € R", k € 7}, where A is a fixed matrix with all eigenvalues |A| > 1 and B is some
fixed ellipsoid.

For example,

200 0
0 Qa2 e 0

A= . . ] . , a; > 0.
0 0 20n
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_ Geeeedllben e sessbiesla vl BB |
& Classical isotropic Hardy space (Fefferman, Stein)
& Parabolic Hardy space (Calderén and Torchinsky, Adv. Math. 1975)
& Anisotropic Hardy space (Bownik, Mem. Amer. Math. Soc, 2003)
& Anisotropic weak Hardy space, (Y. Ding, S. Lan, Sci. China Ser. A, 2008)
& Weighted anisotropic Hardy space (Bownik, B. Li, D. Yang, Y. Zhou, Indiana Univ. Math. J. 2008)
& Weighted anisotropic product Hardy spaces, (B. Li, Bownik, D. Yang, JFA, 2014)

& Anisotropic Hardy spaces of Musielak-Orlicz type (B. Li, D. Yang, W. Yuan, The Scientific World
Journal, 2014)

& Anisotropic Hardy space with variable exponent (J. Liu, F. Weisz, D. Yang, W. Yuan, Taiwanese J.
Math. 2018)

& Anisotropic mixed-norm Hardy space (L. Huang, J. Liu, D. Yang, W. Yuan, CPAA, 2020)
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& Dahmen, Dekel and Petrushev, [Numer. Math., 2007]: Anisotropic ellipsoid cover

applied to solve elliptic boundary value problems.

& Jakab and Mitrea, [Math. Res. Lett., 2006]: Parabolic initial boundary value problems

in nonsmooth cylinders with data in anisotropic Besov spaces.

& Zhang and Li, [Turkish J. Math., 2018]: Unconditional wavelet bases in Lebesgue

spaces.

& Bownik and Wang, [arXiv:2011.10651, 2020]: A PDE Characterization of Anisotropic
Hardy Spaces.
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_ Geeeedllben e sessbiesla vl BB |
A real n x n matrix A is called an expansive matrix, if minyc, () |A| > 1, where o(A) denotes the
set of all eigenvalues of A. Let A_ and A, be two positive numbers such that

1 <A <min{|A]: X€o(A)} <max{|A\|: A€a(4)} < A;.

Bownik [4, Lemma 2.2] proved that, for a fixed dilation A, there exist a number r € (1, o) and a set
A :={x € R": |Pz| < 1}, where P is some non-degenerate n X n matrix, such that A C rA C AA,
and we can additionally assume that |A| = 1, where |A| denotes the n-dimensional Lebesgue
measure of the set A. For k € Z, let By, := A*A. Then By, is open, B, C rBy C Byy1 and
|Bi| = b, here and hereafter, b := | det A|. An ellipsoid = + By, for some z € R and k € Z is called
a dilated ball. Define

B:={r+Br: zeR" keZ} (3.3)
[4 [4] M. Bownik, Anisotropic Hardy spaces and wavelets, [M]. Mem. Amer. Math. Soc., 2003, 164

781.
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(Lewma31 |

Let o be the smallest integer such that 2By C A° By. Then, for all k, j € Z with k < j,
it holds true that

By + Bj C Bj_|_0, (34)
B + (Biio)® C (By)C, (35)

where E + F denotes the algebraic sum {x +vy: x € E, y € F} of sets E, FF C R".

v
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For any A and B(z,r) :={y € R" : |z —y| < r} C R", we have AB(z,r) D B(z,r). However,
for any z € R",
|Az|™ = | det Al|z|"?

In other words, | - | is not valid.

21/55



Definition 3.1

A quasi-norm, associated with dilation A, is a Borel measurable mapping p4 : R" —
[0, 00), for simplicity, denoted by p, satisfying

(i) p(x) >0 for all x € R™ \ {0,,}, here and hereafter, 0,, denotes the origin of R";
(ii) p(Az) = bp(x) for any x € R", where b := | det A|;
(iii) p(z +y) < Calp(z) + p(y)] for all z, y € R™, where C'4 € [1, 00) is a constant

independent of x and y.

