L^p-improving bounds and weighted estimates for maximal functions associated with curvature

Wenjuan Li

(Northwestern Polytechnical University)

Joint with Dr. Huiju Wang and Dr. Yujia Zhai

Summer Seminar, HIT, 2022/08/08

The Cauchy problem of the wave equation

$$\begin{array}{l} ((\partial/\partial t)^2 - \Delta)u = 0, \\ u|_{t=0} = f, & \text{in } \mathbb{R}^2. \\ (\partial/\partial t)u|_{t=0} = g. \end{array}$$

$$(1)$$

Taking the Fourier transform in the spatial variables x only, then we have

$$\begin{cases} ((\partial/\partial t)^2 + |\xi|^2)\hat{u}(t,\xi) = 0, \\ \hat{u}(0,\xi) = \hat{f}(\xi), & \text{in } \mathbb{R}^2. \\ (\partial/\partial t)\hat{u}(0,\xi) = \hat{g}(\xi). \end{cases}$$
(2)

This is an ODE for each fixed $\xi \in \mathbb{R}^2$. It is easy to show that

$$\hat{u}(t,\xi)=\cos(t|\xi|)\hat{f}(\xi)+rac{\sin(t|\xi|)\hat{g}(\xi)}{|\xi|}.$$

Let J_{σ} be Bessel functions ($\sigma > -1/2$) and $m_{\sigma}(\xi) = C_{\sigma}|\xi|^{-\sigma}J_{\sigma}(|\xi|)$. Observe that

$$J_{-1/2}(r) = \lim_{k \to -1/2} J_k(r) = \sqrt{\frac{2}{\pi}} \frac{\cos r}{r^{1/2}},$$
$$J_{1/2}(r) = \sqrt{\frac{2}{\pi}} \frac{\sin r}{r^{1/2}},$$

then one can easily see that

$$\hat{u}(t,\xi) = c_0 m_{-1/2}(t|\xi|) \hat{f}(\xi) + c_1 t m_{1/2}(t|\xi|) \hat{g}(\xi)$$

=: $c_0 A_t^{-1/2} f(\xi) + c_1 t A_t^{1/2} g(\xi),$

where $\widehat{A_t^{\sigma}f}(\xi) = m_{\sigma}(t|\xi|)\widehat{f}(\xi)$.

Taking the inverse Fourier transform, then we have

$$u(t,x) = c_0 A_t^{-1/2} f(x) + c_1 t A_t^{1/2} g(x),$$

where

$$egin{aligned} \mathcal{A}^{\sigma}_t f(x) &= \left(m_{\sigma}(t|\cdot|)
ight)^{ee} * f(x) \ &= rac{1}{\gamma(\sigma)} \int (1-|rac{y}{t}|^2)^{\sigma-1}_+ f(x-y) dy. \end{aligned}$$

where $x_{+}^{\delta} = x$, if $x \ge 0$; $x_{+}^{\delta} = 0$, if x < 0.

The existence almost everywhere of $\lim_{t\to 0} u(t,x)$ and $\lim_{t\to 0} \frac{\partial}{\partial t} u(t,x)$ to the wave equation (1) will follow from

$$\left\|\sup_{t>0}|A_t^{\sigma}f(x)|\right\|_{L^p(\mathbb{R}^2)}\leq C\|f\|_{L^p(\mathbb{R}^2)}.$$

Noticing that in the sense of distribution,

$$\lim_{\alpha\to 0^+}\frac{1}{\gamma(\alpha)}t_+^{\alpha-1}=\delta(t),$$

where $\delta(t)$ denotes the Dirac distribution at zero. Then it is not hard to see that

$$A_t f(x) := A_t^0 f(x) = \int_{S^1} f(x - ty) d\sigma(y),$$

which is well-known "Bourgain's circular maximal operators".

Wenjuan Li

Maximal operator $\mathcal M$ related to hypersurfaces

Definition

Let S be a smooth hypersurface in \mathbb{R}^n with a surface measure $d\mu$ and $\eta \in C_0^{\infty}(\mathbb{R}^n)$ be a non-negative smooth function with compact support. Suppose that $\delta_t(x) = (t^{a_1}x_1, t^{a_2}x_2, \cdots, t^{a_n}x_n)$ is a family of dilations with $a_j > 0$. Then the associated full maximal operator \mathcal{M} is given by

$$\mathcal{M}f(x) := \sup_{t>0} \left| \int_{\mathcal{S}} f(x - \delta_t(y)) \eta(y) d\mu(y) \right|, \quad f \in \mathcal{S}(\mathbb{R}^n).$$

For which p, $\mathcal{M} : L^{p}(\mathbb{R}^{n}) \to L^{p}(\mathbb{R}^{n})$ is a bounded operator?

