
LECTURE NOTES ON NONSTANDARD ANALYSIS

HAOSUI DUANMU

1. Hyperreals

The study of modern mathematics is, to a large extent, the study of infin-

ity. Nonstandard analysis provides an alternative (but extremely effective)

viewpoint of infinity. The purpose of this note is to give a brief (non-logical)

introduction of nonstandard analysis.

1.1. Basic Facts about the Ordered Real Field. A field is a set along

with two operations defined on the set: the addition operation + and the

multiplication operation ·, both of which behave similarly as addition and

multiplication in real numbers. Formally speaking:

Definition 1.1. A field is a set F along with two operations + (addition)

and · (multiplication) from F × F to F such that:

• Associativity: a+ (b+ c) = (a+ b) + c and (a · b) · c = a · (b · c);

• Commutativity: a+ b = b+ a and a · b = b · a;

• Additive and Multiplicative Identity: there are two distinct

elements 0, 1 ∈ F such that (∀a ∈ F )(a+ 0 = a ∧ a · 1 = a);

• Additive Inverse: for every a ∈ F , there is an element −a ∈ F

(called the additive inverse of a), such that a+ (−a) = 0;

• Multiplicative Inverse: for every a ∈ F such that a ≠ 0, there

exists an element a−1 ∈ F (called the multiplicative inverse of a),

such that a · a−1 = 1;

• Distributive: a · (b+ c) = (a · b) + (a · c).
1
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A binary relation R on a set F is a subset of F × F . For example, ≤ and

< are binary relations on R ((a, b) ∈≤ if a ≤ b).

Definition 1.2. A (strict) total order is a binary relation < on some set F ,

which satisfies the following for all a, b, c ∈ X:

• Not a < a (irreflexive);

• If a < b then not b < a (antisymmetry);

• If a < b and b < c, then a < c (transitive);

• If a ̸= b, then either a < b or b < a (totality).

A field F with a (strict) total order < on F is an ordered field if < satisfies

the following properties for all a, b, c ∈ F :

• If a < b, then a+ c < b+ c;

• If 0 < a and 0 < b, then 0 < a · b.

We focus on our favorite ordered field ⟨R,+, ·, 0, 1, <⟩ (the ordered field of

the reals). We recall some basic properties:

• the set Q is dense in R;

• the triangle inequality: |x+ y| ≤ |x|+ |y|;

• the Archimedean Property: for every x, y ∈ R>0, there is n ∈ N

such that nx > y.

Perhaps the most important property of ⟨R,+, ·, 0, 1, <⟩ is:

Definition 1.3 (The Completeness Property). If A ⊂ R is a subset that is

bounded above, then there is a b ∈ R such that:

• for all a ∈ A, a ≤ b (b is an upper bound of A);

• if a ≤ c for all a ∈ A, then b ≤ c (b is the least upper bound of A).

We will investigate these properties in the “nonstandard extension” of R

in the upcoming sections.
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1.2. Nonstandard Extension. Nonstandard analysis is introduced by

Abraham Robinson (see Robinson [Rob66]) with the aim of formalizing

infinitesimals and infinite numbers in calculus. As of today, nonstandard

analysis (as a powerful machinery derived from model theory) is not only

a deep field on its own but also has many fruitful applications in diverse

areas in pure and applied mathematics, including measure theory, stochastic

processes, mathematical physics, mathematical economics, functional analy-

sis, combinatorics, Lie theory (Hilbert 5-th problem), and geometric group

theory. The starting point of nonstandard analysis is the construction of the

nonstandard real line:
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The construction of the nonstandard universe requires knowledge on model

theory and set theory (ultraproducts). We instead pose some postulates

that the nonstandard real line should possess, assume the existence of the

nonstandard real line, and start “doing” nonstandard analysis as soon as

possible.

