A Complete Theory of Operator-Valued Hardy Spaces

Wenhua Wang

(Joint work with Professors Guixiang Hong and Xinfeng Wu)

School of Mathematics and Statistics Wuhan University, China

Harbin Institute of technology, 2022-8-10

Outline

2 Operator-Valued Hardy Spaces on \mathbb{R}^n

Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

Operator-Valued Hardy Spaces on Spaces of Homogeneous Type

Non-commutative L_p -space

Let \mathcal{M} be a von Neumann algebra equipped with a normal semifinite faithful trace τ . Let $S_{\mathcal{M}}^+$ be the set of all positive $x \in \mathcal{M}$ such that

$$\tau(s(x)) < \infty,$$

where s(x) denotes the support of x, that is, the least projection $e \in \mathcal{M}$ such that exe = x. Let $S_{\mathcal{M}}$ be the linear span of $S_{\mathcal{M}}^+$. For any $p \in (0, \infty)$, we define

$$||x||_p = (\tau |x|^p)^{1/p}, \quad x \in S_{\mathcal{M}},$$

where $|x| = (x^*x)^{1/2}$. The usual non-commutative L_p -space, $L_p(\mathcal{M})$, associated with (\mathcal{M}, τ) , is the completion of $(S_{\mathcal{M}}, \|\cdot\|_p)$. For convenience, we set $L_{\infty}(\mathcal{M}) = \mathcal{M}$ equipped with operator norm $\|\cdot\|_{\mathcal{M}}$.

Column and row spaces

Let $(\Omega, d\mu)$ be a measurable space. We say that f is a $S_{\mathcal{M}}$ -valued simple function on $(\Omega, d\mu)$ if

$$f = \sum_{i=1}^{n} m_i \cdot \chi_{A_i},$$

where each $m_i \in S_M$ and A_i 's are disjoint measurable subsets of Ω with $\mu(A_i) < \infty$. Let $p \in [1, \infty)$. For a S_M -valued simple function f, we define

$$\|f\|_{L_p(\mathcal{M}; L_2^c(\Omega))} := \left\| \left(\int_{\Omega} f^* f \right)^{1/2} \right\|_{L_p(\mathcal{M})}, \ \|f\|_{L_p(\mathcal{M}; L_2^r(\Omega))} := \left\| \left(\int_{\Omega} f f^* \right)^{1/2} \right\|_{L_p(\mathcal{M})}$$

The column space $L_p(\mathcal{M}; L_2^c(\Omega))$ (resp. row space $L_p(\mathcal{M}; L_2^r(\Omega))$) is defined to be the completion of the space of all $S_{\mathcal{M}}$ -valued simple functions under the $L_p(\mathcal{M}; L_2^c(\Omega))$ (resp. $L_p(\mathcal{M}; L_2^r(\Omega))$) norm.

Column and row spaces

Remark 1.1

When Ω is a countable set such as \mathbb{Z} , \mathbb{N} and \mathcal{D} , equipped with a counting measure, $L_p(\mathcal{M}; L_2^c(\Omega))$ (resp. $L_p(\mathcal{M}; L_2^r(\Omega))$) will be denoted by $L_p(\mathcal{M}; \ell_2^c)$ (resp. $L_p(\mathcal{M}; \ell_2^r)$). Moreover, the space $L_p(\mathcal{M}; \ell_2^c)$ can be regarded as a space of sequences of elements of $L_p(\mathcal{M})$.

Operator-Valued Hardy Spaces

Let P be the Poisson kernel of \mathbb{R}^n : $P(x) = \widetilde{C} \frac{1}{(|x|^2+1)^{\frac{n+1}{2}}}$ with \widetilde{C} being a normalizing constant. For y > 0, let

$$P_y(x) := \frac{1}{y^n} P(\frac{x}{y}) = \widetilde{C} \frac{y}{(|x|^2 + y^2)^{\frac{n+1}{2}}}.$$

For any function f on \mathbb{R}^n with values in \mathcal{M} , its Poisson integral, whenever exists, will be denoted by f(x, y): $f(x, y) := \int_{\mathbb{R}^n} P_y(x - t)f(t) dt$, $(x, y) \in \mathbb{R}^n \times \mathbb{R}_+$. For any $S_{\mathcal{M}}$ -valued simple function f, the Lusin area functions of f are defined by

$$S^{c}(f)(t) := \left(\int \int_{\Gamma} \left| \frac{\partial}{\partial y} f(x+t, y) \right|^{2} \frac{dxdy}{y^{n-1}} \right)^{1/2} \text{ and } S^{r}(f)(t) := S^{c}(f^{*})(t).$$

where $\Gamma := \{(x, y) \in \mathbb{R}^n \times \mathbb{R}_+ : |x| < y\}.$

Operator-Valued Hardy Spaces

For $p\in [1,\,\infty)$, we set

$$\|f\|_{H_p^c(\mathbb{R}^n,\mathcal{M})} := \|S^c(f)\|_{L_p(L_\infty(\mathbb{R}^n)\overline{\otimes}\mathcal{M})} \quad \text{and} \quad \|f\|_{H_p^r(\mathbb{R}^n,\mathcal{M})} := \|f^*\|_{H_p^c(\mathbb{R}^n,\mathcal{M})}.$$

The column Hardy space $H_p^c(\mathbb{R}^n, \mathcal{M})$ (resp. the row Hardy space $H_p^r(\mathbb{R}^n, \mathcal{M})$) is defined to be the completion of the space of all $S_{\mathcal{M}}$ -valued simple functions under the $H_p^c(\mathbb{R}^n, \mathcal{M})$ (resp. $H_p^r(\mathbb{R}^n, \mathcal{M})$) norm.

[1] T. Mei, Operator-valued Hardy spaces, Mem. Amer. Math. Soc., 188 (2007), 1-64.

Define the *mixture space* $H_p(\mathbb{R}^n, \mathcal{M})$ as follows: For $p \in [1, 2)$,

$$H_p(\mathbb{R}^n, \mathcal{M}) := H_p^c(\mathbb{R}^n, \mathcal{M}) + H_p^r(\mathbb{R}^n, \mathcal{M})$$

equipped with the sum norm

$$\begin{split} \|f\|_{H_p(\mathbb{R}^n,\,\mathcal{M})} &:= \inf \left\{ \|g\|_{H_p^c(\mathbb{R}^n,\,\mathcal{M})} + \|h\|_{H_p^r(\mathbb{R}^n,\,\mathcal{M})} : \, f = g + h, \, g \in H_p^c(\mathbb{R}^n,\,\mathcal{M}), \, h \in H_p^r(\mathbb{R}^n,\,\mathcal{M}) \right\}. \end{split}$$

For $p \in [2,\,\infty)$, define

$$H_p(\mathbb{R}^n, \mathcal{M}) := H_p^c(\mathbb{R}^n, \mathcal{M}) \cap H_p^r(\mathbb{R}^n, \mathcal{M})$$

equipped with the intersection norm

$$\|f\|_{H_p(\mathbb{R}^n,\mathcal{M})} := \max\left\{\|f\|_{H_p^c(\mathbb{R}^n,\mathcal{M})}, \|f\|_{H_p^r(\mathbb{R}^n,\mathcal{M})}\right\}.$$

A wavelet basis of $L_2(\mathbb{R}^n)$ is a complete orthonormal system $\{\omega_I\}_{I\in\mathcal{D}}$, where $\{\omega_I\}_{I\in\mathcal{D}}$ is a 1-regular basis and ω is a real-valued function on \mathbb{R}^n satisfying the properties for Meyer's construction in [2], here and hereafter, let \mathcal{D} denote the collection of all dyadic intervals in \mathbb{R}^n , that is,

$$\mathcal{D} := \left\{ I_{j,k} : I_{j,k} = 2^{-j} ([0, 1)^n + k), j \in \mathbb{Z}, k \in \mathbb{Z}^n \right\}$$

and

$$\omega_{I_{j,k}}(x) := 2^{jn/2} \omega(2^j x - k), \text{ for any } j, k \in \mathbb{Z}^n.$$

The wavelet basis $\{\omega_I\}_{I \in \mathcal{D}}$ is called 1-regular if $|\partial^{\alpha}\omega(x)| \leq C_m(1+|x|)^{-m}$ and $\int_{\mathbb{R}^n} x^{\alpha}\omega(x) dx = 0$ for all $|\alpha| \leq 1$ and $m \in \mathbb{N}$.