The best understood class $\rightarrow \delta_t(x) = tx$:

I. Hypersurface: non-vanishing Gaussian curvature everywhere

- Stein, 1976: spherical maximal operator, p > n/(n-1), $n \ge 3$;
- Greenleaf, 1981: non-vanishing Gaussian curvature everywhere, star-shaped with respect to the origin, p > n/(n-1), $n \ge 3$;
- Bourgain, 1986: analogous results in dimension two, p > 2.
 An alternative approach by [Mockenhaupt-Seeger-Sogge, 1992] More general results about local smoothing estimates by [Mockenhaupt-Seeger-Sogge, 1993][Beltran-Hickman-Sogge, 2020] [Guth-Wang-Zhang, 2020][Gao-Liu-Miao-Xi,2020]

- II. Hypersurface: Gaussian curvature vanishes at some points
 - losevich, 1994: curves of finite type, sharp results, n = 2;
 - Iosevich-Sawyer, 1997: convex hypersurfaces of finite line type, sharp results, n ≥ 3;
 - Ikromov-Kempe-Müller, 2010: hypersurfaces of finite type satisfying the transversality assumption (in particular, 0 ∉ S),
 p > max{h(x₀, S), 2} for a fixed point x₀ ∈ S, n = 3;
 - Zimmermann, 2014: analytic hypersurfaces located at the origin, p > 2, n = 3.

Results associated with nonisotopic dilations

Generic dilations $\delta_t(x) = (t^{a_1}x_1, t^{a_2}x_2, \cdots, t^{a_n}x_n)$:

Some previously mentioned results have been extended with little change to maximal operators associated with nonisotropic dilations, such as by [Greenleaf, 1981], [losevich-Sawyer, 1997] and [lkromov-Kempe-Müller, 2010].

Results associated with nonisotopic dilations

Open problem:

1. The $L^{p}(\mathbb{R}^{3}) \to L^{p}(\mathbb{R}^{3})$ estimates for maximal operator defined by the surface $S := \{(x_{1}, x_{2}, c_{0} + x_{2}^{d}(1 + \mathcal{O}(x_{2}^{m}))) : (x_{1}, x_{2}) \in \Omega\}$, where $d \geq 2$, $m \geq 1$, $c_{0} \in \mathbb{R}$ and Ω is an open neighborhood of the origin.

- 2. Weighted estimates.
- 3. Higher dimensions n > 3.

[Li, 2018, J. Math. Pure. Appl.]: confirmly answer the first question in \mathbb{R}^3 .

Definition for weights

Definition

() A weight $w \in \mathcal{A}_p$ (Muckenhoupt class) for 1 if

$$[\omega]_{\mathcal{A}_p} := \sup_{Q \in \mathcal{Q}} \langle \omega \rangle_Q \langle \omega^{1-p'} \rangle_Q^{p-1} < \infty.$$

② A weight $w \in {\it RH}_p$ (reverse Hölder class) for 1 if

$$[\omega]_{RH_p} := \sup_{Q \in \mathcal{Q}} \langle \omega \rangle_Q^{-1} \langle \omega \rangle_{Q,p} < \infty.$$

Theorem [Lacey, J. D'Analyse Math., 2019]

Set \mathcal{F}_p to be those weights ω for which $\mathcal{M}_{\mathbb{S}^{n-1}}$ maps $L^p(\omega)$ to $L^p(\omega)$, for $1 . Define <math>\frac{1}{\phi(1/r)}$ to be the piecewise linear function on $[0, \frac{n-1}{n}]$ whose graph connects the points $P_1 = (0, 1)$, $P_4 = (\frac{n^2 - n}{n^2 + 1}, \frac{n^2 - n + 2}{n^2 + 1})$ and $P_3 = (\frac{n-1}{n}, \frac{n-1}{n})$. Assuming $\frac{n}{n-1} < r < p < \phi(r)'$, we have

$$A_{p/r} \cap RH_{(\phi(r)'/p)'} \subset \mathcal{F}_p.$$
(3)

Definition

We say that a collection of cubes S is *sparse* if there are sets $\{E_S \subseteq S : S \in S\}$ such that they are pairwise disjoint and $|E_S| > \frac{1}{4}|S|$ for all $S \in S$. For any cube Q and $1 \le r < \infty$, define the *r*-average of a function f on Q by $\langle f \rangle_{Q,r} := \left(\frac{1}{|Q|} \int_Q |f(x)|^r dx\right)^{\frac{1}{r}}$. Let S denote a sparse collection. For $1 \le p, q < \infty$, the (p, q)-sparse form $\Lambda_{S,p,q}(f, g)$ is a bilinear form defined by

$$\Lambda_{\mathcal{S},p,q}(f,g) := \sum_{S \in \mathcal{S}} |S| \langle f
angle_{\mathcal{S},p} \langle g
angle_{\mathcal{S},q}.$$

Theorem [Lacey, J. D'Analyse Math., 2019]

For $n \ge 2$ and let F_n be the trapezium with vertexes $P_1 = (0,1), P_2 = (\frac{n-1}{n}, \frac{1}{n}), P_3 = (\frac{n-1}{n}, \frac{n-1}{n}), P_4 = (\frac{n^2-n}{n^2+1}, \frac{n^2-n+2}{n^2+1}).$ For all $(\frac{1}{r}, \frac{1}{s})$ in the interior of F_n , there holds

$$| < \mathcal{M}_{\mathbb{S}^{n-1}}f, g > | \leq C \sup_{\mathcal{S}} \Lambda_{\mathcal{S},r,s}(f,g).$$
 (4)

Moreover, for $\frac{1}{r} + \frac{1}{s} > 1$ not in the closed set F_n , the inequality fails.

