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I. Classical Martingale Inequalities



Classical martingales

• (Ω,F ,P): a probability space.
L0(Ω): the set of all measurable functions.
Lp(Ω): classical Lebesgue space.
(Fn)n: ↑, sub-σ-algebras of F , F = σ(

⋃
n Fn).

• The conditional expectation En with respect to Fn is defined by∫
A
En(f ) =

∫
A

f , ∀A ∈ Fn.

• An adapted sequence f = (fn)n≥1 in L1(Ω) is called a martingale
if for any n ≥ 1,

En(fn+1) = fn.

Example: Ω = [0, 1), Fn = σ({[k2−n, (k + 1)2−n) : k ≥ 0}), P is
Lebesgue measure (dyadic martingales).



Basic operators in martingale theory

Let f = (fn)n be a martingale and df = (dnf )n = (fn − fn−1)n be
the martingale difference sequence of f .

Doob’s maximal operator:

Mf := sup
n
|fn|.

Square function:

Sf :=
(∑

n

|dnf |2
)1/2

,

Conditioned square function:

sf :=
(∑

n

En−1|dnf |2
)1/2



Classical martingale inequalities

Theorem (Doob’s maximal inequality)

We have
‖Mf ‖1,∞ . ‖f ‖1 (1)

and
‖Mf ‖p .p ‖f ‖p, 1 < p ≤ ∞.

Theorem (Burkholder-Gundy inequality)

We have
‖Sf ‖1,∞ . ‖f ‖1

and
‖f ‖p ≈p ‖Sf ‖p, 1 < p <∞.



Theorem (Burkholder inequality)

We have

‖f ‖p ≈p max
{
‖sf ‖p,

(∑
n

‖dfn‖pp
)1/p}

, 2 ≤ p <∞.

Theorem (Burkholder inequality with maximal diagonal)

In the above theorem, the diagonal part
(∑

n ‖dnf ‖pp
)1/p

can be

replaced with ‖ supn |dnf |‖p; namely,

‖f ‖p ≈p max
{
‖sf ‖p, ‖ sup

n
|dnf |‖p

}
, 2 ≤ p <∞.

Remark

(i) The above are the most fundamental inequalities...

(ii) The proofs mainly depend on stopping times.

(iii) The above results also hold true in more general context
(e.g., Lp,q, LΦ, symmetric spaces E ).



II. Noncommutative Martingale Inequalities



τ -measurable operators

I A noncommutative probability space (M, τ): M is a finite
von Neumann algebra equipped with a normal faithful trace
τ and τ(1) = 1.

Example 1. M = L∞(Ω,P), τ =
∫

Ω; τ(1) = P(Ω) = 1
(M, τ): the classical probability space

Example 2. M = Mn(C), τ = 1
nTr

(M, τ): NC probability space.

I L0(M): the set of τ -measurable operators.

Indeed, L0(M) consists of all the operators affiliated to M
since M is finite.



Generalised singular value function

I For x ∈ L0(M), the distribution function of x is defined by

nx(s) = τ
(
χ(s,∞)(x)

)
, −∞ < s <∞.

I The generalised singular value function of x is defined by

µ(t, x) = inf
{

s > 0 : n|x |(s) ≤ t
}
, t > 0.

Example

If M = L∞(Ω,P), then nf (s) = P(f > s) is the distribution
function of f and µ(·, f ) is just the classical non-increasing
rearrangement function of f . Moreover, we have

n|f |(λ) = P({ω : |f (ω)| > λ}) = |{t ∈ (0, 1] : µ(t, f ) > λ}|.



Noncommutative symmetric spaces
I Symmetric space E : a Banach function space (E , ‖ · ‖E ) on

(0, 1] is called symmetric if for g ∈ E and measurable f with
µ(f ) ≤ µ(g), we have f ∈ E and ‖f ‖E ≤ ‖g‖E .
(examples: Lp, LΦ, Lp,q, etc.)