The nonstandard real line ∗R has the following properties:

• Extension: the ordered field of reals is an ordered sub-field of

⟨∗R,+, ·, 0, 1, <⟩;

• Infinitesimal: ∗R has a positive infinitesimal. There is ϵ ∈ ∗R such

that ϵ > 0 and ϵ < r for all r ∈ R>0;
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• Functions and Sets Extension: For every n ∈ N and every

function f : Rn → R, there is a “natural extension” (called the

nonstandard extension) ∗f : ∗Rn → ∗R. The nonstandard extension

of +, · coincide with field operations on ∗R. Similarly, for every

A ⊂ ∗Rn, there is a “natural extension” (nonstandard extension)

∗A ⊂ ∗Rn such that Rn ∩ ∗A = A;

• Transfer: ∗R, equipped with the above assignments of extensions of

functions and susbsets, “behaves logically” as R (preserves the truth

value of first-order logical statements).

⟨∗R,+, ·, 0, 1, <⟩ is called the ordered field of hyperreals. Our statement of

the Transfer item is extremely vague. This item is formally known as the

transfer principle and is at the heart of nonstandard analysis. However, we

only provide rule of thumbs for using the transfer principle:

• Any statement expressible in first order logic and mentioning only

elements of R is true in R if and only if it is true in ∗R;

• typical transferrable statement involve quantifiers over numbers but

not sets of numbers;

• typical transferrable statement involve the relation ∈ but not the

relation ⊂.

1.3. Arithmetic in ∗R. Since ⟨∗R,+, ·, 0, 1, <⟩ is an ordered field, field

operations are defined for hyperreals (we can do algebra on hyperreals!).

Since there is a positive infinitesimal ϵ, we have:

• ϵ has an additive inverse −ϵ, which is a negative infinitesimal ;

• Since ϵ > 0, it has a multiplicative inverse ϵ−1, which is a positive

infinite number. Then, −ϵ−1 is a negative infinite number;

• the transfer principle ensures that all algebraic operations can be

applied to hyperreals. So we can consider ϵ2,
√
ϵ, 100 + ϵ, . . . .
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Definition 1.4. We define a few important subsets of ∗R.

• The set of finite hyperreals is ∗Rfin = {x ∈ ∗R|(∃n ∈ N)(|x| ≤ n)};

• The set of infinite hyperreals is ∗Rinf =
∗R \ ∗Rfin;

• The set of infinitesimal hyperreals is

monad(0) = {x ∈ ∗R|(∀n ∈ N)(|x| ≤ 1

n
)}.

The following lemma is self-evident:

Lemma 1.5. For all x, y ∈ ∗Rfin, x± y and x · y are both elements of ∗Rfin.

For all x, y ∈ monad(0), x ± y and x · y are both elements of monad(0).

Moreover, for all x ∈ ∗Rfin and all y ∈ monad(0), we have xy ∈ monad(0).

Definition 1.6. For x, y ∈ ∗R, we say x and y are infinitely close, written,

x ≈ y, if x− y ∈ monad(0).

It is straightforward to verify that ≈ is an equivalence relation on ∗R.

Theorem 1.7. If r ∈ ∗Rfin, then there is a unique s ∈ R such that r ≈ s.

We call s the standard part of r.

Proof. The set A = {x ∈ R|x < r} is bounded. By the completeness property,

A has a least upper bound supA, which is the standard part of r. □

Remark 1.8. The proof of Theorem 1.7 makes use of the completeness property

of R. We will later shown that the existence of standard part implies the

completeness property of R. Hence, completeness of R is equivalent to the

existence of standard part.

Definition 1.9. The standard part map st : ∗Rfin → R maps every finite

hyperreal to its standard part. The near-standard part of ∗R, denoted by

NS(∗R), is the set of hyperreals with standard part.
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By Theorem 1.7, we have ∗Rfin = NS(∗R). It is easy to verify that

st(x+ y) = st(x) + st(y) and st(xy) = st(x)st(y) for all x, y ∈ ∗Rfin.

1.4. The Structure of ∗N. In this section, we focus on the set ∗N of

nonstandard natural numbers.

Lemma 1.10. The set ∗N \ N ̸= ∅. Moreover, if y ∈ ∗N \ N, then y ∈ ∗Rinf ,

i.e., every y ∈ ∗N \ N is infinite.

Proof. Pick a ∈ ∗Rinf . By the transfer principle, there exists N ∈ ∗N such

that a ≤ N . Such N must be infinite, hence ∗N \ N ̸= ∅.