[2] Y. Meyer, Wavelets and Operators, Cambridge Studies in Advanced Mathematics 37, Cambridge University Press, Cambridge, 1992. As in [2], we may assume that there exists some cube $A^{\gamma} \subset [0,1)^n$ such that

$$|A^{\gamma}| = \gamma > 0 \text{ and } |\omega(x)| \ge c_0, \qquad \forall x \in A^{\gamma}, \tag{2.1}$$

for some fixed positive constants c_0 and γ . In what follows, for any $j \in \mathbb{Z}$, $k \in \mathbb{Z}^n$, define

$$\widetilde{I_{j,k}} := 2^{-j} (A^{\gamma} + k).$$
 (2.2)

 [3] G. Hong and Z. Yin, Wavelet approach to operator-valued Hardy spaces, Rev. Mat. Iberoam., 29 2013, 293-313. Operator-Valued Hardy Spaces on \mathbb{R}^n

Theorem 2.1 (Hong-Wang-Wu, IMRN, 2022)

Let $p \in [1, \infty)$ and $\{\omega_I\}_{I \in \mathcal{D}}$ be a 1-regular wavelet basis of $L_2(\mathbb{R}^n)$. Then the following conditions are equivalent for any $L_p(\mathcal{M})$ -valued distribution f,

$$f = \sum_{I \in \mathcal{D}} \langle f, \omega_I \rangle \omega_I$$
 in the sense of distribution :

(i)
$$f \in H_p^c(\mathbb{R}^n, \mathcal{M});$$

(ii) $\| \left(\sum_{I \in \mathcal{D}} |\langle f, \omega_I \rangle|^2 |\omega_I|^2 \right)^{1/2} \|_{L_p(L_{\infty}(\mathbb{R}^n) \overline{\otimes} \mathcal{M})} < \infty;$
(iii) $\| \left(\sum_{I \in \mathcal{D}} \frac{|\langle f, \omega_I \rangle|^2}{|I|} \chi_I \right)^{1/2} \|_{L_p(L_{\infty}(\mathbb{R}^n) \overline{\otimes} \mathcal{M})} < \infty;$
(iv) $\| \left(\sum_{I \in \mathcal{D}} \frac{|\langle f, \omega_I \rangle|^2}{|I|} \chi_{\widetilde{I}} \right)^{1/2} \|_{L_p(L_{\infty}(\mathbb{R}^n) \overline{\otimes} \mathcal{M})} < \infty;$
where \mathcal{D} denotes the collection of all dyadic cubes in \mathbb{R}^n and for every $I \in \mathcal{D}$, the definition of \widetilde{I} is as
in (2.2).

Let $\varphi, \psi \in \mathcal{S}(\mathbb{R}^n)$, $\int \varphi = 0$, $\int \psi = 0$, and satisfy, for any $\xi \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}$,

$$\int_{0}^{\infty} \widehat{\varphi}(t\xi) \overline{\widehat{\psi}(t\xi)} \frac{dt}{t} = 1, \qquad (3.1)$$

where $\widehat{\varphi}$ denotes the Fourier transform of φ . In what follows, for $\varphi \in \mathcal{S}(\mathbb{R}^n)$, t > 0 and $x \in \mathbb{R}^n$, let $\varphi_t(x) := t^{-n}\varphi\left(\frac{x}{t}\right)$.

For any $S_{\mathcal{M}}$ -valued simple function f, the Lusin area functions of f is defined by

$$g_{\varphi}^{c}(f)(x) := \left(\int_{0}^{\infty} |f \ast \varphi_{t}(x)|^{2} \frac{dt}{t}\right)^{1/2}$$

and

$$S^c_{\varphi}(f)(x) := \left(\int \int_{\Gamma_x} |f \ast \varphi_t(y)|^2 \, \frac{dydt}{t^{n+1}}\right)^{1/2},$$

where $\Gamma_x := \{(y, t) \in \mathbb{R}^n \times \mathbb{R}_+ : |x - y| < t\}$ with $x \in \mathbb{R}^n$.

A New Characterization

Theorem 3.1 (Xia-Xiong-Xu, Adv. Math. 2016)

Let $p \in [1, \infty)$. Then $f \in H_p^c(\mathbb{R}^n, \mathcal{M})$ iff $S_{\varphi}^c(f) \in L_p(L_{\infty}(\mathbb{R}^n) \overline{\otimes} \mathcal{M})$ iff $s_{\varphi}^c(f) \in L_p(L_{\infty}(\mathbb{R}^n) \overline{\otimes} \mathcal{M})$, and

$$\|f\|_{H^c_p(\mathbb{R}^n,\mathcal{M})} \sim \|s^c_{\varphi}(f)\|_{L_p(L_{\infty}(\mathbb{R}^n)\overline{\otimes}\mathcal{M})} \sim \|S^c_{\varphi}(f)\|_{L_p(L_{\infty}(\mathbb{R}^n)\overline{\otimes}\mathcal{M})}$$

Similarly, these results also holds for row and mixture Hardy spaces.

Let $\varphi, \psi \in \mathcal{S}(\mathbb{R}^n)$, $\int \varphi = 0$, $\int \psi = 0$ and satisfy, for any $\xi \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}$, $\sum_{j=-\infty}^{\infty} \widehat{\varphi}(2^j \xi) \overline{\widehat{\psi}(2^j \xi)} \frac{dt}{t} = 1,$

where $\widehat{\varphi}$ denotes the Fourier transform of φ . In what follows, for $\varphi \in \mathcal{S}(\mathbb{R}^n)$, $j \in \mathbb{Z}$ and $x \in \mathbb{R}^n$, let $\varphi_{2^j}(x) := 2^{-jn}\varphi\left(\frac{x}{2^j}\right)$.

For any $S_{\mathcal{M}}$ -valued simple function f, the Lusin area functions of f is defined by

$$g^{c,D}_{\varphi}(f)(x) := \left(\sum_{j=-\infty}^{\infty} |f \ast \varphi_{2^j}(x)|^2\right)^{1/2}$$

and

$$S_{\varphi}^{c,D}(f)(x) := \left(\sum_{j=-\infty}^{\infty} 2^{-nj} \int_{B(x,\,2^j)} |f * \varphi_{2^j}(y)|^2 \, dy\right)^{1/2}$$

(3.2)

Theorem 3.2 (Xia-Xiong-Xu, Adv. Math. 2016)

Let $p \in [1, \infty)$. Then $f \in H_p^c(\mathbb{R}^n, \mathcal{M})$ iff $S_{\varphi}^c(f) \in L_p(L_{\infty}(\mathbb{R}^n) \overline{\otimes} \mathcal{M})$ iff $s_{\varphi}^c(f) \in L_p(L_{\infty}(\mathbb{R}^n) \overline{\otimes} \mathcal{M})$, and

$$\|f\|_{H^c_p(\mathbb{R}^n,\mathcal{M})} \sim \|s^{c,D}_{\varphi}(f)\|_{L_p(L_\infty(\mathbb{R}^n)\overline{\otimes}\mathcal{M})} \sim \|S^{c,D}_{\varphi}(f)\|_{L_p(L_\infty(\mathbb{R}^n)\overline{\otimes}\mathcal{M})}$$

Similarly, these results also holds for row and mixture Hardy spaces.

