Perverse Sheaves on Semi-abelian Varieties

Yongqiang Liu

(Joint work with Laurentiu Maxim and Botong Wang)

Basque Center for applied mathematics

Institute for Advanced Study in Mathematics of HIT

HIT, January 19-20 2019

3

(3)

Goal: The topology (homotopy type) of smooth quasi-projective variety.

Goal: The topology (homotopy type) of smooth quasi-projective variety.

Let X be a connected finite CW complex with $b_1(X) > 0$.

Goal: The topology (homotopy type) of smooth quasi-projective variety.

Let X be a connected finite CW complex with $b_1(X) > 0$. To be simple, I will assume that $H_1(X, \mathbb{Z})$ is torsion free.

Goal: The topology (homotopy type) of smooth quasi-projective variety.

Let X be a connected finite CW complex with $b_1(X) > 0$. To be simple, I will assume that $H_1(X, \mathbb{Z})$ is torsion free.

The moduli space of rank 1 $\mathbb C\text{-local}$ system can be defined as:

 $\operatorname{Char}(X) := \operatorname{Hom}(\pi_1(X), \mathbb{C}^*) \cong \operatorname{Hom}(H_1(X, \mathbb{Z}), \mathbb{C}^*),$

which is a complex affine torus $\operatorname{Char}(X) \cong (\mathbb{C}^*)^{b_1(X)}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

The *i*-th cohomology jump loci of X is defined as:

$$\mathcal{V}^i(X) = \{
ho \in \operatorname{Char}(X) \mid H^i(X, L_
ho)
eq 0\},$$

where L_{ρ} is the rank-one local system on X associated to the representation $\rho \in \operatorname{Char}(X)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

The *i*-th cohomology jump loci of X is defined as:

$$\mathcal{V}^i(X) = \{
ho \in \operatorname{Char}(X) \mid H^i(X, L_
ho)
eq 0\},$$

where L_{ρ} is the rank-one local system on X associated to the representation $\rho \in \operatorname{Char}(X)$.

 $\mathcal{V}^{i}(X)$ are closed sub-variety of $\operatorname{Char}(X)$ and homotopy invariants of X.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

The *i*-th cohomology jump loci of X is defined as:

$$\mathcal{V}^i(X) = \{
ho \in \operatorname{Char}(X) \mid H^i(X, L_
ho)
eq 0\},$$

where L_{ρ} is the rank-one local system on X associated to the representation $\rho \in \operatorname{Char}(X)$.

 $\mathcal{V}^{i}(X)$ are closed sub-variety of $\operatorname{Char}(X)$ and homotopy invariants of X. $\mathcal{V}^{0}(X) = \{\mathbb{C}_{X}\}$ contains only one point.

Definition

The *i*-th cohomology jump loci of X is defined as:

$$\mathcal{V}^i(X) = \{
ho \in \operatorname{Char}(X) \mid H^i(X, L_
ho)
eq 0\},$$

where L_{ρ} is the rank-one local system on X associated to the representation $\rho \in \operatorname{Char}(X)$.

 $\mathcal{V}^{i}(X)$ are closed sub-variety of $\operatorname{Char}(X)$ and homotopy invariants of X. $\mathcal{V}^{0}(X) = \{\mathbb{C}_{X}\}$ contains only one point. $\chi(X) = \chi(X, L_{\rho})$ for any $\rho \in \operatorname{Char}(G)$.

Example

Set
$$X = S^1$$
. Then $\mathcal{V}^i(X) = \begin{cases} \{\mathbb{C}_X\}, & \text{if } i = 0, 1 \\ \emptyset & \text{else }. \end{cases}$

Example

Set
$$X = \Sigma_g$$
 with $g \ge 2$. Since $\chi(X) = 2 - 2g \ne 0$,
 $\mathcal{V}^i(X) = \begin{cases} \{\mathbb{C}_X\}, & \text{if } i = 0, 2, \\ \operatorname{Char}(X), & \text{if } i = 1, \\ \emptyset & \text{else }. \end{cases}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Albanese map

Let X be a smooth quasi-projective variety.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Albanese map

Let X be a smooth quasi-projective variety. Consider the generalized Albanese map associated to X:

 $\mathsf{alb}: X \to \mathsf{Alb}(X)$

where Alb(X) is a complex semi-abelian variety.

Albanese map

Let X be a smooth quasi-projective variety. Consider the generalized Albanese map associated to X:

 $\mathsf{alb}: X \to \mathsf{Alb}(X)$

where Alb(X) is a complex semi-abelian variety.