One of great advantages of sparse bounds: one can easily derive weighted inequalities for sparse operators.

Continuity property [Lacey, J. D'Analyse Math., 2019]

Let F'_n be the closed convex hull of the four points $P'_1 = (0,0)$, $P'_2 = \left(\frac{n-1}{n}, \frac{n-1}{n}\right)$, $P'_3 = \left(\frac{n-1}{n}, \frac{1}{n}\right)$ and $P'_4 = \left(\frac{n^2-n}{n^2+1}, \frac{n-1}{n^2+1}\right)$. For all $\left(\frac{1}{r}, \frac{1}{s}\right)$ in the interior of F'_n , we have for some $\eta = \eta(n, r, s) > 0$,

$$\|\sup_{1 \le t \le 2} |A_t f - \tau_y A_t f|\|_s \le C |y|^{\eta} ||f||_r, \qquad |y| < 1.$$
(5)

Local estimate [Schlag, 1997;Schlag-Sogge, 1997]

Let F'_{n} be the closed convex hull of the four points $P'_{1} = (0,0), P'_{2} = (\frac{n-1}{n}, \frac{n-1}{n}), P'_{3} = (\frac{n-1}{n}, \frac{1}{n})$ and $P'_{4} = (\frac{n^{2}-n}{n^{2}+1}, \frac{n-1}{n^{2}+1})$. For all $(\frac{1}{r}, \frac{1}{s})$ in F'_{n} , we have $\| \sup_{1 \le t \le 2} |A_{t}f| \|_{s} \le C \|f\|_{r}.$ (6)

Maximal operator \mathcal{M}_{loc} related to hypersurfaces

Definition

Let S be a smooth hypersurface in \mathbb{R}^n with a surface measure $d\mu$ and $\eta \in C_0^{\infty}(\mathbb{R}^n)$ be a non-negative smooth function with compact support. Suppose that $\delta_t(x) = (t^{a_1}x_1, t^{a_2}x_2, \cdots, t^{a_n}x_n)$ is a family of dilations with $a_j > 0$. Then the associated local maximal operator \mathcal{M} is given by

$$\mathcal{M}_{loc}f(x) := \sup_{t \in [1,2]} \left| \int_{\mathcal{S}} f(x - \delta_t(y)) \eta(y) d\mu(y) \right|, \quad f \in \mathcal{S}(\mathbb{R}^n).$$

Maximal operator \mathcal{M}_{loc} related to hypersurfaces

Definition

Let S be a smooth hypersurface in \mathbb{R}^n with a surface measure $d\mu$ and $\eta \in C_0^{\infty}(\mathbb{R}^n)$ be a non-negative smooth function with compact support. Suppose that $\delta_t(x) = (t^{a_1}x_1, t^{a_2}x_2, \cdots, t^{a_n}x_n)$ is a family of dilations with $a_j > 0$. Then the associated local maximal operator \mathcal{M} is given by

$$\mathcal{M}_{\mathit{loc}}f(x):=\sup_{t\in [1,2]}\left|\int_{\mathcal{S}}f(x-\delta_t(y))\eta(y)d\mu(y)
ight|, \ \ f\in \mathcal{S}(\mathbb{R}^n).$$

For which p and q with p < q, $\mathcal{M}_{loc} : L^{p}(\mathbb{R}^{n}) \to L^{q}(\mathbb{R}^{n})$ is a bounded operator?

 Schlag, 1997: Circle, combinatorial method, bounded if (1/p, 1/q) ∈ interior of the closed triangle I, n = 2;

- Schlag, 1997: Circle, combinatorial method, bounded if (1/p, 1/q) ∈ interior of the closed triangle I, n = 2;
- Schlag-Sogge, 1997: Circle, local smoothing method, *M_{loc}* can not be bounded for (1/p, 1/q) ∈ ([0,1] × [0,1] \ *I*), n = 2;

- Schlag, 1997: Circle, combinatorial method, bounded if (1/p, 1/q) ∈ interior of the closed triangle I, n = 2;
- Schlag-Sogge, 1997: Circle, local smoothing method, \mathcal{M}_{loc} can not be bounded for $(1/p, 1/q) \in ([0, 1] \times [0, 1] \setminus I)$, n = 2;
- Lee, 2002: Circle, local smoothing method, bounded if $(1/p, 1/q) \in I \setminus \{P, T\}$, n = 2.

• Schlag-Sogge, 1997: spherical maximal estimate is bounded if $(1/p, 1/q) \in$ interior of quadrangle \Box with vertices $V_1 = (0, 0)$, $V_2 = (\frac{n-1}{n}, \frac{n-1}{n})$, $V_3 = (\frac{n-1}{n}, \frac{1}{n})$ and $V_4 = (\frac{n(n-1)}{n^2+1}, \frac{n-1}{n^2+1})$, $n \ge 3$.