We prove that, if y ∈ ∗N∩ ∗Rfin, then y ∈ N. There exists n ∈ N such that

n ≤ y ≤ n+ 1. As y ∈ ∗N, y must either be n or n+ 1, which implies that

y ∈ N. □

Definition 1.11. A set A is hyperfinite if and only if there is an (internal)

bijection between A and {1, 2, . . . , N} for some N ∈ ∗N.

Hyperfinite sets are infinite sets but “behaves logically” as finite sets (so

we can take addition, multiplication, find max/min elements of a hyperfinite

set). Hyperfinite sets naturally link discrete math with their continuous

analogues.

1.5. More Practice with the Tranfer. As we have mentioned, the transfer

principle is at the heart of the nonstandard analysis. We illustrate a few

applications of the transfer principle:

Example 1.12. We illustrate three basic applications of the nonstandard

analysis in this example:

• For every a, b ∈ ∗R, a+ b = b+ a and a · b = b · a;

• Given a bounded above set A ⊂ R, then ∗A has an upper bound;

• In fact, ∗A in the above item has a least upper bound.



LECTURE NOTES ON NONSTANDARD ANALYSIS 7

On the other hand, one has to be very careful applying the transfer

principle:

Lemma 1.13. There exists a bounded subset of ∗R with no least upper bound.

In fact, if A ⊂ R is not bounded above, then A does not have a least upper

bound in ∗R.

We conclude this section with the following result:

Theorem 1.14. The statement “every y ∈ ∗Rfin has a standard part” implies

the completeness property of of R.

Proof. Suppose A ⊂ R is non-empty and bounded above. We need to show

that supA exists. Let f : N → N be the function such that

f(n) = inf{k ∈ N :
k

n
is an upper bound of A}.

Such f is well-defined because of the Archimedean property and the well-

ordering property. The nonstandard extension ∗f is a function from ∗N to

∗N. By the transfer, for n ∈ ∗N:

∗f(n) = inf{K ∈ ∗N :
K

n
is an upper bound of ∗A}.

Pick N ∈ ∗N \ N.

Claim 1.15.
∗f(N)
N ∈ ∗Rfin.

Proof. Suppose
∗f(N)
N ∈ ∗Rinf . Then ∗f(N) ∈ ∗Rinf . There exists a0 ∈ ∗A

such that
∗f(N)−1

N ≤ a0. Note that
∗f(N)−1

N ∈ ∗Rinf , so a0 must also be

infinite, contradicts with A being bounded. □

Let r = st(
∗f(N)
N ). We shall show that r is the least upper bound of A.

For every a ∈ A, a ≤
∗f(N)
N ≈ r. So r is an upper bound. Pick any δ > 0
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and consider r − δ. As r − δ <
∗f(N)−1

N , we have:

(∃b ∈ ∗A)(r − δ < b).

By the transfer, we have (∃b ∈ A)(r − δ < b), which is what we need. □

2. Limit and Continuity

In this section, we use nonstandard analysis to study the concept of limit

and continuity. As we shall see, nonstandard analysis eliminates quantifiers

in many arguments, hence drastically simplify a lot of arguments.

2.1. Sequence Limit. A real sequence is a function s : N → R. We often

use (sn)n∈N to denote the sequence, where sn = s(n). The nonstandard

extension ∗s is a map from ∗N to ∗R, which we often write (∗sn)n∈∗N.

Definition 2.1. (sn)n∈N converges to L, written limn→∞ sn = L, if: for all

ϵ ∈ R>0, there is m ∈ N such that for all n ≥ m, |sn − L| < ϵ.

Theorem 2.2. limn→∞ sn = L if and only if ∗s(N) ≈ L for all N ∈ ∗N \N.

The transfer is at the heart of Theorem 2.2. The “if” part uses the

“downward transfer” while the “only if” part uses the “upward” transfer.

2.2. Continuity. Let A ⊂ R and f : A → R a function. Then f is

continuous at c ∈ A if: for every ϵ > 0, there exists δ > 0 such that, for

all x ∈ A, if |x− c| < δ, then |f(x)− f(c)| < ϵ. We provide a nonstandard

characterization of continuity:

Theorem 2.3. Suppose f : A → R and c ∈ A. Then the following statements

are equivalent:

• f is continuous at c;

• ∗f(x) ≈ ∗f(c) = f(c) for all x ≈ c;
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• there is δ ∈ ∗R>0 ∩monad(0) such that, for all x ∈ ∗A, if |x− c| < δ,

then ∗f(x) ≈ ∗f(c).