Definition

Let X be a smooth quasi-projective variety. alb : $X \to Alb(X)$ is a morphism from X to a semi-abelian variety Alb(X) such that for any morphism $f : X \to G$ to a semi-ableian variety G, there exists one unique morphism $g : Alb(X) \to G$ such that the following diagram commutes:

The Albanese map induces an isomorphism on the free part of H_1 :

 $H_1(X,\mathbb{Z})/\text{Torsion} \to H_1(\text{Alb}(X),\mathbb{Z}).$

イロト 不得 トイヨト イヨト 二日

The Albanese map induces an isomorphism on the free part of H_1 :

 $H_1(X,\mathbb{Z})/\text{Torsion} \to H_1(\text{Alb}(X),\mathbb{Z}).$

This gives us an isomorphism:

 $\operatorname{Char}(X) \cong \operatorname{Char}(\operatorname{Alb}(X)).$

イロト 不得 トイヨト イヨト 二日

The base change formula gives us that for any $\rho \in Char(X) \cong Char(Alb(X))$

 $H^{i}(X, \mathbb{C}_{X} \otimes L_{\rho}) \cong H^{i}(\mathrm{Alb}(X), (R \operatorname{alb}_{*} \mathbb{C}_{X}) \otimes L_{\rho}).$

Motivation

The base change formula gives us that for any $\rho \in Char(X) \cong Char(Alb(X))$

$$H^i(X, \mathbb{C}_X \otimes L_{\rho}) \cong H^i(Alb(X), (R \operatorname{alb}_* \mathbb{C}_X) \otimes L_{\rho}).$$

If alb is proper, then **Decomposition Theorem (BBDG)** gives us that $R \operatorname{alb}_* \mathbb{C}_X$ is a direct sum of semi-simple perverse sheaves (with some shift).

Image: Image:

Motivation

The base change formula gives us that for any $\rho \in Char(X) \cong Char(Alb(X))$

$$H^{i}(X, \mathbb{C}_{X} \otimes L_{\rho}) \cong H^{i}(\mathrm{Alb}(X), (R \operatorname{alb}_{*} \mathbb{C}_{X}) \otimes L_{\rho}).$$

If alb is proper, then **Decomposition Theorem (BBDG)** gives us that $R \operatorname{alb}_* \mathbb{C}_X$ is a direct sum of semi-simple perverse sheaves (with some shift).

This is always the case when X is projective.

Motivation

The base change formula gives us that for any $\rho \in Char(X) \cong Char(Alb(X))$

$$H^{i}(X, \mathbb{C}_{X} \otimes L_{\rho}) \cong H^{i}(\mathrm{Alb}(X), (R \operatorname{alb}_{*} \mathbb{C}_{X}) \otimes L_{\rho}).$$

If alb is proper, then **Decomposition Theorem (BBDG)** gives us that $R \operatorname{alb}_* \mathbb{C}_X$ is a direct sum of semi-simple perverse sheaves (with some shift).

This is always the case when X is projective.

In general, alb is not proper. But one can still consider $R \operatorname{alb}_* \mathbb{C}_X$ as a complex of perverse sheaves.

Let G be a semi-abelian variety.

Then G is a complex algebraic group which is an extension

$$1 \rightarrow T \rightarrow G \rightarrow A \rightarrow 1,$$

where A is an abelian variety of dimension g and $T \cong (\mathbb{C}^*)^m$ is an algebraic affine torus of dimension m. In particular, $\pi_1(G) \cong \mathbb{Z}^{m+2g}$ and dim G = m + g. Let G be a semi-abelian variety.

Then G is a complex algebraic group which is an extension

$$1 \rightarrow T \rightarrow G \rightarrow A \rightarrow 1,$$

where A is an abelian variety of dimension g and $T \cong (\mathbb{C}^*)^m$ is an algebraic affine torus of dimension m. In particular, $\pi_1(G) \cong \mathbb{Z}^{m+2g}$ and dim G = m + g. Hence $\operatorname{Char}(G) \cong (\mathbb{C}^*)^{m+2g}$.

Let \mathcal{F} be a bounded complex of constructible sheaves with \mathbb{C} -coefficient on G, i.e., $\mathcal{F} \in D^b_c(G, \mathbb{C})$. The degree *i* cohomology jump loci of \mathcal{F} are defined as:

$$\mathcal{V}^i(G,\mathcal{F}):=\{
ho\in\operatorname{Char}(G)\mid H^i(G,\mathcal{F}\otimes_{\mathbb{C}}L_
ho)
eq 0\}.$$

The category of perverse sheaves on G, denoted by $Perv(G, \mathbb{C})$ is a sub-category of $D_c^b(G, \mathbb{C})$.