I NC symmetric spaces E (M, τ): given E and (M, τ) as above,
the corresponding NC symmetric space E (M, τ) is defined by

E (M, τ) :=
{

x ∈ L0(M) : µ(x) ∈ E
}

equipped with ‖x‖E(M,τ) := ‖µ(x)‖E .
I Examples.

NC Lp : ‖x‖Lp :=
(∫ ∞

0
µ(t, x)pdt

)1/p
.

NC weak Lp : ‖x‖Lp,∞ := sup
t>0

t1/pµ(t, x).

NC Lorentz : ‖x‖Lp,q :=
(∫ ∞

0
tq/p−1µ(t, x)qdt

)1/q
......



Noncommutative martingales

Let (M, τ) be a noncommutative probability space.

I (Mn)n is an increasing filtration of von Neumann subalgebras

of M such that
⋃

nMn
weak

=M.

I En :M→Mn is a trace preserving conditional expectation.

I An adapted sequence x = (xn)n in L1(M) is called a
noncommutative martingale with respect to (Mn)n if

En(xn+1) = xn.

Examples. Noncommutative dyadic martingales...



A NC version of Doob’s maximal inequality

Theorem (Cuculescu, J. Multivariate Anal., 1971)

Let x = (xn)n be a nonnegative martingale. For any λ > 0, there
exists a projection qλ satisfying

qλxnqλ ≤ λqλ, for all n,

and such that
λτ(1− qλ) . ||x ||1.

Remark
The above result can be regarded as a NC version of (1). Indeed,

1− qλ ∼ {sup
n
|fn| > λ} = {Mf > λ};

τ(1− qλ) ∼ P
(

sup
n
|fn| > λ

)
= P

(
Mf > λ

)
.

However, no more results for NC martingales until 1997!



Main difficulties

• How to define Doob’s maximal operator: supn |fn| ?

• How to define the square function? Do we have∥∥∥(∑
n

|xn|2
)1/2∥∥∥

p
≈
∥∥∥(∑

n

|x∗n |2
)1/2
‖p ?

Answer: No!
Example. Let (M, τ) = (Mn(C), 1

nTr). Set xk = ek,0. It is
immediate that∥∥∥( n−1∑

k=0

|xk |2
) 1

2
∥∥∥
Lp(M)

= n1/2−1/p,
∥∥∥( n−1∑

k=0

|x∗k |2
) 1

2
∥∥∥
Lp(M)

= 1.

• Stopping times are not available...
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Breakthrough I: NC Burkholder-Gundy inequality

NC square functions:

Sc(x) :=
(∑

n

|dnx |2
)1/2

, Sr (x) :=
(∑

n

|dnx∗|2
)1/2

.

NC BG inequality (Pisier-Xu, CMP, 1997)

For 2 ≤ p <∞,

‖x‖Lp(M) ≈p max
{
‖Sc(x)‖Lp(M), ‖Sr (x)‖Lp(M)

}
.

For 1 < p < 2,

‖x‖Lp(M) ≈p inf
x=y+z

{
‖Sc(y)‖Lp(M) + ‖Sr (z)‖Lp(M)

}
.

Key: iteration method and duality.



Breakthrough II: NC Doob’s maximal inequality

NC maximal function space:

Definition (Junge, J. Reine Angew. Math., 2002)
The space Lp(M; `∞) is defined as the set of all sequences x = (xn)n≥1

in Lp(M) for which there exist a, b ∈ L2p(M), y = (yn)n ⊂ L∞(M) such
that

xn = aynb, n ≥ 1. (2)

For x ∈ Lp(M; `∞), we define

‖x‖Lp(M;`∞) = inf
{
‖a‖L2p(M) sup

n
‖yn‖L∞(M)‖b‖L2p(M)

}
.