- Schlag-Sogge, 1997: spherical maximal estimate is bounded if $(1/p, 1/q) \in$ interior of quadrangle \Box with vertices $V_1 = (0, 0)$, $V_2 = (\frac{n-1}{n}, \frac{n-1}{n})$, $V_3 = (\frac{n-1}{n}, \frac{1}{n})$ and $V_4 = (\frac{n(n-1)}{n^2+1}, \frac{n-1}{n^2+1})$, $n \ge 3$.
- Lee, 2002: spherical maximal estimate is bounded if $(1/p, 1/q) \in \Box \setminus \{V_2, V_3, V_4\}.$

Now we consider the $L^p \to L^q$ estimates for local maximal operators along curves of finite type d ($d \ge 2$) at the origin. For convenience, we define the following regions of boundedness exponents that will be referred to later on:

$$\Delta_{0} := \{ \left(\frac{1}{p}, \frac{1}{q}\right) : \frac{1}{2p} < \frac{1}{q} \le \frac{1}{p}, \frac{1}{q} > \frac{3}{p} - 1 \} \cup \{ (0,0) \}.$$

$$\Delta_{1} := \{ \left(\frac{1}{p}, \frac{1}{q}\right) : \frac{1}{2p} < \frac{1}{q} \le \frac{1}{p}, \frac{1}{q} > \frac{3}{p} - 1, \frac{1}{q} > \frac{1}{p} - \frac{1}{d+1} \} \cup \{ (0,0) \};$$

$$\Delta_{2} := \{ \left(\frac{1}{p}, \frac{1}{q}\right) : \frac{1}{2p} < \frac{1}{q} \le \frac{1}{p}, \frac{1}{q} > \frac{d+1}{p} - 1 \} \cup \{ (0,0) \};$$

$$\Delta_{3} := \{ \left(\frac{1}{p}, \frac{1}{q}\right) : \frac{1}{2p} < \frac{1}{q} \le \frac{1}{p}, \frac{1}{q} > \frac{2}{p} - 1, \frac{1}{q} > \frac{1}{p} - \frac{1}{d+1} \} \cup \{ (0,0), (1,1) \}.$$

$$(10)$$

Let $\phi \in C^{\infty}(I, \mathbb{R})$, where I is a bounded interval containing the origin, and $\phi(0) \neq 0$; $\phi^{(j)}(0) = 0$, $j = 1, 2, \cdots, m-1$; $\phi^{(m)}(0) \neq 0$ $(m \ge 1)$. (11)

Theorem 1 (Li-Wang-Zhai, arXiv, 2022)

Define the averaging operator

$$A_t f(y) := \int_{\mathbb{R}} f(y_1 - tx, y_2 - t(x^d \phi(x) + c)) \eta(x) dx, \qquad (12)$$

where η is supported in a sufficiently small neighborhood of the origin. Then we have the following results:

(1) when
$$c = 0$$
, for
 $(\frac{1}{p}, \frac{1}{q}) \in \Delta_1 = \{(\frac{1}{p}, \frac{1}{q}) : \frac{1}{2p} < \frac{1}{q} \le \frac{1}{p}, \frac{1}{q} > \frac{3}{p} - 1, \frac{1}{q} > \frac{1}{p} - \frac{1}{d+1}\} \cup \{(0,0)\},\$
there exists a constant $C_{p,q} > 0$ such that $|| \sup_{t \in [1,2]} |A_t| ||_{L^p \to L^q} \le C_{p,q};$
(2) when $c \neq 0$, for
 $(\frac{1}{p}, \frac{1}{q}) \in \Delta_2 = \{(\frac{1}{p}, \frac{1}{q}) : \frac{1}{2p} < \frac{1}{q} \le \frac{1}{p}, \frac{1}{q} > \frac{d+1}{p} - 1\} \cup \{(0,0)\},\$ there exists
a constant $C_{p,q} > 0$ such that $|| \sup_{t \in [1,2]} |A_t| ||_{L^p \to L^q} \le C_{p,q}.$

Figure 1: $\Delta_1 = \Delta_0$ for $2 \le d \le 4$ and $\Delta_1 \subsetneq \Delta_0$ for $d \ge 5$

 $\Delta_2 \text{ for } \mathbf{d} = \mathbf{2} \text{ and } \mathbf{d} \geq \mathbf{3}$

Theorem 2 (Li-Wang-Zhai, arXiv, 2022)

Define the averaging operator

$$A_t f(y) := \int_{\mathbb{R}} f(y_1 - t^{a_1} x, y_2 - t^{a_2} (x^d \phi(x) + c)) \eta(x) dx, \quad da_1 \neq a_2, \ (13)$$

where η is supported in a sufficiently small neighborhood of the origin. Then we have the following results:

(1) when
$$c = 0$$
, for
 $(\frac{1}{p}, \frac{1}{q}) \in \Delta_1 = \{(\frac{1}{p}, \frac{1}{q}) : \frac{1}{2p} < \frac{1}{q} \le \frac{1}{p}, \frac{1}{q} > \frac{3}{p} - 1, \frac{1}{q} > \frac{1}{p} - \frac{1}{d+1}\} \cup \{(0,0)\},\$
there exists a constant $C_{p,q} > 0$ such that $|| \sup_{t \in [1,2]} |A_t| ||_{L^p \to L^q} \le C_{p,q};$
(2) when $c \neq 0$, for
 $(\frac{1}{p}, \frac{1}{q}) \in \Delta_2 = \{(\frac{1}{p}, \frac{1}{q}) : \frac{1}{2p} < \frac{1}{q} \le \frac{1}{p}, \frac{1}{q} > \frac{d+1}{p} - 1\} \cup \{(0,0)\},\$ there exists
a constant $C_{p,q} > 0$ such that $|| \sup_{t \in [1,2]} |A_t| ||_{L^p \to L^q} \le C_{p,q}.$