Anisotropic dilations

(I) Isotropic ball cover $\{x + 2^k \mathbb{B}^n : x \in \mathbb{R}^n, k \in \mathbb{Z}\}$, where \mathbb{B}^n is the unit ball in \mathbb{R}^n , $\rho(x, y) = |x - y|^n$.

(II) Anisotropic ellipsoid cover [Bownik, Mem. Amer. Math. Soc., 2003]

 $\{x + A^k B^n_* : x \in \mathbb{R}^n, k \in \mathbb{Z}\}$, where A is a fixed matrix with all eigenvalues $|\lambda| > 1$ and B^n_* is some fixed ellipsoid.

For example,

$$A := \begin{pmatrix} 2^{a_1} & 0 & \cdots & 0 \\ 0 & 2^{a_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 2^{a_n} \end{pmatrix}, \quad a_i > 0.$$

Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

Classical isotropic Hardy space (Fefferman, Stein)

.

- A Parabolic Hardy space (Calderón and Torchinsky, Adv. Math. 1975)
- Anisotropic Hardy space (Bownik, Mem. Amer. Math. Soc, 2003)
- Anisotropic weak Hardy space, (Y. Ding, S. Lan, Sci. China Ser. A, 2008)
- A Weighted anisotropic Hardy space (Bownik, B. Li, D. Yang, Y. Zhou, Indiana Univ. Math. J. 2008)
- A Weighted anisotropic product Hardy spaces, (B. Li, Bownik, D. Yang, JFA, 2014)
- Anisotropic Hardy spaces of Musielak-Orlicz type (B. Li, D. Yang, W. Yuan, The Scientific World Journal, 2014)
- ♠ Anisotropic Hardy space with variable exponent (J. Liu, F. Weisz, D. Yang, W. Yuan, Taiwanese J. Math. 2018)
- Anisotropic mixed-norm Hardy space (L. Huang, J. Liu, D. Yang, W. Yuan, CPAA, 2020)

♠ Dahmen, Dekel and Petrushev, [Numer. Math., 2007]: Anisotropic ellipsoid cover applied to solve elliptic boundary value problems.

♠ Jakab and Mitrea, [Math. Res. Lett., 2006]: Parabolic initial boundary value problems in nonsmooth cylinders with data in anisotropic Besov spaces.

A Zhang and Li, [Turkish J. Math., 2018]: Unconditional wavelet bases in Lebesgue spaces.

♠ Bownik and Wang, [arXiv:2011.10651, 2020]: A PDE Characterization of Anisotropic Hardy Spaces.

• • • • • • • • • •

Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

A real $n \times n$ matrix A is called an *expansive matrix*, if $\min_{\lambda \in \sigma(A)} |\lambda| > 1$, where $\sigma(A)$ denotes the set of all *eigenvalues* of A. Let λ_{-} and λ_{+} be two *positive numbers* such that

$$1 < \lambda_{-} < \min\{|\lambda| : \lambda \in \sigma(A)\} \le \max\{|\lambda| : \lambda \in \sigma(A)\} < \lambda_{+}.$$

Bownik [4, Lemma 2.2] proved that, for a fixed dilation A, there exist a number $r \in (1, \infty)$ and a set $\Delta := \{x \in \mathbb{R}^n : |Px| < 1\}$, where P is some non-degenerate $n \times n$ matrix, such that $\Delta \subset r\Delta \subset A\Delta$, and we can additionally assume that $|\Delta| = 1$, where $|\Delta|$ denotes the *n*-dimensional Lebesgue measure of the set Δ . For $k \in \mathbb{Z}$, let $B_k := A^k \Delta$. Then B_k is open, $B_k \subset rB_k \subset B_{k+1}$ and $|B_k| = b^k$, here and hereafter, $b := |\det A|$. An ellipsoid $x + B_k$ for some $x \in \mathbb{R}^n$ and $k \in \mathbb{Z}$ is called a dilated ball. Define

$$\mathfrak{B} := \{ x + B_k : \ x \in \mathbb{R}^n, \ k \in \mathbb{Z} \}.$$
(3.3)

 [4] M. Bownik, Anisotropic Hardy spaces and wavelets, [M]. Mem. Amer. Math. Soc., 2003, 164: 781.

Lemma 3.1

Let σ be the smallest integer such that $2B_0 \subset A^{\sigma}B_0$. Then, for all $k, j \in \mathbb{Z}$ with $k \leq j$, it holds true that

$$B_k + B_j \subset B_{j+\sigma},\tag{3.4}$$

$$B_k + (B_{k+\sigma})^{\complement} \subset (B_k)^{\complement}, \qquad (3.5)$$

where E + F denotes the algebraic sum $\{x + y : x \in E, y \in F\}$ of sets $E, F \subset \mathbb{R}^n$.

For any A and $B(x,r) := \{y \in \mathbb{R}^n : |x-y| < r\} \subset \mathbb{R}^n$, we have $AB(x,r) \supset B(x,r)$. However, for any $x \in \mathbb{R}^n$,

$$|Ax|^n = |\det A| |x|^n?$$

In other words, $|\cdot|$ is not valid.

Definition 3.1

A quasi-norm, associated with dilation A, is a Borel measurable mapping ρ_A : ℝⁿ → [0,∞), for simplicity, denoted by ρ, satisfying
(i) ρ(x) > 0 for all x ∈ ℝⁿ \ {0_n}, here and hereafter, 0_n denotes the origin of ℝⁿ;
(ii) ρ(Ax) = bρ(x) for any x ∈ ℝⁿ, where b := |det A|;
(iii) ρ(x + y) ≤ C_A [ρ(x) + ρ(y)] for all x, y ∈ ℝⁿ, where C_A ∈ [1,∞) is a constant independent of x and y.

When $A := 2I_{n \times n}$, $\rho_A(x) := |x|^n$, for any $x \in \mathbb{R}^n$, ρ_A is a quasi-norm, associated with dilation A.

In [4, Lemma 2.4], M. Bownik also showed that all homogeneous quasi-norms associated with a fixed dilation A are equivalent. Therefore, for a fixed dilation A, in what follows, we always use the *step homogeneous quasi-norm* ρ defined by

$$\rho(x) := \sum_{k \in \mathbb{Z}} b^k \chi_{B_{k+1} \setminus B_k}(x) \text{ if } x \neq \mathbf{0}_n, \text{ or else } \rho(\mathbf{0}_n) := 0.$$

Definition 3.2

Let $\varphi \in \mathcal{S}(\mathbb{R}^n)$ be a radial real-valued function satisfying

$$\int_{\mathbb{R}^n} \varphi(x) \, dx = 0 \tag{3.6}$$

and, for any $\xi \in \mathbb{R}^n \setminus \{\mathbf{0}_n\}$,

$$\sum_{j\in\mathbb{Z}} \left|\widehat{\varphi}((A^T)^j \xi)\right|^2 = 1, \qquad (3.7)$$

where $\widehat{\varphi}$ denotes the Fourier transform of φ and A^T is the transpose of A. In what follows, every $\varphi \in \mathcal{S}(\mathbb{R}^n)$ always satisfies (3.6) and (3.7). For $\varphi \in \mathcal{S}(\mathbb{R}^n)$, $k \in \mathbb{Z}$ and $x \in \mathbb{R}^n$, let $\varphi_k(x) := b^{-k}\varphi(A^{-k}x)$.

