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Paleys inequality in analytic Hp-space

Denote by T the unit circle.
Lacunary sequence (or, Lacunary set) (nk)k∈N ⊆ Z: there exists
δ > 0 such that for all k ∈ N,

|nk+1|
|nk|

> 1 + δ.

Given (ck) ⊆ C, a classical Khintchine type inequality states that
there exists Cδ <∞ such that∥∥∥∥∥

∞∑
k=1

ckz
nk

∥∥∥∥∥
L1(T)

≤

( ∞∑
k=1

|ck|2
) 1

2

≤ Cδ

∥∥∥∥∥
∞∑
k=1

ckz
nk

∥∥∥∥∥
L1(T)

.



Paleys inequality in analytic Hp-space

Plancherel theorem∫ 2π

0
|
∑
k

ckz
k|2dθ =

∑
k

|ck|2.

• `2(N) ⊆ L1(T). (
∑

k |ck|2)
1
2 ' ‖f‖L1(T) provided f̂(2k) = ck and

f̂(n) = 0 otherwise.
• However, the map

P : f 7→
(
f̂(nk)

)
k∈N

does not extend to a bounded map from L1(T) to `2(N). e.g.

f(z) =
∏N
k=1(1 + z2

k
+z−2k

2 ) which have norm ‖f‖L1(T) = 1 while

(f̂(2k))1≤k≤N has norm
√
N
2 since f̂(2k) = 1

2 for k = 1, · · · , N .



Paleys inequality in analytic Hp-space

Let H1(T) be the real Hardy space on the unit circle:

H1(T) =
{
f ∈ L1(T) : ‖f‖H1(T) = ‖f‖L1 + ‖H(f)‖L1 <∞

}
,

with H the Hilbert transform of f . A classical theorem of Paley [1]
asserts that

(
∑
jk∈Λ

|f̂(nk)|2)
1
2 ≤ CΛ‖f‖H1(T),

where Λ is a lacunary sequence. Moreover,(∑
k

|ck|2
) 1

2

' inf
{
‖f‖H1(T) : f ∈ H1(T), f̂(nk) = ck

}
1. R. E. A. C. Paley, On the lacunary coefficients of power series, Ann. of Math, (2), 34(3):615616, 1933.



Paleys inequality in analytic Hp-space

• `2 ⊆ H1(T). P : H1(T)→ `2 is bounded.
• A subset E ⊂ N is called a Paley set([2]) if the above equivalence
holds for all choices of (ck)k ∈ `2, nk ∈ E with constants depending
only on E.
• Rudin[3] proved that E is a Paley set only if

sup
n∈N

#E ∩ [2n, 2n+1] < C

• Paley set E is a finite union of lacunary sequences.
2. G. Pisier, Multipliers and lacunary sets in non-amenable groups. Amer. J. Math. 117 , no. 2, 337-376, (1995)

3. W. Rudin, Remarks on a theorem of Paley. J. Lond. Math. Soc., 32(1957), 307-311.



Paleys inequality in analytic Hp-space

Theorem (Paley)

Let 0 < p <∞ and let (nk) be a lacunary sequence of positive
integers. Then f(z) =

∑∞
k=1 f̂(nk)z

nk ∈ Hp(T) if and only if∑∞
k=1 |f̂(nk)|2 <∞. Moreover, for each such p there exists a

constant C that depends only on p such that

C−1‖(f̂(nk))‖`2 ≤ ‖f‖Hp(T) ≤ ‖(f̂(nk))‖`2 .

• Rudin[5] has shown that Paley inequality holds for the case of
compact connected abelian group with a total order.
4. Jevtic, M., Vukotic, D., Arsenovic, M., Taylor Coefficients and Coefficient Multipliers of Hardy and Bergman-Type

Spaces, vol. 2. RSME Springer Series, New York (2016)

5. W. Rudin, Fourier Analysis on Groups. Wiley, New York, (1990).



Paleys inequality in analytic Hp-space

S1: all trace class operators on `2,
H1(S1) = H1(T)⊗ S1 ⊆ L1(T;S1).