4

When A := 21,5, pa(z) := |x|™, for any z € R", p4 is a quasi-norm, associated
with dilation A.
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In [4, Lemma 2.4], M. Bownik also showed that all homogeneous quasi-norms associated
with a fixed dilation A are equivalent. Therefore, for a fixed dilation A, in what follows,

we always use the step homogeneous quasi-norm p defined by

p(x) = ZkaBkJrl\Bk(x) if © #0,, orelse p(0,):=0.
keZ
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Definition 3.2

Let o € S(R™) be a radial real-valued function satisfying

/ o(x)dr =0 (3.6)
and, for any £ € R"\{0,},

*=1, (3.7)

> leaTye
JEL
where § denotes the Fourier transform of ¢ and AT is the transpose of A. In what
follows, every ¢ € S(R™) always satisfies (3.6) and (3.7). For p € S(R™), k € Z and

z € R™, let pp(z) := b*p (A ).
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For any Ss-valued simple function f, the anisotropic Lusin area functions of f is defined by

1/2
- (Z b* / o wk<y>|2dy>

kEZ

and

1/2
SL(f)(x =<Zb‘ /+B |f*wk<y>|2dy> .

kEZ
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Definition 3.3
Let p € [1, 00) and f be an Spq-valued simple function. We define the H ;*(R™, M)
and H%"(R™, M) norms of f by

| fllme e, py = Hsé(f)HLp(Loo(Rn)@M), 1 f 1z e, py = 1 2eme e, a0

Define the anisotropic column Hardy space HY%“(R™, M) (resp. anisotropic row Hardy
space HY" (R™, M) ) to be the completion of the space of all Sxs-valued simple functions
with finite HY(R™, M) (resp. HE"(R™, M)) norm.
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_____ Operator-Valued Hardy Spaces Associated with Anisotropic Dilations |
Definition 3.4

Define the anisotropic mixture space H% (R™, M) as follows: if p € [1, 2),
HY (R, M) == HEC(R™, M) + HE"(R™, M)
equipped with the sum norm

| £ ll2e2 ®m, )
=inf {llgllagecan, sy + Wl e, sty + £ =9+ by g € HEC(R™, M), h € HY(R", M)}

where the infimum is taken over all the decompositions of f as above. If p € [2, o0), define

HE(R™, M) == HEE(R™, M) N HE (R, M)

equipped with the intersection norm || |3z mn, 1) = max{||f||HrXc(Rn’M), ||f||Hsz-(Rn’M)} .

4
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_____ Operator-Valued Hardy Spaces Associated with Anisotropic Dilations |
Remark 3.1

(i) When it comes back to the commutative setting, i.e., M := C, these spaces are
reduced to the anisotropic Hardy space H'(R") studied by Bownik, where p €
[1, 00).

(ii) When it comes back to the isotropic setting, i.e., A := 2l,,«y,, the operator-valued
Hardy spaces HY(R™, M), HY"(R"™, M) and H"(R", M), introduced in this
article, coincide the operator-valued Hardy spaces HP“(R™, M), HP"(R", M) and
HP(R™, M) with equivalent norms, respectively, where p € [1, 00).

(iii) When p = 2, we know that

HE R, M) = HE(R", M) = H(R", M) = L*(L=®(R™)BM).
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Operator-Valued BMO Spaces Associated with

Anisotropic Dilations

In what follows, for any B € 5 and function g with values in M, gp denotes its mean over B, that is,

7,
= — [ g(x)dx.
9B B[ /5 (z)
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_____ Operator-Valued Hardy Spaces Associated with Anisotropic Dilations |
Definition 3.5

Let A be a dilation. The anisotropic column BMO space BMO(R™, M) is defined as

dx

W)) : ||g||BMog,(Rn,M) < oo},

c n R (o] .72 n
BMOA(R ) M) T {g Sy (Ma LC(R ) 1+ [P

where

1 1/2
P — ( / |g<y>—gB|2dy) ™
Bes \|B| /B

Similarly, we define the anisotropic row BMO space BMO",(R™, M) as the space of g such that
g* € BMO(R™, M) with the norm ||9||BMOQ(]RH,M) = ||g*HBMo%(Rn7M), and

BMO 4R, M) := BMO% (R, M) N BMO%(R", M)

with the norm |\gllBamo . @n, my := max {||gllBrmog @, rm)s 19]BAMOT @7, A0 } -
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_____ Operator-Valued Hardy Spaces Associated with Anisotropic Dilations |
Theorem 3.3

Let A be a dilation. Then we have
(HZ°(R™, M))* = BMOG(R", M)

in the following sense:

(i) Every g € BMO4(R™, M) defines a continuous linear functional L, on H}L{C(R", M) by
Ly(f):=T f(z)g*(x)dz, for any Si — valued simple function f.
R™

(ii) For any £ € (HY°(R™, M))*, then there exists some g € BMO(R™, M) such that L = L,.