Theorem 3 (Li-Wang-Zhai, arXiv, 2022)

Define the averaging operator

$$A_t f(y) := \int_0^1 f(y_1 - tx, y_2 - t^d x^d) dx, \qquad (14)$$

then for $(\frac{1}{p}, \frac{1}{q}) \in \Delta_3 = \{(\frac{1}{p}, \frac{1}{q}) : \frac{1}{2p} < \frac{1}{q} \le \frac{1}{p}, \frac{1}{q} > \frac{2}{p} - 1, \frac{1}{q} > \frac{1}{p} - \frac{1}{d+1}\} \cup \{(0,0), (1,1)\}, \text{ there exists a constant } C_{p,q} > 0 \text{ such that } \| \sup_{t \in [1,2]} |A_t||_{L^p \to L^q} \le C_{p,q}.$

4th. April 2022 27 / 47

Theorem 4 (Li-Wang-Zhai, arXiv, 2022)

Define the averaging operator

$$A_t f(y) := \int_{\mathbb{R}} f(y_1 - tx, y_2 - t^d x^d \phi(x)) \eta(x) dx,$$
 (15)

where η is supported in a sufficiently small neighborhood of the origin. Then for

$$(\frac{1}{p}, \frac{1}{q}) \in \Delta_1 = \{ (\frac{1}{p}, \frac{1}{q}) : \frac{1}{2p} < \frac{1}{q} \le \frac{1}{p}, \frac{1}{q} > \frac{3}{p} - 1, \frac{1}{q} > \frac{1}{p} - \frac{1}{d+1} \} \cup \{ (0,0) \},$$

there exists a constant $C_{p,q} > 0$ such that $\| \sup_{t \in [1,2]} |A_t| \|_{L^p \to L^q} \le C_{p,q}.$

Theorem 5 (Li-Wang-Zhai, arXiv, 2022)

For all j > mk, and p, q satisfying $\frac{1}{2p} < \frac{1}{q} \le \frac{3}{5p}$, $\frac{3}{q} \le 1 - \frac{1}{p}$, $\frac{1}{q} \ge \frac{1}{2} - \frac{1}{p}$, we have for some $\epsilon > 0$,

$$\left(\int_{\mathbb{R}^2}\int_{1/2}^4 |\tilde{F}_j^k f(y,t)|^q dt dy\right)^{1/q} \le C 2^{\frac{mk}{2}(1-\frac{1}{p}-\frac{1}{q})} 2^{(\frac{1}{2}-\frac{3}{q}+\frac{1}{p}+\epsilon)j} \|f\|_{L^p(\mathbb{R}^2)},$$
(16)

where

$$\tilde{F}_{j}^{k}f(y,t) = \rho_{1}(y,t) \int_{\mathbb{R}^{2}} e^{i(\xi \cdot y - t^{2}\xi_{2}\tilde{\Phi}(s,\delta))} a(\xi,t) \rho_{0}(2^{-j}|\xi|) \tilde{\chi}(\frac{\xi_{1}}{\xi_{2}}) \hat{f}(\xi) d\xi.$$
(17)

In fact, here $-t^2\xi_2\tilde{\Phi}(s,\delta)$ can be considered as a small perturbation of $\frac{\xi_1^2}{2\xi_2} + 2^{-km}t\frac{\xi_1^3}{\xi_2^2}$.

[Lee, JFA, 2006]

Let ${\mathcal F}$ be given by

$$\mathcal{F}f(z) = \int_{\mathbb{R}^2} e^{i\phi(z,\xi)} a(z,\xi) \rho_0(2^{-j}|\xi|) \hat{f}(\xi) d\xi, \quad z = (x,t).$$
(18)

Suppose *a* is a symbol of order zero, supp $a(\cdot,\xi)$ is contained in a fixed compact set and suppose that $\phi(z, \cdot)$ is a homogeneous function of degree one. For all $(z,\xi) \in$ supp *a*, ϕ satisfies

rank
$$\partial_{z\xi}^2 \phi = 2$$
,

and

rank
$$\partial_{\xi\xi}^2 \langle \partial_z \phi, \theta \rangle = 1$$
,

provided $\theta \in S^2$ is the unique direction for which $\nabla_{\xi} \langle \partial_z \phi, \theta \rangle = 0$, also all non-zero eigenvalues of $\partial_{\xi\xi}^2 \langle \partial_z \phi, \theta \rangle$ have the same sign.

[Lee, JFA, 2006]
Then for
$$\frac{14}{3} \le q \le \infty$$
, $\frac{3}{q} \le 1 - \frac{1}{p}$, $q \ge \frac{5p}{3}$,
 $\|\mathcal{F}f\|_{L^q} \le C2^{j(\frac{1}{2} - \frac{3}{q} + \frac{1}{p} + \epsilon)} \|f\|_{L^p}$. (19)

We first show $L^p \rightarrow L^q$ estimates for maximal functions related to hypersurfaces with at least one non-vanishing principal curvature when $2a_2 \neq a_3$.