Let \mathcal{F} be a bounded complex of constructible sheaves with \mathbb{C} -coefficient on G, i.e., $\mathcal{F} \in D^b_c(G, \mathbb{C})$. The degree *i* cohomology jump loci of \mathcal{F} are defined as:

$$\mathcal{V}^i(G,\mathcal{F}):=\{
ho\in\operatorname{Char}(G)\mid H^i(G,\mathcal{F}\otimes_{\mathbb{C}}L_
ho)
eq 0\}.$$

The category of perverse sheaves on G, denoted by $Perv(G, \mathbb{C})$ is a sub-category of $D_c^b(G, \mathbb{C})$. In particular, $Perv(G, \mathbb{C})$ is a Notherian and Artinian abelian category.

Let \mathcal{F} be a bounded complex of constructible sheaves with \mathbb{C} -coefficient on G, i.e., $\mathcal{F} \in D^b_c(G, \mathbb{C})$. The degree *i* cohomology jump loci of \mathcal{F} are defined as:

$$\mathcal{V}^i(\mathcal{G},\mathcal{F}):=\{
ho\in\operatorname{Char}(\mathcal{G})\mid H^i(\mathcal{G},\mathcal{F}\otimes_{\mathbb{C}}L_
ho)
eq 0\}.$$

The category of perverse sheaves on G, denoted by $Perv(G, \mathbb{C})$ is a sub-category of $D_c^b(G, \mathbb{C})$.

In particular, $Perv(G, \mathbb{C})$ is a Notherian and Artinian abelian category. So simple and semi-simple perverse sheaves are well-defined.

Let \mathcal{F} be a bounded complex of constructible sheaves with \mathbb{C} -coefficient on G, i.e., $\mathcal{F} \in D^b_c(G, \mathbb{C})$. The degree *i* cohomology jump loci of \mathcal{F} are defined as:

$$\mathcal{V}^i(\mathcal{G},\mathcal{F}):=\{
ho\in\operatorname{Char}(\mathcal{G})\mid H^i(\mathcal{G},\mathcal{F}\otimes_{\mathbb{C}}L_
ho)
eq 0\}.$$

The category of perverse sheaves on G, denoted by $Perv(G, \mathbb{C})$ is a sub-category of $D_c^b(G, \mathbb{C})$.

In particular, $Perv(G, \mathbb{C})$ is a Notherian and Artinian abelian category. So simple and semi-simple perverse sheaves are well-defined. Every perverse sheaves has a finite length of composition series.

9 / 21

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Affine torus case

Theorem (O. Gabber, F. Loeser 1996)

For any $\mathcal{F} \in D^b_c(T, \mathbb{C})$, \mathcal{F} is a perverse sheaf on T, if and only if, for any i > 0,

$$\mathcal{V}^{\prime}(\mathcal{T},\mathcal{F})=\emptyset,$$

and for any $i \ge 0$

 $\operatorname{codim} \mathcal{V}^{-i}(\mathcal{T}, \mathcal{F}) \geq i$.

10 / 21

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Abelian variety case

Theorem (C. Schnell 2015)

For any $\mathcal{F} \in D^b_c(A, \mathbb{C})$, \mathcal{F} is a perverse sheaf on A, if and only if, the following codimension lower bound holds:

for any $i \geq 0$, $\operatorname{codim} \mathcal{V}^{\pm i}(A, \mathcal{F}) \geq |2i|$.

11 / 21

イロト 不得 トイヨト イヨト 二日

Linearity theorem/ Structure Theorem

Definition

A closed irreducible subvariety V of Char(G) is called linear, if there exists a short exact sequence of semi-abelian varieties

$$1
ightarrow G''(V)
ightarrow G \stackrel{q}{
ightarrow} G'(V)
ightarrow 1$$

and some $\rho \in \operatorname{Char}(G)$ such that

$$V := \rho \cdot \operatorname{Im}(q^{\#} : \operatorname{Char}(G'(V)) \to \operatorname{Char}(G)).$$

Let T''(V) and A''(V) denote the affine torus and, resp., the abelian variety part of G''(V).

Theorem (N. Budur, B. Wang 2017)

For any $\mathcal{F} \in D^b_c(G, \mathbb{C})$, $\mathcal{V}^i(G, \mathcal{F})$ is a finite union of linear subvariety of Char(G).