Remark
If we consider a sequence of positive operators x = (xk), then it can be
seen that x ∈ Lp(M; `∞) iff there is a ∈ L+

p (M) s.t. xn ≤ a for all n;
moreover,

‖x‖Lp(M;`∞) = inf
{
‖a‖Lp(M) : a ∈ L+

p (M), xn ≤ a, ∀n
}
.

Obviously, in the classical case, the above goes back to ‖ supn |fn|‖p.



NC Dualised Doob inequality (Junge, 2002)∥∥∥∑
k

Ekak

∥∥∥
p
.p

∥∥∥∑
k

ak

∥∥∥
p
, 1 ≤ p <∞, ak ≥ 0.

NC Doob’s maximal inequality (Junge, 2002)

‖(Enx)n‖Lp(M;`∞) .p ‖x‖p, 1 < p ≤ ∞.

Remark

(i) The proof is quite complicated and is totally different from
the classical case.

(ii) An alternative proof can be found in [Junge-Xu, JAMS,
2007].



NC Burkholder inequality

NC conditioned square function:

sc(x) :=
(∑

n

En−1|dnx |2
)1/2

, sr (x) :=
(∑

n

En−1|dnx∗|2
)1/2

.

NC Burkholder inequality (Junge-Xu, AOP, 2003)
For 2 ≤ p <∞,

‖x‖Lp(M) ≈p max
{
‖sc(x)‖Lp(M), ‖sr (x)‖Lp(M),

(∑
n

‖dnx‖pLp(M)

)1/p}
.

For 1 < p < 2,

‖x‖Lp(M) ≈p inf
x=y+z+w

{
‖sc(y)‖Lp(M)+‖sr (z)‖Lp(M)+

(∑
n

‖dnw‖pLp(M)

)1/p}
.



NC Burkholder inequality with maximal diagonal (Junge-Xu,
Isreal J. Math., 2008)
For 2 < p <∞,

‖x‖Lp(M) ≈p max
{
‖sc(x)‖Lp(M), ‖sr (x)‖Lp(M), ‖(dnx)n‖Lp(M;`∞)

}
.

For 1 < p < 2,

‖x‖Lp(M) ≈p inf
x=y+z+w

{
‖sc(y)‖Lp(M)+‖sr (z)‖Lp(M)+‖(dnw)n‖Lp(M;`1)

}
.

Key:
1) NC BG inequality, duality

2) NC Burkholder with normal diagonal, interpolation, duality



Weak type inequalities for NC martingales

(Randrianantoanina, PLMS, 2005) There are two martingales a
and b such that x = a + b

‖Sc(a)‖L1,∞(M) + ‖Sr (b)‖L1,∞(M) . ‖x‖L1(M).

(Randrianantoanina, AOP, 2007) There are three adapted
sequences η = (ηn)n≥1, ζ = (ζn)n≥1, and ξ = (ξn)n≥1 such that
dny = ηn + ζn + ξn and satisfy the weak-type estimate:∥∥η∥∥

L1,∞(M⊗`∞)
+
∥∥sc(ζ)

∥∥
L1,∞(M)

+
∥∥sr (ξ)

∥∥
L1,∞(M)

.
∥∥x
∥∥

1
.

Key: Cuculescu projection ↔ stopping time
or NC Gundy’s decomposition

Problem: Whether we can find three martingales such that the last
inequality holds true is unknown. This is open even for classical
martingales.



Generalizations: Lp → Lp,q, LΦ, E ...

NC Burkholder-Gundy inequality (E (M) or Φ-moment):

I T. N. Bekjan, Z. Chen, Interpolation and Φ-moment
inequalities of noncommutative martingales, Probab. Theory
Related Fields. 152 (2012).

I S. Dirksen Noncommutative Boyd interpolation theorems,
Trans. Amer. Math. Soc., 367 (2015), no 6, 4079–4110.

NC Doob’s maximal inequality (E (M) or Φ-moment):

I S. Dirksen, Weak-type interpolation for noncommutative
maximal operators, J. Operator Theory 73 (2015) no. 2,
515-532.