Theorem (Lust-Piquard, Pisier; 1991)

Suppose Λ is a lacunary sequence, then there is a constant C such
that for all functions f =

∑
k∈Λ ake

ikt ∈ H1(S1), ak ∈ S1,

‖|(ak)‖| ≤ C‖f‖H1(S1),

where ‖|(ak)‖| := inf{tr(
∑

k |ak|2)
1
2 + tr(

∑
k |b∗k|2)

1
2 : ck = ak + bk}.

6. F. Lust-Piquard, G. Pisier, Noncommutative Khintchine and Paley inequalities. Ark. Mat. 29 , no. 2, 241-260,
(1991)



Paleys inequality in BMO space

Fefferman-Stein: the dual space of H1(T) is BMO(T)

‖f‖BMO(T) = sup
I

1

|I|

∫
I
|f − fI | ds, f ∈ L1(T)

with the supremum taking over all arcs I ⊆ T. By Fefferman-Stein’s
H1-BMO duality theory,(∑

k

|ck|2
) 1

2

' inf
{
‖f‖H1(T) : f ∈ H1(T), f̂(nk) = ck

}
has an equivalent formulation that, for any (ck) ∈ `2,(∑

k

|ck|2
) 1

2

'δ

∥∥∥∥∥∑
k

ckz
nk

∥∥∥∥∥
BMO(T)

.



Paley inequality on nc analytic hardy spaces

A w∗ closed subalgebra A of M is called a subdiagonal algebra of M
with respect to E(or D), if

1 A+A∗ is w∗ dense in M;

2 E is multiplicative on A, i.e., E(ab) = E(a)E(b) for all a, b ∈ A;

3 The restriction of τ on D = A ∩A∗ is semifinite.

4 τ(E(x)) = τ(x) for every positive operator x ∈M.

where A∗ = {x∗ : x ∈ A}.



Paley inequality on nc analytic hardy spaces

Let (G,≤) be a countable discrete group with a bi-invariant order:
•let G+ be a subsemigroup of G with the properties: G+ ∪G− = G
and G+ ∩G− = {e}.
• Define the relation ≤ in G by x ≤ y if and only if x−1y ∈ G+.
•We write x < y if x−1y ∈ G+ and x−1y 6= e.
•x ≤ y implies zx ≤ zy for every z ∈ G.
•This order will be invariant under right multiplication if (and only if)
G+ is normal in the sense that zG+z−1 ⊆ G+, for every z ∈ G.



Paley inequality on nc analytic hardy spaces

L(G) = {λg : g ∈ G}′′; τ is the trace on L(G).

Put AG = {
∑
cgλg : g ≥ e}w

∗
and DG := AG ∩A∗G = {λ1 : λ ∈ C}.

Lemma

Let N := L(G)⊗B(H). Then

AN := AG⊗B(H) = {x =
∑
g∈G

λg ⊗ cg ∈ B(H) : g ≥ e, cg ∈M}
w∗

.

is a maximal semifinite subdiagonal subalgebra of N with respect to
E ⊗ 1.



Paley inequality on nc analytic hardy spaces

For 0 < p <∞, we define the noncommutative Hardy spaces Hp(N )
by

Hp(N ) = (AG⊗M) ∩ Lp(N )
‖·‖p

7. W. B. Arveson, Analyticity in operator algebras, Amer. J Math.,89(1967), 578-642.

8. M. Marsalli, G. West, Noncommutative Hp spaces, Journal of Operator Theory, 40(1998), 339-355.



Paley inequality on nc analytic hardy spaces

Let 0 < p ≤ ∞. We define the space Sp(`2rc) as follows:

1 If 0 < p < 2,
Sp(`2rc) = Sp(`2c) + Sp(`2r)

equipped with the intersection norm:

‖(ak)n≥0‖Sp(`2rc) = inf
ak=bk+ck

{‖(bk)n≥0‖Sp(`2r) + ‖(ck)n≥0‖Sp(`2c)}

2 If p ≥ 2,
Sp(`2rc) = Sp(`2c) ∩ Sp(`2r)

equipped with the intersection norm:

‖(ak)n≥0‖Sp(`2rc) = max{‖(ak)n≥0‖Sp(`2r), ‖(ak)n≥0‖Sp(`2c)}.