As in Theorem 2.2, the proof of Theorem 2.3 uses “upward” and “down-

ward” transfer.

Corollary 2.4. Suppose f is continuous at c ∈ R and g is continuous at

f(c). Then g ◦ f is continuous at c.

Example 2.5. As sinx is continuous at 0, so sin ϵ ≈ 0 for all ϵ ≈ 0. Similarly,

cos ϵ ≈ 1 for all ϵ ≈ 0. We now show that sin is continuous in R: if c ∈ R

and x ≈ c, then x = c+ ϵ for some ϵ ≈ 0. Thus, we have:

sinx = sin c+ ϵ = sin c cos ϵ+ cos c sin ϵ ≈ sin c.

We now present the intermediate value theorem, the proof of which makes

use of hyperfinite partition.

Theorem 2.6 (The Intermediate Value Theorem). Suppose f : [a, b] → R is

continuous. Let d ∈ R be a value strictly in between of f(a) and f(b). Then,

there exists c ∈ [a, b] such that f(c) = d.

Proof. Without loss of generality, assume that f(a) < f(b). Then we have

f(a) < d < f(b). Pick N ∈ ∗N \ N. Let {p1, p2, . . . , pN} be a hyperfinite

partition of ∗[a, b] such that into N pieces of equal width b−a
N , so p1 = a and

pN = b. Let sN = max{pk|∗f(pk) < d}. Note that a < sN < b.

Note that c = st(sN ) ∈ [a, b]. As sN < b, we conclude that sN + b−a
N ≤ b.

By definition, we have ∗f(sN ) < d ≤ ∗f(sN + b−a
N ). As sN ≈ sN + b−a

N ≈ c

and f is continuous at c, we have

f(c) ≈ ∗f(sN ) < d ≤ ∗f(sN +
b− a

N
) ≈ f(c).

Hence, we must have f(c) = d. □
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Similarly, we prove the extreme value theorem.

Theorem 2.7 (The Extreme Value Theorem). Suppose that f : [a, b] → R

is continuous. Then there exist c, d ∈ [a, b] such that f(c) ≤ f(x) ≤ f(d) for

all x ∈ [a, b].

Proof. We only prove the existence of the maximum of f . Pick N ∈ ∗N, and

let {p1, p2 . . . , pN} be a hyperfinite partition of ∗[a, b] of equal width b−a
N . By

the transfer principle, there is some 1 ≤ k0 ≤ N such that ∗f(pi) ≤ ∗f(pk0)

for all 1 ≤ i ≤ N . Then, f achieves its maximum at d = st(pk0). □

2.3. Uniform Continuity. The difference between continuity and uniform

continuity is subtle. For continuity, the δ depends on both ϵ and the point at

which the function is continuous. On the other hand, for uniform continuity,

the δ depends only on ϵ. Nonstandard analysis provides an alternative (and

clearer!) characterization of uniform continuity.

Definition 2.8. f : A → R is uniformly continuous if, for all ϵ > 0, there

exists δ > 0 such that, for all x, y ∈ A, if |x− y| < δ, then |f(x)− f(y)| < ϵ.

Uniform continuity is perhaps one of the best examples of elucidating a

standard concept by nonstandard means.

Definition 2.9. A function F : ∗A → ∗R is S-continuous if F (x) ≈ F (y) for

all x, y ∈ ∗A such that x ≈ y.

Theorem 2.10. A f : A → R is uniformly continuous if and only if

∗f : ∗A → ∗R is S-continuous.

The proof of Theorem 2.10 also uses the “downward” and the “upward”

transfer.

Theorem 2.11. A function f : A → R is continuous if and only if ∗f(x) ≈
∗f(y) for all x, y ∈ NS(∗A) such that x ≈ y.
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Proof. The proof follows from Theorem 2.3. □

Corollary 2.12. Suppose f : [a, b] → R is continuous. Then f is uniformly

continuous.

Example 2.13. The function f(x) = x on R is uniformly continuous. In

fact, for any a ≈ b ∈ ∗R, we have ∗f(a) ≈ ∗f(b).

The function g(x) = x2 on R is continuous but not uniformly continuous.