For any $S_{\mathcal{M}}$ -valued simple function f, the anisotropic Lusin area functions of f is defined by

$$S^c_{\varphi}(f)(x) := \left(\sum_{k \in \mathbb{Z}} b^{-k} \int_{x+B_k} |f \ast \varphi_k(y)|^2 \, dy\right)^{1/2}$$

and

$$S_{\varphi}^{r}(f)(x) := \left(\sum_{k \in \mathbb{Z}} b^{-k} \int_{x+B_{k}} |f^{*} * \varphi_{k}(y)|^{2} \, dy\right)^{1/2}.$$

Definition 3.3

Let $p \in [1, \infty)$ and f be an $S_{\mathcal{M}}$ -valued simple function. We define the $\mathcal{H}^{p,c}_{A}(\mathbb{R}^{n}, \mathcal{M})$ and $\mathcal{H}^{p,r}_{A}(\mathbb{R}^{n}, \mathcal{M})$ norms of f by

$$\|f\|_{\mathcal{H}^{p,c}_{A}(\mathbb{R}^{n},\mathcal{M})} := \|S^{c}_{\varphi}(f)\|_{L^{p}(L^{\infty}(\mathbb{R}^{n})\overline{\otimes}\mathcal{M})}, \quad \|f\|_{\mathcal{H}^{p,r}_{A}(\mathbb{R}^{n},\mathcal{M})} := \|f^{*}\|_{\mathcal{H}^{p,c}_{A}(\mathbb{R}^{n},\mathcal{M})}$$

Define the anisotropic column Hardy space $\mathcal{H}^{p,c}_{A}(\mathbb{R}^{n}, \mathcal{M})$ (resp. anisotropic row Hardy space $\mathcal{H}^{p,r}_{A}(\mathbb{R}^{n}, \mathcal{M})$) to be the completion of the space of all $S_{\mathcal{M}}$ -valued simple functions with finite $\mathcal{H}^{p,c}_{A}(\mathbb{R}^{n}, \mathcal{M})$ (resp. $\mathcal{H}^{p,r}_{A}(\mathbb{R}^{n}, \mathcal{M})$) norm.

Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

Definition 3.4

Define the anisotropic mixture space $\mathcal{H}^p_A(\mathbb{R}^n, \mathcal{M})$ as follows: if $p \in [1, 2)$,

$$\mathcal{H}^p_A(\mathbb{R}^n,\,\mathcal{M}) := \mathcal{H}^{p,c}_A(\mathbb{R}^n,\,\mathcal{M}) + \mathcal{H}^{p,r}_A(\mathbb{R}^n,\,\mathcal{M})$$

equipped with the sum norm

$$\|f\|_{\mathcal{H}^p_A(\mathbb{R}^n,\mathcal{M})}$$

:= inf $\left\{ \|g\|_{\mathcal{H}^{p,c}_A(\mathbb{R}^n,\mathcal{M})} + \|h\|_{\mathcal{H}^{p,r}_A(\mathbb{R}^n,\mathcal{M})} : f = g + h, g \in \mathcal{H}^{p,c}_A(\mathbb{R}^n,\mathcal{M}), h \in \mathcal{H}^{p,r}_A(\mathbb{R}^n,\mathcal{M}) \right\}$

where the infimum is taken over all the decompositions of f as above. If $p \in [2, \infty)$, define

$$\mathcal{H}^p_A(\mathbb{R}^n,\,\mathcal{M}):=\mathcal{H}^{p,c}_A(\mathbb{R}^n,\,\mathcal{M})\cap\mathcal{H}^{p,r}_A(\mathbb{R}^n,\,\mathcal{M})$$

equipped with the intersection norm $\|f\|_{\mathcal{H}^p_A(\mathbb{R}^n,\mathcal{M})} := \max\left\{\|f\|_{\mathcal{H}^{p,c}_A(\mathbb{R}^n,\mathcal{M})}, \|f\|_{\mathcal{H}^{p,r}_A(\mathbb{R}^n,\mathcal{M})}\right\}.$

Remark 3.1

- (i) When it comes back to the commutative setting, i.e., $\mathcal{M} := \mathbb{C}$, these spaces are reduced to the anisotropic Hardy space $H^p_A(\mathbb{R}^n)$ studied by Bownik, where $p \in [1, \infty)$.
- (ii) When it comes back to the isotropic setting, i.e., $A := 2I_{n \times n}$, the operator-valued Hardy spaces $\mathcal{H}^{p,c}_{A}(\mathbb{R}^{n}, \mathcal{M})$, $\mathcal{H}^{p,r}_{A}(\mathbb{R}^{n}, \mathcal{M})$ and $\mathcal{H}^{p}_{A}(\mathbb{R}^{n}, \mathcal{M})$, introduced in this article, coincide the operator-valued Hardy spaces $\mathcal{H}^{p,c}(\mathbb{R}^{n}, \mathcal{M})$, $\mathcal{H}^{p,r}(\mathbb{R}^{n}, \mathcal{M})$ and $\mathcal{H}^{p}(\mathbb{R}^{n}, \mathcal{M})$ with equivalent norms, respectively, where $p \in [1, \infty)$.

(iii) When p = 2, we know that

$$\mathcal{H}^{2,c}_{A}(\mathbb{R}^{n}, \mathcal{M}) = \mathcal{H}^{2,r}_{A}(\mathbb{R}^{n}, \mathcal{M}) = \mathcal{H}^{2}_{A}(\mathbb{R}^{n}, \mathcal{M}) = L^{2}(L^{\infty}(\mathbb{R}^{n})\overline{\otimes}\mathcal{M}).$$

Operator-Valued BMO Spaces Associated with Anisotropic Dilations

In what follows, for any $B \in \mathfrak{B}$ and function g with values in \mathcal{M} , g_B denotes its mean over B, that is,

$$g_B := \frac{1}{|B|} \int_B g(x) \, dx$$

Definition 3.5

Let A be a dilation. The anisotropic column BMO space $\mathcal{BMO}_A^c(\mathbb{R}^n, \mathcal{M})$ is defined as

$$\mathcal{BMO}^c_A(\mathbb{R}^n,\,\mathcal{M}):=\{g\in L^\infty(\mathcal{M};\,L^2_c(\mathbb{R}^n,\,\frac{dx}{1+[\rho(x)]^2})):\|g\|_{\mathcal{BMO}^c_A(\mathbb{R}^n,\,\mathcal{M})}<\infty\},$$

where

$$\|g\|_{\mathcal{BMO}^c_A(\mathbb{R}^n,\mathcal{M})} := \sup_{B\in\mathfrak{B}} \|\left(\frac{1}{|B|}\int_B |g(y) - g_B|^2 \, dy\right)^{1/2}\|_{\mathcal{M}}.$$

Similarly, we define the anisotropic row BMO space $\mathcal{BMO}^r_A(\mathbb{R}^n, \mathcal{M})$ as the space of g such that $g^* \in \mathcal{BMO}^c_A(\mathbb{R}^n, \mathcal{M})$ with the norm $\|g\|_{\mathcal{BMO}^r_A(\mathbb{R}^n, \mathcal{M})} := \|g^*\|_{\mathcal{BMO}^c_A(\mathbb{R}^n, \mathcal{M})}$, and

 $\mathcal{BMO}_A(\mathbb{R}^n, \mathcal{M}) := \mathcal{BMO}_A^c(\mathbb{R}^n, \mathcal{M}) \cap \mathcal{BMO}_A^r(\mathbb{R}^n, \mathcal{M})$

with the norm $\|g\|_{\mathcal{BMO}_A(\mathbb{R}^n, \mathcal{M})} := \max\left\{\|g\|_{\mathcal{BMO}_A^c(\mathbb{R}^n, \mathcal{M})}, \|g\|_{\mathcal{BMO}_A^r(\mathbb{R}^n, \mathcal{M})}
ight\}.$