9. M. Junge, C. Le Merdy, Q. Xu, H∞ functional calculus and square functions on noncommutative Lp-spaces,
Astérisque 305, vi+138 pp(2006).



Paley inequality on nc analytic hardy spaces

For each g ∈ G+, let Lg = {h : g ≤ h ≤ g2}. For E ⊂ G+, let
N(E, g) = #(Lg ∩ E). We say E ⊂ G+ is lacunary, if

N(E) = sup
g∈G+

N(E, g) <∞.

For a general subset E ⊂ G, let E+ = E ∩G+, E− = E − E+. We
say E is lacunary if N(E) = N(E+) +N((E−)−1) <∞.

Theorem (CHLM2020)

Assume that E is a lacunary subset of G+. Then, for any sequence
(ck)k ⊂ S1, and any sequence (gk)

∞
k=1 ⊆ E, we have

‖(ck)∞k=1‖S1(`2cr)

' inf
{

(tr ⊗ τ)(|f |) : f ∈ L1(N ), f̂(gk) = ck, f̂(g) = 0, ∀g < e
}



Sketch for the proof of Theorem

• By the convexity of | · |2 and the complete positivity of τG, we have
that, for any finite sequence gk ∈ G,

τG|
∑
k

akλgk | ≤ (τG|
∑
k

akλgk |
2)

1
2 = (

∑
k

|ak|2)
1
2 .

• Writing ck = ak + bk, we get,

‖
∑
k

ckλgk‖1 ≤ ‖(ck)
∞
k=1‖S1(`2cr). (2.1)

• For f ∈ H1(N ) and ε > 0, by Riesz factorization theorem, there
exist y, z ∈ H2(N ) such that f = yz and ‖y‖2‖z‖2 ≤ ‖f‖1 + ε.



Sketch for the proof of Theorem

Given an element gi ∈ E with f̂(gi) 6= 0. Recall that
f̂(g) = τG(fλ∗g), we have

f̂(gi) =
∑

e≤h≤gi

ŷ(h)ẑ(h−1gi) = Ai +Bi,

where

Ai : = (τG ⊗ 1)
[
yZi

(
λg−1

i
⊗ 1
)]

Bi : = (τG ⊗ 1)
[(
λg−1

i
⊗ 1
)
Yiz
]
,

where
Zi =

∑
e≤h≤h2<gi

λh ⊗ ẑ(h),

Yi =
∑

e≤h≤h2≤gi

λh ⊗ ŷ(h).



Sketch for the proof of Theorem

• Since N(E, g) ≤ K, we get

‖(Ai)ni=1‖S1(`2r) ≤ K
1
2 (‖f‖L1(N ) + ε).

and

‖(Bi)n1‖S1(`2c) ≤ K
1
2 (‖f‖L1(N ) + ε).

Therefore,

‖(f̂(gi))
n
i=1‖L1(M,`2cr) ≤ ‖(Bi)ni=1‖L1(M,`2c) + ‖(Ai)ni=1‖L1(M,`2r)

≤ 2K
1
2 (‖f‖L1(N ) + ε),

This completes the proof by letting ε→ 0.



Paley inequality on nc analytic hardy spaces

Let H be the linear map on L2(LG) such that

H(
∑
g

cg ⊗ λg) = −i(
∑
g≥e

cg ⊗ λg −
∑
g≤e

cg ⊗ λg). (2.2)

For f =
∑

g cg ⊗ λg ∈ L2(LG), set

‖f‖BMO(LG) = inf{‖u‖L∞(LG) + ‖v‖L∞(N ) : f = u+Hv}

where the infimum is taken over all u, v ∈ L∞(N ).
Let BMOA(LG) be the space of all f ∈ H2(LG) with finite
‖ · ‖BMO(LG)-norms.
• H1(LG)∗ = BMOA(LG).