To see this, if a, b ∈ ∗Rfin = NS(∗R) such that a ≈ b, then st(a) = st(b) ∈ R

exists. Let c = st(a) = st(b) and ϵ1, ϵ2 be two infinitesimals such that

a = c + ϵ1 and b = c + ϵ2. It is easy to see ∗g(a) ≈ ∗g(b). Hence g is

continuous. On the other hand, let y be a positive infinite element in ∗R.

Then 1
y is a positive infinitesimal. We have:

(y +
1

y
)2 = y2 + 2 +

1

y2
̸≈ y2

2.4. Sequence of Functions. In this section, we consider sequences of

functions and different type of convergence of these functions. For n ∈ N, let

fn : A → R be a function and let f : A → R be another function.

Definition 2.14. A sequence (fn)n∈N of functions converges pointwisely to

f if, for every x ∈ A, the sequence
(
fn(x)

)
n∈N converges to f(x).

To get a nonstandard characterization of this concept, we first need to

consider the nonstandard extension of a sequence of functions: Define the

function F : N × R → R by letting F (n, x) = fn(x). We consider the

nonstandard extension ∗F : ∗N × ∗R → ∗R. We now define, for n ∈ ∗N,
∗fn : ∗A → ∗R. By the transfer, one can verify that, for n ∈ N, this agrees

with taking nonstandard extension of fn. Hence, we have the nonstandard

extension (∗fn)n∈∗N of the sequence (fn)n∈N.
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Lemma 2.15. The sequence (fn)n∈N converges to f pointwisely if and only

if, for all x ∈ A and all N ∈ ∗N \ N, ∗fN (x) ≈ f(x).

Definition 2.16. A sequence (fn)n∈N of functions converges uniformly to

f if, for every ϵ > 0, there exists m ∈ N, such that, for all n ≥ m and all

x ∈ A, |fn(x)− f(x)| < ϵ.

Using “upward” and “downward” transfer, we have:

Theorem 2.17. The sequence (fn)n∈N converges to f uniformly if and only

if, for all x ∈ ∗A and all N ∈ ∗N \ N, ∗fN (x) ≈ f(x).

Example 2.18. Consider fn : [0, 1] → R given by fn(x) = xn. Then (fn)n∈N

is a sequence of continuous functions, converging pointwisely to f : [0, 1] → R

where f(x) = 0 if x ̸= 1 and f(1) = 1. Such function f is clearly not

continuous.

Theorem 2.19. Suppose fn : A → R is continuous for each n ∈ N and that

fn converges to f uniformly. Then f is continuous.

Proof. Fix c ∈ A and we shall show that f is continuous at c. Pick some

N ∈ ∗N \ N and a positive ϵ ∈ monad(0). Then there exists some positive

δ ∈ monad(0) such that, for all x ∈ ∗A with |x− c| < δ, ∗fN (x) ≈ ∗fN (c).

For all x ∈ ∗A with |x− c| < δ, we have:

|∗f(x)− ∗f(c)| ≤ |∗f(x)− ∗fN (x)|+ |∗fN (x)− ∗fN (c)|+ |∗fN (c)− ∗f(c)| ≈ 0.

By Theorem 2.3, f is continuous. □

3. Application of Nonstandard analysis to Economics

Non-trivial applications of nonstandard analysis to other branches of

mathematics often involve deeper concepts such as Loeb measure theory. In
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this section, we consider a rather simple application of nonstandard analysis

to economic theory.

3.1. The Saturation Principle. We first introduce another important

logic property of the nonstandard model:

Definition 3.1. Suppose κ is an uncountable cardinal. A nonstandard

extension is κ-saturated if whenever (Ai)i∈I is a family of internal sets with

|I| < κ satisfying the finite intersection property, that is, the intersection of

any finite number of Ai’s is non-empty, then
⋂

i∈I Ai ̸= ∅.

Example 3.2. Suppose the nonstandard extension ∗R is ℵ1-saturated. For

each n ∈ N, let An = {x ∈ ∗R|x < 1
n}. The family (An)n∈N has the finite

intersection property. Hence,
⋂

n∈NAn ̸= ∅ so there is a positive infinitesimal.

The proof of the following (very important) theorem is beyond the scope

of this note.