Let A be a dilation. Then we have

$$(\mathcal{H}^{1,c}_{A}(\mathbb{R}^{n},\mathcal{M}))^{*} = \mathcal{BMO}^{c}_{A}(\mathbb{R}^{n},\mathcal{M})$$

in the following sense:

(i) Every $g \in \mathcal{BMO}_A^c(\mathbb{R}^n, \mathcal{M})$ defines a continuous linear functional \mathcal{L}_g on $\mathcal{H}_A^{1,c}(\mathbb{R}^n, \mathcal{M})$ by

$$\mathcal{L}_g(f) := \tau \int_{\mathbb{R}^n} f(x) g^*(x) \, dx, \quad \text{for any } S_{\mathcal{M}} - valued \text{ simple function } f.$$

(ii) For any $\mathcal{L} \in (\mathcal{H}^{1,c}_{A}(\mathbb{R}^{n}, \mathcal{M}))^{*}$, then there exists some $g \in \mathcal{BMO}^{c}_{A}(\mathbb{R}^{n}, \mathcal{M})$ such that $\mathcal{L} = \mathcal{L}_{g}$. Moreover, there exists an universal positive constant C such that

$$C^{-1} \|g\|_{\mathcal{BMO}^c_A(\mathbb{R}^n,\mathcal{M})} \leq \|\mathcal{L}_g\|_{(\mathcal{H}^{1,c}_A(\mathbb{R}^n,\mathcal{M}))^*} \leq C \|g\|_{\mathcal{BMO}^c_A(\mathbb{R}^n,\mathcal{M})}.$$

31 / 55

Operator-Valued Hardy Spaces Associated with Anisotropic Dilations

Let us recall the definition of maximal norms. Let $p \in (0, \infty]$ and $x = \{x_i\}_{i \in \mathbb{N}}$ be a sequence of elements in $L^p(\mathcal{M})$. Define

$$\|x\|_{L^{p}(\mathcal{M};\,\ell^{\infty})} := \inf_{x_{i}=ay_{i}b} \left\{ \|a\|_{L^{2p}(\mathcal{M})} \|b\|_{L^{2p}(\mathcal{M})} \sup_{i\in\mathbb{N}} \|x_{i}\|_{\mathcal{M}} \right\},\,$$

where the infimum is taken over all $a, b \in L^{2p}(\mathcal{M})$ and $\{y_i\}_{i \in \mathbb{N}} \subset \mathcal{M}$ such that $x_i = ay_i b$. As usual, $\|x\|_{L^p(\mathcal{M}; \ell^{\infty})}$ is conventionally denoted by $\|\sup_{i \in \mathbb{N}}^+ x_i\|_{L^p(\mathcal{M})}$. However, we should point out that $\sup_{i \in \mathbb{N}}^+ x_i$ is just a notation, since it does not make any sense in the non-commutative setting. We just use this notation for convenience. If $p \in (1, \infty)$ and $\{x_i\}_{i \in \mathbb{N}}$ is a sequence of positive operators, it was proved by Junge that

$$\left\|\sup_{i\in\mathbb{N}}^{+}x_{i}\right\|_{L^{p}(\mathcal{M})} = \sup\left\{\sum_{i\in\mathbb{N}}\tau(x_{i}y_{i}): y_{i}\in L^{q}(\mathcal{M}), y_{i}\geq0, \left\|\sum_{i\in\mathbb{N}}y_{i}\right\|_{L^{q}(\mathcal{M})}\leq1\right\}.$$
(3.8)

Operator-Valued Hardy Spaces Associated with Anisotropic Dilation

Let $g \in L^q(\mathcal{M}; L^2_c(\mathbb{R}^n, \frac{dx}{1+[\rho(x)]^2}))$. For any $x + B_k \in \mathfrak{B}$ with $x \in \mathbb{R}^n, k \in \mathbb{Z}$ and \mathfrak{B} as in (3.3), denote

$$g_k^{\sharp}(x) := \frac{1}{|x + B_k|} \int_{x + B_k} |g(y) - g_{x + B_k}|^2 \, dy,$$

where $g_{x+B_k} := \frac{1}{|x+B_k|} \int_{x+B_k} g(y) \, dy$. For $q \in (2, \infty)$, define

$$\|g\|_{L^q \mathcal{MO}_A^c(\mathbb{R}^n, \mathcal{M})} := \left\| \sup_{k \in \mathbb{Z}}^+ g_k^{\sharp} \right\|_{L^{\frac{q}{2}}(L^{\infty}(\mathbb{R}^n) \overline{\otimes} \mathcal{M})}^{1/2}$$

and

$$\|g\|_{L^q\mathcal{MO}^r_A(\mathbb{R}^n,\mathcal{M})} := \|g^*\|_{L^q\mathcal{MO}^c_A(\mathbb{R}^n,\mathcal{M})}.$$

Obviously, these are two norms. Therefore, we define two spaces

$$L^{q}\mathcal{MO}_{A}^{c}(\mathbb{R}^{n},\mathcal{M}):=\left\{g\in L^{q}(\mathcal{M};L^{2}_{c}(\mathbb{R}^{n},\frac{dx}{1+[\rho(x)]^{2}})):\|g\|_{L^{q}\mathcal{MO}_{A}^{c}(\mathbb{R}^{n},\mathcal{M})}<\infty\right\}$$

and

$$L^{q}\mathcal{MO}_{A}^{r}(\mathbb{R}^{n},\mathcal{M}) := \left\{ g \in L^{q}(\mathcal{M}; L^{2}_{r}(\mathbb{R}^{n}, \frac{dx}{1 + \lfloor r(x) \rfloor^{2}})) : \|g\|_{L^{q}\mathcal{MO}_{A}^{r}(\mathbb{R}^{n}, \mathcal{M})} < \infty \right\}.$$

Moreover, we also define the mixture space

$$L^{q}\mathcal{MO}_{A}(\mathbb{R}^{n}, \mathcal{M}) := L^{q}\mathcal{MO}_{A}^{c}(\mathbb{R}^{n}, \mathcal{M}) \cap L^{q}\mathcal{MO}_{A}^{r}(\mathbb{R}^{n}, \mathcal{M}),$$

equipped with the norm

$$\|g\|_{L^q\mathcal{MO}^c_A(\mathbb{R}^n,\mathcal{M})} := \max\left\{\|g\|_{L^q\mathcal{MO}^c_A(\mathbb{R}^n,\mathcal{M})}, \|g\|_{L^q\mathcal{MO}^r_A(\mathbb{R}^n,\mathcal{M})}\right\}.$$

Let $p\in(1,\,2)$ and q be the conjugate index of p. Then we have

 $(\mathcal{H}^{p,c}_{A}(\mathbb{R}^{n},\mathcal{M}))^{*} = L^{q}\mathcal{MO}^{c}_{A}(\mathbb{R}^{n},\mathcal{M})$

in the following sense:

(i) Every $g \in L^q \mathcal{MO}_A^c(\mathbb{R}^n, \mathcal{M})$ defines a continuous linear functional \mathcal{L}_g on $\mathcal{H}_A^{p,c}(\mathbb{R}^n, \mathcal{M})$ by

$$\mathcal{L}_g(f) := \tau \int_{\mathbb{R}^n} f(x) g^*(x) \, dx$$
, for any $S_{\mathcal{M}}$ -valued simple function f .