Theorem 6 (Li-Wang-Zhai, arXiv, 2022)

Assume that $\Phi(x_1, x_2) \in C^{\infty}(\Omega)$ satisfies

$$\partial_2 \Phi(0,0) = 0, \quad \partial_2^2 \Phi(0,0) \neq 0,$$
 (20)

and $2a_2 \neq a_3$. Define the averaging operator by

$$A_t f(y) := \int_{\mathbb{R}^2} f(y - \delta_t(x_1, x_2, \Phi(x_1, x_2))) \eta(x) dx, \qquad (21)$$

where η is supported in a sufficiently small neighborhood $U \subset \Omega$ of the origin. For $(\frac{1}{p}, \frac{1}{q}) \in \Delta_0 = \{(\frac{1}{p}, \frac{1}{q}) : \frac{1}{2p} < \frac{1}{q} \leq \frac{1}{p}, \frac{1}{q} > \frac{3}{p} - 1\} \cup \{(0,0)\},$ there exists a constant $C_{p,q} > 0$ such that $\|\sup_{t \in [1,2]} |A_t|\|_{L^p \to L^q} \leq C_{p,q}$.

Corollary 7 (Li-Wang-Zhai, arXiv, 2022)

Assume that $\Phi(x_1, x_2) \in C^{\infty}(\Omega)$ satisfies inequality (20). Define the averaging operator

$$A_t f(y) := \int_{\mathbb{R}^2} f(y - t(x_1, x_2, \Phi(x_1, x_2))) \eta(x) dx, \qquad (22)$$

where η is supported in a sufficiently small neighborhood $U \subset \Omega$ of the origin. For $(\frac{1}{p}, \frac{1}{q}) \in \Delta_0 = \{(\frac{1}{p}, \frac{1}{q}) : \frac{1}{2p} < \frac{1}{q} \leq \frac{1}{p}, \frac{1}{q} > \frac{3}{p} - 1\} \cup \{(0, 0)\},$ there exists a constant $C_{p,q} > 0$ such that $\|\sup_{t \in [1,2]} |A_t|\|_{L^p \to L^q} \leq C_{p,q}$.

We note that in [Schlag, 1997; Schlag-Sogge, 1997], the "cinematic curvature" condition in \mathbb{R}^3 is required to establish $L^p \to L^q$ estimates for the local maximal functions. While in this corollary, we just need the "cinematic curvature" condition in \mathbb{R}^2 .

Wenjuan Li

Theorem 8 (Li-Wang-Zhai, arXiv, 2022)

Assume that $\Phi(x_1, x_2) \in C^{\infty}(\Omega)$ satisfies $\Phi(0, 0) \neq 0$ and $da_2 \neq a_3$, $d \geq 2$. The associated averaging operator is defined by

$$A_t f(y) := \int_{\mathbb{R}^2} f(y - \delta_t(x_1, x_2, c + x_2^d \Phi(x_1, x_2))) \eta(x) dx, \qquad (23)$$

where η is supported in a sufficiently small neighborhood U of the origin. Then we have the following results:

(1) when c = 0, for $(\frac{1}{p}, \frac{1}{q}) \in \Delta_1 = \{(\frac{1}{p}, \frac{1}{q}) : \frac{1}{2p} < \frac{1}{q} \leq \frac{1}{p}, \frac{1}{q} > \frac{3}{p} - 1, \frac{1}{q} > \frac{1}{p} - \frac{1}{d+1}\} \cup \{(0,0)\},$ there exists a constant $C_{p,q} > 0$ such that $|| \sup_{t \in [1,2]} |A_t| ||_{L^p \to L^q} \leq C_{p,q};$ (2) when $c \neq 0$, for $(\frac{1}{p}, \frac{1}{q}) \in \Delta_2 = \{(\frac{1}{p}, \frac{1}{q}) : \frac{1}{2p} < \frac{1}{q} \leq \frac{1}{p}, \frac{1}{q} > \frac{d+1}{p} - 1\} \cup \{(0,0)\},$ there exists a constant $C_{p,q} > 0$ such that $|| \sup_{t \in [1,2]} |A_t| ||_{L^p \to L^q} \leq C_{p,q}.$

Theorem 9 (Li-Wang-Zhai, arXiv, 2022)

Let $\phi \in C^{\infty}(I)$, where I is a bounded interval containing the origin. Define the averaging operator by

$$A_t f(y) := \int_{\mathbb{R}^2} f(y - \delta_t(x_1, x_2, x_2^d \phi(x_2))) \eta(x) dx, \qquad (24)$$

where η is supported in a sufficiently small neighborhood U of the origin. Assume that ϕ satisfies (11), and $da_2 = a_3$. Then for $(\frac{1}{p}, \frac{1}{q}) \in \Delta_1 = \{(\frac{1}{p}, \frac{1}{q}) : \frac{1}{2p} < \frac{1}{q} \leq \frac{1}{p}, \frac{1}{q} > \frac{3}{p} - 1, \frac{1}{q} > \frac{1}{p} - \frac{1}{d+1}\} \cup \{(0,0)\},$ there exists a constant $C_{p,q} > 0$ such that $\|sup_{t\in[1,2]}|A_t|\|_{L^p \to L^q} \leq C_{p,q}$.