Moreover, there exists an universal positive constant C such that

C Mgl Brmog @n, a) < 1Lgll e @, ayy < Cllgllsaos @n, amy- .



Let us recall the definition of maximal norms. Let p € (0, o] and z = {x;};en be a sequence of
elements in LP(M). Define

fellsncunsomy = ik, flallzorcan oloncao sup e .

where the infimum is taken over all a, b € L*(M) and {y;}ien C M such that z; = ay;b. As
usual, ||#(|Lr(a4; ) is conventionally denoted by |[sup;y xi”Lp(M). However, we should point out
that supjGN x; is just a notation, since it does not make any sense in the non-commutative setting. We
just use this notation for convenience. If p € (1, o) and {z; };en is a sequence of positive operators, it

was proved by Junge that

<1lp. (3.8)

Li(M)

=sup{ Y r(ziyi) s yi € LYM), y; > 0,
Lr(M) ieN

Zyi

ieN

+
sup x;
i€N
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Let g € Lq(M;Lg(Rn,H[‘;ﬁ)). For any x + By € B with z € R", k € Z and B as in (3.3),

denote
1

2
e 19(y) = garB.|” dy,

gh(@)

where g, 1 p, = m Jos, 9(W) dy. For g € (2, 00), define

1/2
+ ot
||g||LqMOf4(R",M) = SuP k||
keZ L2 (L% (R")®M)
and
||g||LqMog(Rn,M) = ||9*||LqMO§,(R",M)-

Obviously, these are two norms. Therefore, we define two spaces
dz
LIMOG(R" =49 € LYM; L2(R", ————)) aMOS (BRP, M) <
MO, M) = {4 € LM LR, 1)) lallosaon o < o0}

and

dz
LIMO" (R™, M) := !9 € LI(M; L2(R™, ———)) : 9]l Lasmtor (e pm) < ool . 33yss



Moreover, we also define the mixture space
LIMO4R™, M) := LIMOG(R", M)N LIMO%(R™, M),
equipped with the norm

||g||LQMOf4(R",M) ‘= max {||g||L‘1M(’)f4(R”,M)> ||9||LqMog(Rn,M)} .
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_____ Operator-Valued Hardy Spaces Associated with Anisotropic Dilations |
Theorem 3.4

Let p € (1, 2) and q be the conjugate index of p. Then we have
(HEC(R™, M))* = LIMOZ(R", M)

in the following sense:

(i) Every g € LIMOG(R™, M) defines a continuous linear functional L, on HY(R™, M) by
Ly(f):=T L f(z)g"(z)dx, for any Sp—valued simple function f.

(ii) For any £ € (HR(R™, M))*, then there exists some g € LIMO%(R", M) such that L = L,,.

Moreover, there exists an universal positive constant C such that

C7 Mgl Lamos, @, my < 1Lgllaze @, My < CligllLaros @, M-
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Theorem 3.5

Let p € (2, o). Then
HEC(R™, M) = LPMOG(R™, M)

with equivalent norms.  Similarly, HY"(R™, M) = LPMO%(R", M) and HY(R", M) =
LPMO 4 (R™, M) with equivalent norms.

| A

Corollary 3.1
Let p € (1, o0) and q be the conjugate index of p. Then

(HEER™, M))* =HE(R™, M)
with equivalent norms.

Similarly, (H%"(R™, M))* = H%L(R™, M) and (HY(R™, M))* = HL(R™, M) with equivalent

norms.

v
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Theorem 3.6

Let p € (1, 00). Then

HE(R™, M) = LP(L®(RMBM)

with equivalent norms.
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Theorem 3.7

Let p € (1, o). Then

[BMO% R, M), Hy (R, M)]| = 1R, M)

S =

and

(X1, Xo]1 = LP(L®(R™)@M),

where X1 = BMO 4(R", M) or L®(L*>®(R™")®M), X2 = HL(R™, M) or L} (L= (R")@M).

| A\

Theorem 3.8

Let p € [1, o). Then

[Xo, Xa]1 , = LP(L®(R™)@M),

1
P

where Xog = BMO 4(R", M) or L®(L*®(R")@M), X; = HY(R", M) or L' (L>*(R")@M).
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Spaces of Homogeneous Type

Let us recall the definition of (X, d, p) is a space of homogeneous type in the sense of Coifman and
Weiss [5], which means that X is a metric space with distance function d, and endows a nonnegative,

Borel, doubling measure pi. In what follows, for any ball By(x, r) := {y € X : d(x, y) < r} C X, we

define the volume functions

Vi(2) = p(Ba(x, r)) and V(z, y) := p(Ba(z, d(z, y)))-

We say the measure u is doubling if there exists a positive constant Cy such that, for any x € X and

r >0,

Var(x) < CoVi(z).