(ii) For any $\mathcal{L} \in (\mathcal{H}^{p,c}_{A}(\mathbb{R}^{n}, \mathcal{M}))^{*}$, then there exists some $g \in L^{q}\mathcal{MO}^{c}_{A}(\mathbb{R}^{n}, \mathcal{M})$ such that $\mathcal{L} = \mathcal{L}_{g}$. Moreover, there exists an universal positive constant C such that

 $C^{-1} \|g\|_{L^q \mathcal{MO}_A^c(\mathbb{R}^n, \mathcal{M})} \le \|\mathcal{L}_g\|_{(\mathcal{H}_A^{p, c}(\mathbb{R}^n, \mathcal{M}))^*} \le C \|g\|_{L^q \mathcal{MO}_A^c(\mathbb{R}^n, \mathcal{M})}.$

Let $p \in (2, \infty)$. Then

$$\mathcal{H}^{p,c}_{A}(\mathbb{R}^{n},\,\mathcal{M}) = L^{p}\mathcal{M}\mathcal{O}^{c}_{A}(\mathbb{R}^{n},\,\mathcal{M})$$

with equivalent norms. Similarly, $\mathcal{H}^{p,r}_{A}(\mathbb{R}^{n}, \mathcal{M}) = L^{p}\mathcal{MO}^{r}_{A}(\mathbb{R}^{n}, \mathcal{M})$ and $\mathcal{H}^{p}_{A}(\mathbb{R}^{n}, \mathcal{M}) = L^{p}\mathcal{MO}_{A}(\mathbb{R}^{n}, \mathcal{M})$ with equivalent norms.

Corollary 3.1

Let $p \in (1, \infty)$ and q be the conjugate index of p. Then

 $(\mathcal{H}^{p,c}_{A}(\mathbb{R}^{n}, \mathcal{M}))^{*} = \mathcal{H}^{q,c}_{A}(\mathbb{R}^{n}, \mathcal{M})$

with equivalent norms.

Similarly, $(\mathcal{H}^{p,r}_{A}(\mathbb{R}^{n}, \mathcal{M}))^{*} = \mathcal{H}^{q,r}_{A}(\mathbb{R}^{n}, \mathcal{M})$ and $(\mathcal{H}^{p}_{A}(\mathbb{R}^{n}, \mathcal{M}))^{*} = \mathcal{H}^{q}_{A}(\mathbb{R}^{n}, \mathcal{M})$ with equivalent norms.

Let $p \in (1, \infty)$. Then

$$\mathcal{H}^p_A(\mathbb{R}^n,\,\mathcal{M}) = L^p(L^\infty(\mathbb{R}^n)\overline{\otimes}\mathcal{M})$$

with equivalent norms.

Let $p \in (1, \infty)$. Then

$$\left[\mathcal{BMO}_{A}^{c}(\mathbb{R}^{n},\,\mathcal{M}),\,\mathcal{H}_{A}^{1,c}(\mathbb{R}^{n},\,\mathcal{M})\right]_{\frac{1}{p}}=\mathcal{H}_{A}^{p,c}(\mathbb{R}^{n},\,\mathcal{M})$$

and

$$[X_1, X_2]_{\frac{1}{p}} = L^p(L^{\infty}(\mathbb{R}^n)\overline{\otimes}\mathcal{M}),$$

where $X_1 = \mathcal{BMO}_A(\mathbb{R}^n, \mathcal{M})$ or $L^{\infty}(L^{\infty}(\mathbb{R}^n)\overline{\otimes}\mathcal{M})$, $X_2 = \mathcal{H}^1_A(\mathbb{R}^n, \mathcal{M})$ or $L^1(L^{\infty}(\mathbb{R}^n)\overline{\otimes}\mathcal{M})$.

Theorem 3.8

Let $p \in [1, \infty)$. Then

$$[X_0, X_1]_{\frac{1}{p}, p} = L^p(L^{\infty}(\mathbb{R}^n)\overline{\otimes}\mathcal{M}),$$

where $X_0 = \mathcal{BMO}_A(\mathbb{R}^n, \mathcal{M})$ or $L^{\infty}(L^{\infty}(\mathbb{R}^n)\overline{\otimes}\mathcal{M})$, $X_1 = \mathcal{H}^1_A(\mathbb{R}^n, \mathcal{M})$ or $L^1(L^{\infty}(\mathbb{R}^n)\overline{\otimes}\mathcal{M})$.

8 / 55

Spaces of Homogeneous Type

Let us recall the definition of (X, d, μ) is a *space of homogeneous type* in the sense of Coifman and Weiss [5], which means that X is a metric space with distance function d, and endows a nonnegative, Borel, doubling measure μ . In what follows, for any ball $B_d(x, r) := \{y \in X : d(x, y) < r\} \subset X$, we define the volume functions

$$V_r(x) := \mu(B_d(x, r))$$
 and $V(x, y) := \mu(B_d(x, d(x, y))).$

We say the measure μ is doubling if there exists a positive constant C_0 such that, for any $x \in \mathbb{X}$ and r > 0,

$$V_{2r}(x) \le C_0 V_r(x).$$

[5] R.R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, [M]. Bull. Amer. Math. Soc., 1977, 83: 569-645.

Lemma 4.1

Let (\mathbb{X}, d, μ) is a space of homogeneous type. Then

(i) For any $x \in \mathbb{X}$ and r > 0, $V(x, y) \sim V(y, x)$ and

$$V_r(x) + V_r(y) + V(x, y) \sim V_r(y) + V(x, y) \sim V_r(x) + V(x, y) \sim \mu(B(x, r + d(x, y)))$$

where the equivalent positive constant are independently of x, y and r.

(ii) There exist two constants C > 0 and $0 \le \gamma \le n$ such that

$$V_{r_1}(x) \le C \left[\frac{r_1 + d(x, y)}{r_2} \right]^{\gamma} V_{r_2}(y)$$

uniformly for any $x, y \in \mathbb{X}$ and $r_1, r_2 > 0$.

Main Assumptions. Let (\mathbb{X}, d, μ) be a space of homogeneous space type and $\epsilon_1 \in (0, 1]$ and $\epsilon_2 \in (0, \infty)$. Then there exists a *calderón reproducing formula of order* (ϵ_1, ϵ_2) on $L_2(\mathbb{X})$, that is, there exists a family of bounded linear operators, $\{\mathbf{D}_t\}_{t>0}$, on $L_2(\mathbb{X})$ is called a Calderón reproducing formula of order (ϵ_1, ϵ_2) (for short, (ϵ_1, ϵ_2) -**CRF**) in $L_2(\mathbb{X})$ if, for all $f \in L_2(\mathbb{X})$,

$$f = \int_0^\infty \mathbf{D}_t^2(f) \frac{dt}{t},$$

and moreover, for all $f \in L_2(\mathbb{X})$ and $x \in \mathbb{X}$,

$$\mathbf{D}_t(f)(x) = \int_{\mathbb{X}} \mathbf{D}_t(x, y) f(y) \, d\mu(y),$$

[6] Y. Han, D. Müller and D. Yang, Littlewood-Paley-Stein characterizations for Hardy spaces on spaces of homogeneous type, [M]. Math. Nachr., 2006, 279: 1505-1537. where $\mathbf{D}_t(\cdot, \cdot)$ is a measurable function from $\mathbb{X} \times \mathbb{X}$ to \mathbb{R} satisfying the following conditions: there exists a positive constant C_1 such that, for all $t \in \mathbb{R}_+$ and all $x, x', y, y' \in \mathbb{X}$ with $d(x, x') \leq \frac{[t+d(x,y)]}{2}$,

$$\begin{aligned} & (\mathbf{H}_{1}) \ |\mathbf{D}_{t}(x, y)| \leq C_{1} \frac{1}{V_{t}(x)+V_{t}(y)+V(x, y)} \left[\frac{t}{t+d(x, y)}\right]^{\epsilon_{2}}; \\ & (\mathbf{H}_{2}) \ |\mathbf{D}_{t}(x, y) - \mathbf{D}_{t}(x', y)| \leq C_{1} \left[\frac{d(x, x')}{t+d(x, y)}\right]^{\epsilon_{1}} \frac{1}{V_{t}(x)+V_{t}(y)+V(x, y)} \left[\frac{t}{t+d(x, y)}\right]^{\epsilon_{2}}; \\ & (\mathbf{H}_{3}) \ \text{Property} \ (\mathbf{H}_{2}) \text{ still holds true with the roles of } x \text{ and } y \text{ interchanged, and } \mathbf{D}_{t}(x, y) = \mathbf{D}_{t}(y, x); \\ & (\mathbf{H}_{4}) \ \int_{\mathbb{X}} \mathbf{D}_{t}(x, y) \, d\mu(x) = 0 = \int_{\mathbb{X}} \mathbf{D}_{t}(x, y) \, d\mu(y). \end{aligned}$$