I T. N. Bekjan, Z. Chen, A. Osekowski, Noncommutative
maximal inequalities associated with convex functions, Trans.
Amer. Math. Soc. 369 (2017), no. 1, 409-427.



NC Burkholder inequality (E (M) or Φ-moment):

I N. Randrianantoanina, L. Wu, Martingale inequalities in
noncommutative symmetric spaces, J. Funct. Anal. 269
(2015), 2222-2253.

I N. Randrianantoanina and L. Wu, Noncommutative
Burkholder/Rosenthal inequalities associated with convex
functions, Ann. Poincaré Probab. Statist. (2017).

I N. Randrianantoanina, L. Wu and Q. Xu, Noncommutative
Davis type decompositions and applications, J. Lond. Math.
Soc. (2019).

I Y. Jiao, D. Zanin and D. Zhou, Noncommutative
Burkholder/Rosenthal inequalities with maximal diagonal,
submitted.

Key: most of the above results depend on interpolations.



(Junge, J. Reine Angew. Math., 2002)

‖(Enx)n‖Lp(M;`θ∞) ≤ ‖x‖p, 2 < p <∞, 0 ≤ θ ≤ 1.

(Hong-Junge-Parcet, JFA, 2016)

‖(Enx)n‖Lp(M;`θ∞) ≤ ‖Sc(x)‖p, 1 ≤ p ≤ 2, 1− p/2 < θ < 1.

(Randrianantoanina-W-Zhou, JFA, 2021) If E ∈ Int[Lp, Lq] for
1 < p ≤ q < 2, then we have

‖(Enx)n‖E(M;`θ∞) ≤ ‖Sc(x)‖E , 1− p/2 < θ < 1.

Remark

(i) Whether the last estimate holds true for E ∈ Int[Lp, Lq] with
1 ≤ p ≤ q ≤ 2 ?

(ii) Asymmetric versions of Burkholder inequality and Davis
inequality ?



III. Recent Progress and Problems



(i) NC atomic decomposition

Open Question:

Atomic decomposition of hc
p −→ dual of hcp for 0 < p ≤ 1, new

martingale inequalities, real interpolation... etc.

I T. N. Bekjan, Z. Chen, M. Perrin and Z. Yin, Atomic
decomposition and interpolation for Hardy spaces of
noncommutative martingales, JFA (2010).

I G. Hong and T. Mei, John-Nirenberg inequality and atomic
decomposition for noncommutative martingales, JFA (2012).

I Y. Jiao, L. Wu, D. Zanin, and D. Zhou, Noncommutative dyadic
martingales and Walsh–Fourier series, J. Lond. Math. Soc. (2018).

A Real Breakthrough:
I Z. Chen, N. Randrianantoanina and Q. Xu, Atomic decompositions

for noncommutative martingales, arXiv: 2001.08775, 2020.
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Algebraic atoms

Definition
Let 0 < p < 2. An operator x ∈ Lp(M) is called an algebraic
hc
p-atom if x =

∑
n≥1 ynbn and for 1

p = 1
2 + 1

q :

(i) En(yn) = 0 and bn ∈ Lq(Mn) for all n ≥ 1;

(ii)
∑

n≥1 ‖yn‖2
2 ≤ 1 and ‖(

∑
n≥1 |bn|2)1/2‖q ≤ 1.

Definition
For 0 < p < 2, we say that x ∈ Lp(M) admits an algebraic
hc
p-atomic decomposition if x =

∑
k λkak , where for each k , ak is

an algebraic hc
p-atom or an element of the unit ball of Lp(M1),

and λk ∈ C satisfying
∑

k |λk |p <∞ for 0 < p ≤ 1 and∑
k |λk | <∞ for 1 < p < 2.