10. M. Marsalli, G. West, The dual of noncommutative H1. Indiana Univ. Math. J. 47, no. 2, 489-500, (1998)



Paley inequality on nc analytic hardy spaces

Let N =M⊗L(G) with the trace tr ⊗ τG. For 1 ≤ p ≤ ∞, let
Hp(N ) be the norm (respectively weak operator) closure in Lp(N )
of the collection of all finite sums

∑
g≥e cg ⊗ λg with cg ∈ Lp(M). In

this case, H1(N ) coincides with the projective tensor product
L1(M)⊗̂H1(L(G)), and its dual is isomorphic to
BMOA(N ) =M⊗̄BMOA(L(G)) the injective tensor product. The
Hilbert transform id⊗H extends to a bounded map on Lp(N ) for all
1 < p <∞. So, for 1 < p <∞, Hp(N ) is a complemented subspace
of Lp(N ), and we have the following equivalence for
f =

∑
g cg ⊗ λg ∈ Lp(N ),

‖f‖p ' ‖
∑
g≥e

cg ⊗ λg‖+ ‖
∑
g<e

cg ⊗ λg‖p.



Paley inequality on nc analytic hardy spaces

Corollary (CHLM2020)

Assume that E is a lacunary subset of G+. Then, for any sequence
(ck)k ⊂ Sp, and any sequence (gk)

∞
k=1 ⊆ E, we have

‖(ck)∞k=1‖S∞(`2cr) ' ‖
∞∑
k=1

ck ⊗ λgk‖BMO(N ),

‖(ck)∞k=1‖S1(`2cr) ' ‖
∞∑
k=1

ck ⊗ λgk‖S1(N ),

‖(ck)∞k=1‖Sp(`2cr) ' ‖
∞∑
k=1

ck ⊗ λgk‖Sp(N ), 1 < p <∞



Paley inequality on nc analytic hardy spaces

Corollary (CHLM2020)

For any sequence (gi)
∞
i=1 in a lacunary subset E ∈ G∥∥∥∥∥

∞∑
i=1

λgi ⊗ cgi

∥∥∥∥∥
Lp(N )

' ‖(cgi)∞i=1‖Sp(`2cr), 0 < p <∞,

‖(cgi)∞i=1‖Sp(`2cr) ' inf
{
‖f‖Lp(N ) : f ∈ Lp(N ), f̂(gi) = cgi

}
, 1 < p <∞.



Free group F2

A conditionally negative definite length ψ on G. By that, we mean ψ
is a R+-valued function on G satisfying ψ(g) = 0 if and only if g = e,
ψ(g) = ψ(g−1), and ∑

g,h

agahψ(g−1h) ≤ 0 (3.1)

for any finite collection of coefficients ag ∈ C with
∑

g ag = 0.



Free group F2

For g ∈ F2 in the form of g = aj1bk1 · · · ajN bkN , let

|g|z =

∣∣∣∣∣
N∑
i=1

ji

∣∣∣∣∣
2

+

∣∣∣∣∣
N∑
i=1

ki

∣∣∣∣∣
2

.

Then

ψz : g 7→ |g|z

is a conditionally negative definite function on F2, and the
unbounded linear operator Lz : λg 7→ ψzλg generates a symmetric
Markov semigroup on the free group von Neumann algebra L(F2).
12. C. Berg, J. Christensen, P. Ressel, Harmonic Analysis on Semigroups: Theory of Positive Definite and Related

Functions. Graduate Text in Mathematics, Springer-Verlag, (1984)



Free group F2

For (z1, z2) ∈ T2, let πz be the ∗-homomorphism on L(F2) such that

πz(λa) = z1λa, πz(λb) = z2λb.

Given f ∈ L(F2), viewing πz(f) as an operator valued function on
T2, one can see that

π−1
z (∆⊗ id)πz(f) = Lz(f)

with ∆ being the Laplacian on T2.
• Lz ←→ Laplacian. • subgroup ker(ψz).