Let $\{\mathbf{D}_t\}_{t>0}$ be an (ϵ_1, ϵ_1) -**CRF** with $\epsilon_1 \in (0, 1]$ and $\epsilon_2 \in (\frac{1}{2}, \infty)$. For any $S_{\mathcal{M}}$ -valued simple function f, and $x \in \mathbb{X}$, the *Lusin area functions* of f is defined by

$$\mathcal{S}^c(f)(x) := \left(\int \int_{\Gamma_x} |\mathbf{D}_t(f)(y)|^2 \, \frac{d\mu(y)dt}{V_t(x)t}\right)^{1/2} \quad \text{and} \quad \mathcal{S}^r(f)(x) := \mathcal{S}^c(f^*)(x) = \mathcal{S}$$

where $\Gamma_x := \{(y, t) \in \mathbb{X} \times \mathbb{R}_+ : d(x, y) < t\}$ with $x \in \mathbb{X}$.

Let $p\in [1,\,\infty).$ We define the $\mathcal{H}_p^c(\mathbb{X},\,\mathcal{M})$ norms of f by

$$\|f\|_{\mathcal{H}^c_p(\mathbb{X},\mathcal{M})} := \|\mathcal{S}^c(f)\|_{L_p(L_\infty(\mathbb{X})\overline{\otimes}\mathcal{M})}, \quad \|f\|_{\mathcal{H}^r_p(\mathbb{X},\mathcal{M})} := \|\mathcal{S}^r(f)\|_{L_p(L_\infty(\mathbb{X})\overline{\otimes}\mathcal{M})}$$

Define the column Hardy space $\mathcal{H}_p^c(\mathbb{X}, \mathcal{M})$ (resp. row Hardy space $\mathcal{H}_p^r(\mathbb{X}, \mathcal{M})$) to be the completion of the space of all $S_{\mathcal{M}}$ -valued simple functions with finite $\mathcal{H}_p^c(\mathbb{X}, \mathcal{M})$ (resp. $\mathcal{H}_p^r(\mathbb{X}, \mathcal{M})$) norm. Define the *mixture space* $\mathcal{H}_p^{cr}(\mathbb{R}^n, \mathcal{M})$ as follows: when $p \in [1, 2)$,

$$\mathcal{H}_p^{cr}(\mathbb{X},\,\mathcal{M}) := \mathcal{H}_p^c(\mathbb{X},\,\mathcal{M}) + \mathcal{H}_p^r(\mathbb{X},\,\mathcal{M})$$

equipped with the sum norm

$$\|f\|_{\mathcal{H}_p^{cr}(\mathbb{X},\mathcal{M})}$$

:= inf $\left\{ \|f_1\|_{\mathcal{H}_p^c(\mathbb{X},\mathcal{M})} + \|f_2\|_{\mathcal{H}_p^r(\mathbb{X},\mathcal{M})} : f = f_1 + f_2, f_1 \in \mathcal{H}_p^c(\mathbb{X},\mathcal{M}), f_2 \in \mathcal{H}_p^r(\mathbb{X},\mathcal{M}) \right\}$

where the infimum is taken over all the decompositions of f as above. When $p \in [2, \infty)$, define

$$\mathcal{H}_p^{cr}(\mathbb{X},\,\mathcal{M}):=\mathcal{H}_p^c(\mathbb{X},\,\mathcal{M})\cap\mathcal{H}_p^r(\mathbb{X},\,\mathcal{M})$$

equipped with the intersection norm

$$\|f\|_{\mathcal{H}_p^{cr}(\mathbb{X},\mathcal{M})} := \max\left\{\|f\|_{\mathcal{H}_p^c(\mathbb{X},\mathcal{M})}, \|f\|_{\mathcal{H}_p^r(\mathbb{X},\mathcal{M})}\right\}.$$

Let \mathcal{V} denote the all locally integrable functions on \mathbb{X} with values in \mathcal{M} . For any ball $B \subset \mathbb{X}$ and operator-valued function $g \in \mathcal{V}$, we define g_B to be the mean of g on B, that is,

$$g_B := \frac{1}{\mu(B)} \int_B g(y) \, d\mu(y).$$

Definition 4.1

The column BMO space $\mathcal{BMO}^{c}(\mathbb{X}, \mathcal{M})$ is defined as

$$\mathcal{BMO}^{c}(\mathbb{X}, \mathcal{M}) := \left\{ g \in \mathcal{V} : \|g\|_{\mathcal{BMO}^{c}(\mathbb{X}, \mathcal{M})} < \infty \right\},$$

where

$$\|g\|_{\mathcal{BMO}^{c}(\mathbb{X},\mathcal{M})} := \sup_{x \in \mathbb{X}, r > 0} \| \left(\frac{1}{V_{r}(x)} \int_{B_{d}(x,r)} |g(y) - g_{B_{d}(x,r)}|^{2} d\mu(y) \right)^{1/2} \|_{\mathcal{M}}.$$

Similarly, we define the row BMO space $\mathcal{BMO}^{r}(\mathbb{X}, \mathcal{M})$ as the space of $g \in \mathcal{V}$ such that $g^{*} \in \mathcal{BMO}^{c}(\mathbb{X}, \mathcal{M})$ with the norm $\|g\|_{\mathcal{BMO}^{r}(\mathbb{X}, \mathcal{M})} := \|g^{*}\|_{\mathcal{BMO}^{c}(\mathbb{X}, \mathcal{M})}$, and the mixture BMO space

 $\mathcal{BMO}^{cr}(\mathbb{X}, \mathcal{M}) := \mathcal{BMO}^{c}(\mathbb{X}, \mathcal{M}) \cap \mathcal{BMO}^{r}(\mathbb{X}, \mathcal{M})$

with the norm $\|g\|_{\mathcal{BMO}^{cr}(\mathbb{X},\mathcal{M})} := \max\left\{\|g\|_{\mathcal{BMO}^{c}(\mathbb{X},\mathcal{M})}, \|g\|_{\mathcal{BMO}^{r}(\mathbb{X},\mathcal{M})}\right\}.$ 46/55

Theorem 4.1

We have

$$(\mathcal{H}_1^c(\mathbb{X}, \mathcal{M}))^* = \mathcal{BMO}^c(\mathbb{X}, \mathcal{M})$$

in the following sense:

(i) Each $g \in \mathcal{BMO}^c(\mathbb{X}, \mathcal{M})$ defines a continuous linear functional \mathcal{L}_g on $\mathcal{H}_1^c(\mathbb{X}, \mathcal{M})$ by

$$\mathcal{L}_g(f) := \tau \int_{\mathbb{X}} f(x) g^*(x) \, d\mu(x), \quad \text{for any } S_{\mathcal{M}} - valued \text{ simple function } f.$$

(ii) If $\mathcal{L} \in (\mathcal{H}_1^c(\mathbb{X}, \mathcal{M}))^*$, then there exists some $g \in \mathcal{BMO}^c(\mathbb{X}, \mathcal{M})$ such that $\mathcal{L} = \mathcal{L}_g$ as the above. Moreover, there exists a positive constant C such that

$$C^{-1} \|g\|_{\mathcal{BMO}^{c}(\mathbb{X},\mathcal{M})} \leq \|\mathcal{L}_{g}\|_{(\mathcal{H}_{1}^{c}(\mathbb{X},\mathcal{M}))^{*}} \leq C \|g\|_{\mathcal{BMO}^{c}(\mathbb{X},\mathcal{M})}.$$

Operator-Valued Hardy Spaces on Spaces of Homogeneous Type

Let \mathcal{U} denote the all locally integrable functions on \mathbb{X} with values in $L_q(\mathcal{M})$. For any $g \in \mathcal{U}$ and ball $B \subset \mathbb{X}$, set

$$g_B^{\sharp}(x) := \frac{1}{\mu(B)} \int_B |g(y) - g_B|^2 d\mu(y), \ x \in B,$$

where $g_B := \frac{1}{\mu(B)} \int_B g(y) \, d\mu(y)$.