Algebraic atomic decompositions

Definition
The algebraic atomic column martingale Hardy space hc

p,aa(M) is
defined to be the space of all x which admit a algebraic hc

p -atomic
decomposition and is equipped with

‖x‖hc
p,aa

= inf
(∑

k

|λk |p
)1/p

for 0 < p ≤ 1;

‖x‖hc
p,aa

= inf sumk |λk | for 1 < p < 2.

Theorem (Chen-Randrianantoanina-Xu,2020)

Let 0 < p < 2. Then

hc
p(M) = hcp,aa(M)

with equivalent (quasi) norms.



Future Problems:

I Following Chen-Randrianantoanina-Xu’s method, we can also
construct the atomic decompositions for NC martingale
Hardy-Orlicz spaces hc

Φ. However, nothing is known for the
NC martingale Hardy-Lorentz spaces hc

p,q.

I Chen-Randrianantoanina-Xu’s atomic decomposition has
certain distance from the one constructed in classical case.
Constructing NC atomic decompositions which exactly
corresponding to the classical one remains open.



(ii) NC good-λ inequalities

Open Question: NC good-λ inequality.

“On the other hand, the noncommutative analogue of good-λ
inequality seems open. Then, in order to prove the
noncommutative Φ-moment inequalities we need new ideas.”

T. N. Bekjan, Z. Chen, Interpolation and Φ-moment inequalities of

noncommutative martingales, Probab. Theory Related Fields. 152

(2012).

Main difficulty:
finding an appropriate form of good-λ inequality which is
transferrable to NC setting.

Solution:
Y. Jiao, A. Osȩkowski, L. Wu, Noncommutative good-λ
inequalities, arXiv: 1805.07057v2, 2018.



Definition (Good-λ testing condition)

Let A,B ∈ L2(M) be self-adjoint operators. (A,B) is said to
satisfy the good-λ testing conditions if we have

Ek(|A− Ek−1A|2) ≤ Ek(B2), k ≥ 0.

Theorem (Jiao et al., 2022)

Let E ∈ Int[Lp, Lq] for 2 < p < q <∞. Let (A,B) satisfy good-λ
testing condition with B ∈ E (M). We have

‖A‖E ≤ cE‖B‖E .

Remark

(i) Φ-moment version holds true as well.

(ii) Searching more applications of NC good-λ inequalities...



(ii) Asymmetric martingale inequalities

Asymmetric maximal function space:

Definition (Junge, J. Reine Angew. Math., 2002)
Let 0 ≤ θ ≤ 1. The space Lp(M; `θ∞) is defined as the set of all
sequences x = (xn)n≥1 in Lp(M) for which there exist a ∈ L p

1−θ
(M),

b ∈ L p
θ

(M), and y = (yn)n ⊂ L∞(M) such that

xn = aynb, n ≥ 1. (3)

For x ∈ Lp(M; `θ∞), we define

‖x‖Lp(M;`θ∞) = inf
{
‖a‖L p

1−θ
(M) sup

n
‖yn‖L∞(M)‖b‖L p

θ
(M)

}
.

Remark

(i) If θ = 1/2, then the above goes back to Lp(M; `∞).

(ii) Given symmetric space E , one may define E (M; `∞) similarly.



(Junge, J. Reine Angew. Math., 2002)

‖(Enx)n‖Lp(M;`θ∞) ≤ ‖x‖p, 2 < p <∞, 0 ≤ θ ≤ 1.

(Hong-Junge-Parcet, JFA, 2016)

‖(Enx)n‖Lp(M;`θ∞) ≤ ‖Sc(x)‖p, 1 ≤ p ≤ 2, 1− p/2 < θ < 1.

(Randrianantoanina-W-Zhou, JFA, 2021) If E ∈ Int[Lp, Lq] for
1 < p ≤ q < 2, then we have

‖(Enx)n‖E(M;`θ∞) ≤ ‖Sc(x)‖E , 1− p/2 < θ < 1.