Free group F2

A bi-invariant order on free groups F2 : 〈a, b〉 ←→ Z[A,B]:

µ(a) = 1 +A, µ(a−1) = 1−A+A2 −A3 + · · · ,
µ(b) = 1 +B, µ(b−1) = 1−B +B2 −B3 + · · · .

Denote by “≤” the dictionary order on Z[A,B] assuming 0 ≤ B ≤ A.
We then formally define the ordering on the free group F2 by setting

g ≤ h in F2 if µ(g) ≤ µ(h) in Λ.

For any word X of A,B, denote by JX(g) the coefficient of the X
term in µ(g).

12. A. A. Vinogradov, On the free product of ordered groups. (Russian) Mat. Sbornik N.S. 25(67), 163-168, (1949)



Free group F2

Let

F0
2 = ker(ψz) = {g ∈ F2 : JA(g) = JB(g) = 0}

For g ∈ F0
2, g > e if JAB(g) > 0 since JAA(g) = 0.

• Given a sequence gn ∈ F2, then E = {gn : n ∈ N} is a lacunary
subset of F2 if any of the following holds:

The sequence JA(gn) ∈ Z is lacunary.

JA(gn) = 0 for all n and the sequence JB(gn) ∈ Z is lacunary.

JA(gn) = JB(gn) = 0 for all n, and JAB(gn) is lacunary.

• For instance, {a2ibki ∈ F2 : i, ki ∈ N+} and

{a2kb2
k
a−2kb−2k : k ∈ N} are lacunary subsets of F2.



Free group F2

Corollary (CHLM2020)

Suppose (gk)k ∈ F0
2 is a sequence with (JAB(gk))k ∈ Z lacunary.

Then for any (ck)k with elements in Sp(H), we have

‖(ck)‖pSp(`2cr)
' (τ ⊗ tr)

(∣∣∣∣∣∑
k

ck ⊗ λgk

∣∣∣∣∣
p)

for all 0 < p <∞. Moreover, for p = 1, we have

‖(ck)‖S1(`2cr)

' inf

(τ ⊗ tr)

∣∣∣∣∣∣
∑

JAB(g)≥0

f̂(g)⊗ λg

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

JAB(g)<0

f̂(g)⊗ λg

∣∣∣∣∣∣


Here, the infimum runs over all f ∈ L1(L(F2))⊗ S1(H) with
f̂(gk) = ck.



Paley’s inequality in the semigroup language

For each t > 0, let Pt(e
ikθ) = e−|k|teikθ. For f ∈ L1(T),

‖f‖BMO(T) ' sup
t>0

∥∥Pt [|f − Pt(f)|2
]∥∥ 1

2

L∞(T)

‖f‖H1(T) '

∥∥∥∥∥∥
(∫ ∞

0

∣∣∣∣ ∂∂tPtf
∣∣∣∣2 tdt

) 1
2

∥∥∥∥∥∥
L1(T)

.

Garnett, Garsia, Stein, Mcintosh, Duong/Yan, Hoffman/Pascal...



Paley’s inequality in semigroup language

For a conditionally negative definite length ψ on G, we say a
sequence (hk)k∈N of elements of G is ψ-lacunary if there exists a
constant δ > 0 such that

ψ(hk) ≥ (1 + δ)ψ(hj)

ψ(h−1
j hk) ≥ δψ(hk).

for any k > j.



Paley’s inequality in semigroup language

Let
Tt : λg 7→ e−tψ(g)λg

be the semigroup of operators on the group von Neumann algebra
L(G) associated with ψ. Let

‖f‖H1
c (ψ) = τ

(∫ ∞
0

∣∣∣∣ ∂∂sTs(f)

∣∣∣∣2 s ds
) 1

2


‖f‖BMOc(ψ) = sup

s>0

∥∥Ts [|f − Ts(f)|2
]∥∥ 1

2 .

• H1
c (ψ)∗ = BMOc(ψ)?