[d [5] R.R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, [M]. Bull.
Amer. Math. Soc., 1977, 83: 569-645.
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Let (X, d, p) is a space of homogeneous type. Then
(i) Foranyz €Xandr >0, V(z,y)~ V(y, z) and

Vi(e) + Ve(y) + Vi, y) ~ Vey) + V(z, y) ~ Vie(z) + V(z, y) ~ p(B(z, r +d(z, y))),

where the equivalent positive constant are independently of x, y and r.

(ii) There exist two constants C' > 0 and 0 < v < n such that

Vi, (y)

Vo, (z) <C {’Wl(aj’y)r

2

uniformly for any x, y € X and r1, ro > 0.
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Main Assumptions. Let (X, d, u) be a space of homogeneous space type and ¢; € (0, 1] and
€2 € (0, 00). Then there exists a calderdn reproducing formula of order (€1, €3) on Ly(X), that
is, there exists a family of bounded linear operators, {D;};~0, on L2(X) is called a Calderén reproducing
formula of order (e1, €2) (for short, (1, €2)-CRF) in Ly(X) if, for all f € Ly(X),

> dt

and moreover, for all f € Ly(X) and z € X,

Dy(f)(z) = /X Dy (., y)f(y) du(y).

El [6] Y. Han, D. Miiller and D. Yang, Littlewood-Paley-Stein characterizations for Hardy spaces on
spaces of homogeneous type, [M]. Math. Nachr., 2006, 279: 1505-1537.
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where Dy (-, -) is a measurable function from X x X to R satisfying the following conditions: there exists

a positive constant C such that, for all ¢ € Ry and all z, 2/, y, ¥/ € X with d(z, 2') < wf’y)],

1 2
Hl) |Dy(z, y)| < C1 Vi(z)+Ve(y)+V(z,y) [t+d(ta:,y)] '

d(z,z’) 19
Hj) |Dy(z, y) —D(2/, y)| < C4 [t+d(:c y)] G E TV [t+d(tx y)} '

H3) Property (Hy) still holds true with the roles of 2 and y interchanged, and Dy (x, y) = D¢ (y, z);
Hy) [ Di(z, y)dp(z) =0 = [y Di(w, y) duy).

(
(
(
(
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Let {D;}i~0 be an (e, €1)-CRF with ¢; € (0, 1] and €3 € (4, 00). For any Syy-valued simple
function f, and z € X, the Lusin area functions of f is defined by

1/2
s = ([ [ DR FEE) T wmd S = 0@

where Ty := {(y, t) € X x Ry : d(z, y) < t} with z € X
Let p € [1, 00). We define the H; (X, M) norms of f by

||f||H;(x,M) = HSc(f)||Lp(LDO(X)®M)) Hf||H;(X,M) = ||5T(f)||Lp(LOO(X)®M)'

Define the column Hardy space HS(X, M) (resp. row Hardy space H,(X, M)) to be the com-

pletion of the space of all Sxs-valued simple functions with finite H7 (X, M) (resp. H, (X, M)) norm.
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Define the mixture space H;"(R™, M) as follows: when p € [1, 2),
Hy (X, M) = Ho (X, M) +H (X, M)

equipped with the sum norm

[l cx, My
1=inf{||fl||%;(x,M) Flfellwgoe,my o f=fi+ for fr € Hp(X, M), f2 € Hp(X, M)}

where the infimum is taken over all the decompositions of f as above. When p € [2, c0), define
Hy' (X, M) i= Hp (X, M)NHL (X, M)
equipped with the intersection norm

||f||H;;'(X,M) = maX{”fHH;(X,M), ||f||H;(X,M)} .
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Let V denote the all locally integrable functions on X with values in M. For any ball B € X and

operator-valued function g € V, we define gg to be the mean of g on B, that is,

1

0= /B o(y) duy).
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____ Operator-Valued Hardy Spaces on Spaces of Homogeneous Type |
Definition 4.1