Remark

(i) Whether the last estimate holds true for E ∈ Int[Lp, Lq] with
1 ≤ p ≤ q ≤ 2 ?

(ii) Asymmetric versions of Burkholder inequality and Davis
inequality ?



(iv) NC differential subordinate martingale inequalities

Backgrounds

• The classical differential subordination of martingales was
introduced by Burkholder in the eighties.

• Let f = (fn)n, g = (gn)n be two martingales. We say that g is
differentially subordinate to f if for any n, we have

|dng | ≤ |dnf |.

Theorem (Burkholder, AOP, 1984)

Suppose that g is differentially subordinate to f . Then

||g ||1,∞ ≤ 2||f ||1;

||g ||p ≤ (p∗ − 1)||f ||p, 1 < p <∞,

where p∗ = max{p, p/(p − 1)}. The constants are both sharp.

Natural question: a NC version of the above theorem?



Main difficulty: an appropriate definition

I Let y , x be two self-adjoint martingales. If |dny |2 ≤ |dnx |2,
then Sc(y) = Sr (y) ≤ Sr (x) = Sc(x). NC Burkholder-Gundy
inequality yields that

‖y‖p .p ‖Sc(y)‖p ≤ ‖Sc(x)‖p .p ‖x‖p, 2 < p <∞.

Moreover, obviously, |dny |2 ≤ |dnx |2 goes back to the
classical definition. This means that |dny |2 ≤ |dnx |2 is a
possible candidate (at least for 2 < p <∞).

I On the other hand, it is not hard to construct martingales y ,
x satisfies |dny |2 ≤ |dnx |2; while the weak-type (1, 1) and
strong-type (p, p) estimate for 1 < p < 2 fails. Therefore, we
need a ‘stronger’ (compared with |dny |2 ≤ |dnx |2) definition
for the case 1 ≤ p < 2.



Definition (Jiao-Osȩkowski-W, Adv. Math., 2018)

We say that y is differentially subordinate to x , if for any n and
any projection R ∈Mn−1, we have

RdynRdynR ≤ RdxnRdxnR. (DS)

We say that y is weakly differentially subordinate to x if for any n

|dyn|2 ≤ |dxn|2. (WDS)

Remark

(i) In the commutative case, the above definitions are identical!

(ii) However, in the NC case, differential subordination =⇒ weak
differential subordination.



Main results

Let x , y be two self-adjoint martingales.

Theorem 1 (Jiao-Osȩkowski-W, Adv. Math., 2018)

Suppose that y , x satisfy (DS). Then we have

‖y‖1,∞ ≤ 36||x ||1;

‖y‖p ≤ cp‖x‖p, 1 < p < 2.

Theorem 2 (Jiao-Osȩkowski-W, Adv. Math., 2018)

Suppose that y , x satisfy (WDS). Then

||y ||p ≤ cp||x ||p, 2 ≤ p <∞.



Remark

(i) The constant cp in Theorem 1 is of order O((p − 1)−1) as
p → 1+. The constant in Theorem 2 is of order O(p) as
p →∞. These are already optimal in the commutative
setting.

(ii) The proof of Theorem 1 depends on new Gundy’s
decomposition, which is of independent interest; while,
Theorem 2 relies on an idea of NC good-λ method.

(iii) Based on the above results, we further considered strong
differential subordination for NC submartingales and square
function estimate for NC differential subordinate martingales.

Y. Jiao, A. Osekowski and L. Wu, Strong differential subordinates
for noncommutative submartingales, Ann. Probab., (2019).

Y. Jiao, N. Randrianantoanina, L. Wu and D. Zhou, Square

Functions for Noncommutative Differentially Subordinate

Martingales , Comm. Math. Phys., (2020).



(v) Two future topics

The following two topics are blank or almost blank.

I NC Ap weights and weighted martingale inequalities.
→ nothing is known at all!

I NC continuous-time martingale theory and NC stochastic
integral theory
→ not sufficient at all!



Thank You !
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