Definition 4.2

Let $q \in (2, \infty)$. We define the column BMO-type space

$$L_q \mathcal{MO}^c(\mathbb{X}, \mathcal{M}) := \left\{ g \in \mathcal{U} : \|g\|_{L_q \mathcal{MO}^c(\mathbb{X}, \mathcal{M})} < \infty \right\},$$

where

$$\|g\|_{L_q\mathcal{MO}^c(\mathbb{X},\mathcal{M})} := \left\|\sup_{x\in B\subset\mathbb{X}}^+ g_B^{\sharp}\right\|_{L_{\frac{q}{2}}(L_{\infty}(\mathbb{X})\overline{\otimes}\mathcal{M})}^{1/2}$$

.

Theorem 4.2

Let $p \in (1, 2)$ and q be the conjugate index of p. Then we have

$$(\mathcal{H}_p^c(\mathbb{X}, \mathcal{M}))^* = L_q \mathcal{MO}^c(\mathbb{X}, \mathcal{M}).$$

Similarly, the duality holds between $\mathcal{H}_p^r(\mathbb{X}, \mathcal{M})$ and $L_q\mathcal{MO}^r(\mathbb{X}, \mathcal{M})$, and between $\mathcal{H}_p^{cr}(\mathbb{X}, \mathcal{M})$ and $L_q\mathcal{MO}^{cr}(\mathbb{X}, \mathcal{M})$ with equivalent norms.

Corollary 4.1

Let $p \in (1, \infty)$ and p' be the conjugate index of p. Then

 $(\mathcal{H}_p^c(\mathbb{X}, \mathcal{M}))^* = \mathcal{H}_{p'}^c(\mathbb{X}, \mathcal{M})$

with equivalent norms. Similarly, $(\mathcal{H}_p^r(\mathbb{X}, \mathcal{M}))^* = \mathcal{H}_{p'}^r(\mathbb{X}, \mathcal{M})$ and $(\mathcal{H}_p^{cr}(\mathbb{X}, \mathcal{M}))^* = \mathcal{H}_{p'}^{cr}(\mathbb{X}, \mathcal{M})$ with equivalent norms.

Interpolations

Theorem 4.3

Let $1 \leq q . Then$

$$\left[\mathcal{BMO}^{c}(\mathbb{X}, \mathcal{M}), \, \mathcal{H}_{q}^{c}(\mathbb{X}, \, \mathcal{M})\right]_{\frac{q}{p}} = \mathcal{H}_{p}^{c}(\mathbb{X}, \, \mathcal{M}) \tag{4.1}$$

and

$$[\mathcal{X}, \mathcal{Y}]_{\frac{1}{p}} = L_p(L_{\infty}(\mathbb{X})\overline{\otimes}\mathcal{M}), \qquad (4.2)$$

where $\mathcal{X} = \mathcal{BMO}^{cr}(\mathbb{X}, \mathcal{M})$ or $L_{\infty}(L_{\infty}(\mathbb{X})\overline{\otimes}\mathcal{M})$, $\mathcal{Y} = \mathcal{H}_{1}^{cr}(\mathbb{X}, \mathcal{M})$ or $L_{1}(L_{\infty}(\mathbb{X})\overline{\otimes}\mathcal{M})$.

Theorem 4.4

Let $1 \leq q . Then$

$$\left[\mathcal{BMO}^{c}, \, \mathcal{H}^{c}_{q}(\mathbb{X}, \, \mathcal{M})\right]_{rac{q}{p}, \, p} = \mathcal{H}^{c}_{p}(\mathbb{X}, \, \mathcal{M})$$

with equivalent norms. Similar result also holds for row BMO and Hardy spaces.

Theorem 4.5

Let $p \in [1, \infty)$. Then $[\mathcal{X}_0, \mathcal{X}_1]_{\frac{1}{p}, p} = L_p(L_\infty(\mathbb{X})\overline{\otimes}\mathcal{M}),$ where $\mathcal{X}_0 = \mathcal{BMO}^{cr}(\mathbb{X}, \mathcal{M})$ or $L_\infty(L_\infty(\mathbb{X})\overline{\otimes}\mathcal{M}), \quad \mathcal{X}_1 = \mathcal{H}_1^{cr}(\mathbb{X}, \mathcal{M})$ or $L_1(L_\infty(\mathbb{X})\overline{\otimes}\mathcal{M}).$

Operator-Valued Hardy Spaces on Spaces of Homogeneous Type

Let us recall that a linear operator T is a Calderón-Zygmund operator, if T is bounded on $L_2(L_{\infty}(\mathbb{X})\overline{\otimes}\mathcal{M})$ with kernel \mathcal{K} coinciding with a locally integrable \mathcal{M} -valued function on $\mathbb{X} \setminus \{(x, x) : x \in \mathbb{X}\}$, and satisfying that there exists a positive constant C such that, for any $x, y \in \mathbb{X}$

$$\|\mathcal{K}(x, y)\|_{\mathcal{M}} \le C \frac{1}{V(x, y)};$$

for any $x,\,x',\,y\in\mathbb{X}$ with $d(x',\,x)<\frac{d(x,y)}{2}$,

$$\|\mathcal{K}(x', y) - \mathcal{K}(x, y)\|_{\mathcal{M}} + \|\mathcal{K}(y, x') - \mathcal{K}(y, x)\|_{\mathcal{M}} \le C \frac{[d(x', x)]^{\delta}}{V(x, y)[d(x, y)]^{\delta}}.$$

For any $S_{\mathcal{M}}$ -valued simple function f on \mathbb{X} , define the δ -type left Calderón-Zygmund operator by

$$T^{c}(f)(x) := \int_{\mathbb{X}} \mathcal{K}(x, y) f(y) \, d\mu(y), \quad x \in \mathbb{X}.$$

In what follows, we let $\mathcal{BMO}^{c,0}(\mathbb{X}, \mathcal{M})$ to denote the subspace of $\mathcal{BMO}^{c}(\mathbb{X}, \mathcal{M})$ consisting of compactly supported functions.

Theorem 4.6

Let T^c be the left Calderón-Zygmund operator. Then T^c is bounded from $\mathcal{BMO}^{c,0}(\mathbb{X}, \mathcal{M})$ to $\mathcal{BMO}^c(\mathbb{X}, \mathcal{M})$. Moreover, there exists a positive constant C such that, for any $f \in \mathcal{BMO}^{c,0}(\mathbb{X}, \mathcal{M})$,

$$||T^{c}(f)||_{\mathcal{BMO}^{c}(\mathbb{X},\mathcal{M})} \leq C ||f||_{\mathcal{BMO}^{c,0}(\mathbb{X},\mathcal{M})}.$$

Thanks