Continuity lemma

Theorem 10 [Li-Wang-Zhai, arXiv, 2022]

There exists a real number $\epsilon > 0$ such that for any $z \in \mathbb{R}^n$, there holds

$$\left\|\sup_{t\in[1,2]}\left|A_tf(y+z)-A_tf(y)\right|\right\|_{L^q(\mathbb{R}^n)} \lesssim |z|^{\epsilon} \|f\|_{L^p(\mathbb{R}^n)},$$
(25)

provided that

(1) n = 2, A_t is defined by (13) with c = 0 or by (15), and $(\frac{1}{p}, \frac{1}{q}) \in \Delta_1 \setminus \{(0, 0)\} = \{(\frac{1}{p}, \frac{1}{q}) : \frac{1}{2p} < \frac{1}{q} \leq \frac{1}{p}, \frac{1}{q} > \frac{3}{p} - 1, \frac{1}{q} > \frac{1}{p} - \frac{1}{d+1}\};$ (2) n = 3, A_t is defined by: (23) with c = 0 or by (24), and $(\frac{1}{p}, \frac{1}{q}) \in \Delta_1 \setminus \{(0, 0)\} = \{(\frac{1}{p}, \frac{1}{q}) : \frac{1}{2p} < \frac{1}{q} \leq \frac{1}{p}, \frac{1}{q} > \frac{3}{p} - 1, \frac{1}{q} > \frac{1}{p} - \frac{1}{d+1}\};$ (3) n = 2, A_t is defined by (13) with $c \neq 0$; n = 3, A_t is defined by (23) with $c \neq 0$, and $(\frac{1}{p}, \frac{1}{q}) \in \Delta_2 \setminus \{(0, 0)\} = \{(\frac{1}{p}, \frac{1}{q}) : \frac{1}{2p} < \frac{1}{q} \leq \frac{1}{p}, \frac{1}{q} > \frac{d+1}{p} - 1\};$

Continuity lemma

Theorem 10 [Li-Wang-Zhai, arXiv, 2022]

$$\begin{array}{l} \text{(4)} n = 2, \ A_t \text{ is defined by (14), } (\frac{1}{p}, \frac{1}{q}) \in \Delta_3 \setminus \{(0,0), (1,1)\} = \{(\frac{1}{p}, \frac{1}{q}) : \\ \frac{1}{2p} < \frac{1}{q} \leq \frac{1}{p}, \frac{1}{q} > \frac{2}{p} - 1, \frac{1}{q} > \frac{1}{p} - \frac{1}{d+1}\};\\ \text{(5)} n = 3, \ A_t \text{ is defined by (21),}\\ (\frac{1}{p}, \frac{1}{q}) \in \Delta_0 \setminus \{(0,0)\} = \{(\frac{1}{p}, \frac{1}{q}) : \frac{1}{2p} < \frac{1}{q} \leq \frac{1}{p}, \frac{1}{q} > \frac{3}{p} - 1\}.\end{array}$$

Sparse domination

Let $\eta : \mathbb{R}^k \to \mathbb{R}$ be a smooth function supported on a sufficiently small neighborhood $U \subseteq \Omega$ of the origin. We define the average associated to the hypersurface parametrized by $\vec{\Phi} := (\Phi_i)_{1 \le i \le n}$ as

$$A_t^{\vec{\Phi}}f(y) := \int_{\mathbb{R}^k} f(y - \delta_t(\Phi_1(x), \dots, \Phi_n(x))) \eta(x) dx.$$

The corresponding maximal function can then be defined as

$$\mathcal{M}_{\vec{\Phi}}f(y) := \sup_{t>0} |A_t^{\vec{\Phi}}f(y)|.$$
(26)

$\delta\text{-cubes}$ with dyadic size

Definition [Li-Wang-Zhai, arXiv, 2022]

Let \mathcal{R} denote the collection of all axes-parallel hyperrectangles. Then the collection of δ -cubes with dyadic size is defined as

$$\mathcal{Q}^{\delta} := \{ Q \in \mathcal{R} : I_1(Q) = 2^{\lceil kb_1 \rceil}, \dots, I_n(Q) = 2^{\lceil kb_n \rceil}, \text{ for some } k \in \mathbb{Z} \},$$

where $l_j(Q)$ denote the *j*-th side-length of Q and $b_j \ge 1$ for $1 \le j \le n$.

Sparse form

Definition [Li-Wang-Zhai, arXiv, 2022]

- We say that a collection of δ-cubes S is sparse if there are sets {E_S ⊆ S : S ∈ S} such that they are pairwise disjoint and |E_S| > ¹/₄|S| for all S ∈ S.
- **○** For any δ-cube Q and 1 ≤ r < ∞, define the r-average of a function f on Q by $\langle f \rangle_{Q,r} := \left(\frac{1}{|Q|} \int_Q |f(x)|^r dx\right)^{\frac{1}{r}}$. Let S denote a sparse collection. For 1 ≤ p, q < ∞, the (p, q)-sparse form Λ_{S,p,q}(f, g) is a bilinear form defined by

$$\Lambda_{\mathcal{S},p,q}(f,g) := \sum_{S \in \mathcal{S}} |S| \langle f
angle_{S,p} \langle g
angle_{S,q}.$$