The column BMO space BMO®(X, M) is defined as
BMO(X, M) :={g € V: |gllamocx, m) <0},

where

1/2
1 / )
e (= sup = 9(Y) = 9By(z,m)|” dply M.
lollsmosce, v = sup | (Vr(x) o 190 = g8 <>> [

Similarly, we define the row BMO space BMO" (X, M) as the space of g € V such that g* €
BMO(X, M) with the norm ||g||srmorx, m) := |9%]IBMO=(x, M), and the mixture BMO space

BMO (X, M) := BMO(X, M) N BMO"(X, M)

with the norm ||gl|Bmoerx. pmy := max { ||gllsimoecx. rm)s 19l BaMor x A L - 46 /55



____ Operator-Valued Hardy Spaces on Spaces of Homogeneous Type |
Theorem 4.1

We have
(HI(X, M))" = BMO*(X, M)

in the following sense:

(i) Each g € BMO(X, M) defines a continuous linear functional L, on H$(X, M) by
Ly(f) = T/ f@)g*(z) du(x), for any Sir — valued simple function f.
X

(ii) 1L e (H(X, M))*, then there exists some g € BMO(X, M) such that L = L, as the above.

Moreover, there exists a positive constant C' such that

CHIgllBrmoex, my < NLgll s x, ayy+ < CligllBatoesx, m)-
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Let U denote the all locally integrable functions on X with values in Ly(M). For any g € U and ball
B CX, set

) :=M(13) /B 9(y) — 951 duly), =€ B,

where gp := ﬁ fB 9(y) du(y).

Definition 4.2
Let g € (2, o0). We define the column BMO-type space

LoMOS(X, M) = {9 €U :|lgllL,mocx, m) < OO},

where

1/2
+ 4
sup gp

||9||LQMOC(X,M) =
rzeBCX

Lg (Loo (R)BM)

48 /55



Theorem 4.2
Let p € (1, 2) and q be the conjugate index of p. Then we have

(H(X, M))* = LMO(X, M),

Similarly, the duality holds between Hy (X, M) and L ,MO" (X, M), and between
Hy (X, M) and LiMOT (X, M) with equivalent norms.
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Corollary 4.1

Let p € (1, o0) and p’ be the conjugate index of p. Then

(H (X, M))* = Hyp (X, M)

with equivalent norms. Similarly, (H, (X, M))* = H, (X, M) and (Hy (X, M))* = H/ (X, M) with

equivalent norms.

v
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Interpolations

Theorem 4.3

Let1 < g <p<oo. Then
[BMO*(X, M), Hi(X, M)}% =M (X, M) (4.1)
and
(¥, V)1 = Lp(Leo(X)OM), (4.2)
where X = BMOT(X, M) or Loo(Leo(X)@M), Y = HT(X, M) or
L1 (Loo(X)®M).
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Theorem 4.4

Let1 < g <p<oo. Then

[BMO®, Hi(X, M)], = HE(X, M)

q
P’

with equivalent norms. Similar result also holds for row BMO and Hardy spaces.

| A\

Theorem 4.5

Let p € [1, 00). Then

[XO; Xl] LP(LOO(X)gM%

where Xy = BMOT(X, M) or Lu(Lo(X)EM), X = HI(X, M) or
L1 (Loo (X)QM).

v
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Let us recall that a linear operator T is a Calderén-Zygmund operator, if T'is bounded on L (Lo (X)QM)
with kernel KC coinciding with a locally integrable M-valued function on X\ {(x, ) : x € X}, and
satisfying that there exists a positive constant C' such that, for any z, y € X

1

K(z, <Com——;
I vl < Oy

H d(:E, )
for any z, o', y € X with d(2’, z) < 5%,

ld(’, 2))°
V(z, y)ld(z, y)I*

1K', y) = Kz, 9)lla + 1Ky, 2) = Ky, 2)l[y < C
For any S4-valued simple function f on X, define the 0-type left Calderén-Zygmund operator by

Z/X/C(fv, y)f(y)duly), zeX
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In what follows, we let BMO%°(X, M) to denote the subspace of BMO®(X, M) consisting of com-

pactly supported functions.

Theorem 4.6

Let T¢ be the left Calderén-Zygmund operator. Then T°€ is bounded from
BMO%%(X, M) to BMO“(X, M). Moreover, there exists a positive constant C' such
that, for any f € BMO“°(X, M),

IT(Hllsmoccx, m) < Cll fllBatosox, my-
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Thanks
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