• M⊗̄L(G)←→ id⊗ Tt
13. M. Junge, T. Mei, BMO spaces associated with semigroups of operators, Math. Ann. 352, no. 3, 691-743, (2012)



Paley’s inequality in semigroup language

Lemma (M)

Let f =
∑

k ck ⊗ λhk ∈ L2(B(H)⊗̄L(G)), we have

1

2

(∑
k

|ck|2
) 1

2

≥ τ

(∫ ∞
0

∣∣∣∣ ∂∂sTsf
∣∣∣∣2 sds

) 1
2


This means the left hand subtract the right hand of above is a
nonnegative self-adjoint element of B(H).
Moreover, if we assume (hk) is a ψ-lacunary sequence, then∥∥∥∥∥

∫ ∞
0

∣∣∣∣ ∂∂sTsf
∣∣∣∣2 sds

∥∥∥∥∥ ≤
(

1 +
2

δ

)∥∥∥∥∥∑
k

|ck|2
∥∥∥∥∥ .



Sketch for the proof of Theorem

• ∫ ∞
0

∣∣∣∣ ∂∂sTsf
∣∣∣∣2 sds =

∑
k,j

ak,j(ckλhk)∗cjλhj ,

with

ak,j =
ψ(hk)ψ(hj)

(ψ(hk) + ψ(hj))2
≥ 0

• First inequality: Cauchy-Schwartz inequality.
• Second inequality: ψ-lacunary property and

∑
k ak,j ≤ 1 + 2

δ ..



Paley’s inequality in semigroup language

Theorem (M)

Suppose that (hk)k ⊆ G is a ψ-lacunary sequence. Then, for any
N ∈ N and f =

∑N
k=1 ck ⊗ λhk with ck ∈ B(H), we have

‖f‖2BMOc(ψ) 'δ

∥∥∥∥∥∥
∑

k,hk 6=e
|ck|2

∥∥∥∥∥∥ .
At the other end, we have, for any (ck) ∈ S1(`2c),

tr

(∑
k

|ck|2
) 1

2


'δ inf

(tr ⊗ τ)

(∫ ∞
0

∣∣∣∣ ∂∂sTsf
∣∣∣∣2 s ds

) 1
2

 : τ(fλ∗hk) = ck

 .

where the infimum runs over all f ∈ L1(B(H)⊗̄L(G)).



Sketch for the proof of Theorem
•

Tt
[
|f − Tt(f)|2

]
=
∑
k,j

ak,j(ckλhk)∗cjλhj ,

with

ak,j = e−tψ(h−1
k hj)(1− e−tψ(h−1

k ))(1− e−tψ(hj)) ≥ 0.

• By ψ-lacunary property:

sup
j

∑
k

ak,j ≤ 1 + δ−1 + δ−2 =: cδ, sup
k

∑
j

ak,j ≤ cδ.

• The BMO estimate follows from∥∥Tt [|f − Tt(f)|2
]∥∥ ≤ cδ

∥∥∥∥∥∑
k

|ck|2
∥∥∥∥∥

and

‖Tt
[
|f − Tt(f)|2

]
‖ ≥

∥∥∥∥∥∥
∑

k,hk 6=e

∣∣∣[1− e−tψ(hk)
]
ck

∣∣∣2
∥∥∥∥∥∥ .



Sketch for the proof of Theorem

• the H1-estimate: By duality, we may choose bk such that
‖
∑
|bk|2‖ = 1 and

tr

(∑
k

|ck|2
) 1

2

 = sup
f,ϕ

(tr ⊗ τ)(f∗ϕ),

where the superum runs over all finite sum
ϕ =

∑N
k=1 bkλhk , f =

∑N
k=1 ckλhk . Combining the Hölder inequality

with the second inequality of above Lemma we obtain

tr

(∑
k

|ck|2
) 1

2

 ≤ 4

(
1 +

2

δ

) 1
2

(τ ⊗ tr)

(∫ ∞
0

∣∣∣∣ ∂∂sTsf
∣∣∣∣2 sds

) 1
2

 .
The other direction follows by taking tr on the both sides of the first
inequality of above Lemma.



Thanks for your attention!
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