Sparse domination

Theorem 11 [Li-Wang-Zhai, arXiv, 2022]

Let $\mathcal{M}_{\vec{\Phi}}$ denote the maximal function defined in (26). Suppose that the corresponding local operator defined by

$$\tilde{\mathcal{M}}_{\vec{\Phi}}f := \sup_{1 \le t \le 2} |A_t^{\vec{\Phi}}f|, \tag{27}$$

satisfies the local continuity property in the range \mathcal{L}_n . Then for all bounded compactly supported functions f, g and for any $(\frac{1}{p}, \frac{1}{q'}) \in \mathcal{L}'_n$, there exists a constant $C < \infty$ such that

$$|\langle \mathcal{M}_{\vec{\Phi}}f,g
angle| \leq C \sup_{\mathcal{S}} \Lambda_{\mathcal{S},p,q'}(f,g),$$

where the supreme is taken over all possible sparse collections of δ -cubes.

Definition [Li-Wang-Zhai, arXiv, 2022]

 A weight ω is a poistive function defined on Rⁿ equipped with the Lebesgue measure and the metric defined by

$$ho_\delta(x,y) := \max_{1 \leq i \leq n} |x_i - y_i|^{rac{1}{b_i}}.$$

We usually denote by $\omega(E) := \int_E w(x) dx$ and $\|f\|_{L^p_{\omega}} := \left(\int |f(x)|^p w(x) dx\right)^{\frac{1}{p}}.$

② A weight $w \in \mathcal{A}_p$ (Muckenhoupt class) for 1 if

$$[\omega]_{\mathcal{A}_p} := \sup_{Q \in \mathcal{Q}^{\delta}} \langle \omega \rangle_Q \langle \omega^{1-p'} \rangle_Q^{p-1} < \infty.$$

) A weight $w \in {\it RH}_p$ (reverse Hölder class) for 1 if

 $[\omega]_{PH} := \sup \langle \omega \rangle_{O}^{-1} \langle \omega \rangle_{O} n < \infty$

Wenjuan Li

4th. April 2022 42 / 47

Definition [Li-Wang-Zhai, arXiv, 2022]

Suppose that S is a sparse collection of δ -cubes. For any p < r < q with $(\frac{1}{p}, \frac{1}{q}) \in \mathcal{L}_n$ and weight $\omega \in A_{\frac{r}{p}} \cap RH_{(\frac{q}{r})'}$,

$$\Lambda_{\mathcal{S},p,q'}(f,g) \lesssim \left([\omega]_{A_{\frac{r}{p}}}[\omega]_{RH_{(\frac{g}{r})'}} \right)^{\alpha} \|f\|_{L^{r}(\omega)} \|g\|_{L^{r'}(\omega^{1-r'})},$$

for

$$\alpha := \max\left(\frac{1}{r-p}, \frac{q-1}{q-r}\right).$$
(28)

Theorem 12 [Li-Wang-Zhai, arXiv, 2022]

Suppose that the maximal operator $\mathcal{M}_{\vec{\Phi}}$ defined in (26) satisfies the sparse bound described in Theorem 11. Then for any p < r < q with $(\frac{1}{p}, \frac{1}{q}) \in \mathcal{L}_n$ and weight $\omega \in A_{\frac{r}{p}} \cap RH_{(\frac{q}{r})'}$ defined on δ -cubes,

$$\|\mathcal{M}_{\vec{\Phi}}\|_{L^{r}(\omega)\to L^{r}(\omega)} \lesssim \left([\omega]_{A_{\frac{r}{p}}}[\omega]_{RH_{\left(\frac{q}{r}\right)'}}\right)^{\alpha},\tag{29}$$

for α specified in (28).

Theorem 12 [Li-Wang-Zhai, arXiv, 2022]

Let ω be a weight defined on δ -cubes such that $\omega \in A_{\frac{r}{p}} \cap RH_{\left(\frac{q}{r}\right)'}$. Define the global maximal operator

$$\mathcal{M}f(y) := \sup_{t>0} |A_t f(y)|.$$

(1) When A_t is defined in terms of (13) with c = 0 or by (15), then for \mathcal{M} and any p < r < q with $(\frac{1}{p}, \frac{1}{q}) \in \Delta_1$, (29) holds true. (2) When A_t is defined in terms of (23) with c = 0 or by (24), then for \mathcal{M} and any p < r < q with $(\frac{1}{p}, \frac{1}{q}) \in \Delta_1$, (29) holds true. (3) When A_t is defined in terms of (13) with $c \neq 0$ or by (23) with $c \neq 0$, then for \mathcal{M} and any p < r < q with $(\frac{1}{p}, \frac{1}{q}) \in \Delta_2$, (29) holds true.

Some areas not covered

Theorem 12 [Li-Wang-Zhai, arXiv, 2022]

(4) When A_t is defined in terms of (14), then for \mathcal{M} and any p < r < q with $(\frac{1}{p}, \frac{1}{q}) \in \Delta_3$, (29) holds true. (5) When A_t is defined in terms of (21), then for \mathcal{M} and any p < r < q with $(\frac{1}{p}, \frac{1}{q}) \in \Delta_0$, (29) holds true.

THANKS FOR YOUR ATTENTION!