Theorem 3.3. For any uncountable cardinal κ, there is a κ-saturated non-

standard extension.

Hence, we always work in nonstandard extensions that are as saturated as

needed. A direct consequence of the saturation principle and Theorem 3.3 is:

• Given any standard infinite set A, then there is a hyperfinite set

B ⊂ ∗A such that A ⊂ B.

Nonstandard analysis allows us to embed an infinite set into a larger set

which possess the same first-order logic properties as finite sets (Magic!).

3.2. Matching Theory. In this section, we consider the simple one-to-

one “marriage” matching market. Such a market is defined as a quadruplet

(M,W,PM ,PW ) such that:

• M and W are (possibly infinite) sets of men and women, respectively;
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• PM = {Pm : m ∈ M} is a set of preferences for the men over the

women. For each m ∈ M , its preference Pm is a strict total ordered

set of women (each Pm is a subset of W ) that is either finite, or

is countably infinite (so it specifies man m’s n-th choice of woman

for every n ∈ N). Any woman on m’s list is preferred by m over

being unmatched, while any woman not on m’s list is considered

unacceptable to m.

• The set PW = {Qw : w ∈ W} of preferences for the women over men

is defined similarly.

A one-to-one matching between M and W is a collection of pairwise disjoint

set of man-woman pairs. A blocking pair with respect to a matching µ is a

pair (m,w) such that

• If m is matched, then m prefers w to his partner in µ. If m is

unmatched, then m prefers w to being unmatched;

• If w is matched, then w prefers m to her partner in µ. If w is

unmatched, then w prefers m to being unmatched.

A matching µ is stable if

• no participant is matched to someone he or she finds unacceptable;

• there is no blocking pair.

A classical result of Gale and Shapley [GS62] shows that stable matching

always exist if M and W are both finite.

Theorem 3.4. Suppose M and W are finite. Then every one-to-one market

(M,W,PM ,PW ) has a stable matching.

We extend Theorem 3.4 to allow for infinite sets of men and women1 by

nonstandard analysis.

1In recent years, there has been increasing interest in infinite matching theory. This is to
address the so-called substitutable assumption in finite matching theory.
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Theorem 3.5. Every one-to-one market has a stable matching.

Proof. Let (M,W,PM ,PW ) be a one-to-one matching market. Let ∗PM =

{Pm : m ∈ ∗M} and ∗PW = {Qw : w ∈ ∗W}. Note that, by the transfer

principle, we have Pm = ∗Pm and Qw = ∗Qw for all m ∈ M and w ∈ W .

By saturation, pick hyperfinite sets M ⊂ ∗M and W ⊂ ∗W such that

M ⊂ M and W ⊂ W. Let PM = {Pm ∩ W : m ∈ M} and PW =

{Qw ∩M : w ∈ W}. By the transfer of Theorem 3.4, the hyperfinite one-to-

one market (M,W,PM,PW) has a stable matching π. Let µ be a matching

in (M,W,PM ,PW ) such that:

• For every m ∈ M , if m is matched to some w ∈ W in π, then m

is matched to the same w ∈ W in µ. If m is matched to some

w ∈ W \W or is unmatched, then m is unmatched in µ;

• For every w ∈ W , if w is matched to some m ∈ M in π, then w

is matched to the same m ∈ M in µ. If w is matched to some

m ∈ M \M or is unmatched, then w is unmatched in µ.

We now show that µ is a stable matching for (M,W,PM ,PW ). Clearly,

under µ, there is no participant being matched to a partner he or she

finds unacceptable. Because otherwise the same participant is matched

to someone unacceptable in π, contradict with the fact that π is a stable

matching. Suppose there is a blocking pair (m0, w0) ∈ M ×W . Then

• Suppose both m0 and w0 are matched in µ.Then m0 and w0 are

matched with the same people in π, which implies that (m0, w0) is a

blocking pair in π, a contradiction;

• Suppose at least one of m0 and w0 is unmatched in µ. Without

loss of generality, assume that m0 is unmatched. Then m0 is either

unmatched or matched with some woman in W \W . By the transfer
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principle, m0 prefers w0. Hence, (m0, w0) is again a blocking pair in

π, a contradiction.

Hence, we conclude that µ is a stable matching. □
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