This theorem built on a long series of partial results due to Green-Lazarsfeld, Arapura, Simpson, Dimca-Papadima, etc.

Theorem (N. Budur, B. Wang 2017)

For any $\mathcal{F} \in D^b_c(G, \mathbb{C})$, $\mathcal{V}^i(G, \mathcal{F})$ is a finite union of linear subvariety of Char(G).

This theorem built on a long series of partial results due to Green-Lazarsfeld, Arapura, Simpson, Dimca-Papadima, etc. The abelian variety case is proved by C. Schnell 2015.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (N. Budur, B. Wang 2017)

For any $\mathcal{F} \in D^b_c(G, \mathbb{C})$, $\mathcal{V}^i(G, \mathcal{F})$ is a finite union of linear subvariety of Char(G).

This theorem built on a long series of partial results due to Green-Lazarsfeld, Arapura, Simpson, Dimca-Papadima, etc. The abelian variety case is proved by C. Schnell 2015.

Theorem (N. Budur, B. Wang 2015)

Let X be a smooth quasi-projective variety. Then $\mathcal{V}^i(X)$ is a finite union of torsion translated linear subvariety of $\operatorname{Char}(X)$.

13 / 21

イロト 不得 トイヨト イヨト 二日

Semi-abelian variety case

Definition

Let V be a linear irreducible close sub-variety of Char(G). We define the *semi-abelian codimension* of V by

$$\operatorname{codim}_{sa} V = \dim G''(V)$$

and its abelian codimension by

 $\operatorname{codim}_{a} V = \dim A''(V).$

Yongqiang Liu (BCAM)

Theorem (-, Maxim, Wang 2018)

For any $\mathcal{F} \in D^b_c(G, \mathbb{C})$, \mathcal{F} is a perverse sheaf on G, if and only if, for any $i \ge 0$,

$$\operatorname{codim}_{a}\mathcal{V}'(G,\mathcal{F}) \geq i$$

and

$$\operatorname{codim}_{sa} \mathcal{V}^{-i}(G, \mathcal{F}) \geq i$$
.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof

\implies can be done by induction on dim T.

æ

イロト 不得 トイヨト イヨト

Proof

- \implies can be done by induction on dim T.
- \Longleftarrow can be done by showing that the codimension lower bound is sharp and induction on the length of perverse sheaves.

For any perverse sheaf $\mathcal{P} \in \text{Perv}(G, \mathbb{C})$, the cohomology jump loci of \mathcal{P} satisfy the following properties:

(i) Propagation property:

$$\mathcal{V}^{-m-g}(G,\mathcal{P})\subseteq\cdots\subseteq\mathcal{V}^0(G,\mathcal{P})\supseteq\cdots\supseteq\mathcal{V}^g(G,\mathcal{P}).$$

(ii) Generic vanishing: for any $i \neq 0$ and generic $\rho \in Char(G)$,

$$H^i(G,\mathcal{P}\bigotimes L_{\rho})=0$$

Hence $\chi(G, \mathcal{P}) \geq 0$.

If $\chi(G, \mathcal{P}) \neq 0$, then $\mathcal{V}^0(G, \mathcal{P}) = \operatorname{Char}(G)$.

17 / 21

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (-, Maxim, Wang 2018)

If $\mathcal{P} \in \text{Perv}(G, \mathbb{C})$ is a simple perverse sheaf on G with $\chi(G, \mathcal{P}) = 0$, then $\mathcal{V}^0(G, \mathcal{P})$ is irreducible. Moreover, there exists a rank 1 local system L_ρ on G, a positive dimensional semi-abelian subvariety G'' of G, and a perverse sheaf \mathcal{P}' on G' = G/G'' with $\chi(G', \mathcal{P}') \neq 0$ such that

 $\mathcal{P} \cong L_{\rho} \otimes q^* \mathcal{P}'[\dim G'']$

holds for the quotient map $q : G \to G/G''$. In particular, $\mathcal{V}^0(G, \mathcal{P}) = \mathcal{V}^i(G, \mathcal{P})$ for any $i \in [-\operatorname{codim}_{sa}\mathcal{V}^0(G, \mathcal{P}), \operatorname{codim}_a\mathcal{V}^0(G, \mathcal{P})]$.

Corollary

Assume that $\mathcal{P} \in \text{Perv}(G, \mathbb{C})$ is a simple perverse sheaf on G. Then $\mathcal{V}^0(G, \mathcal{P})$ is an isolated point, if and only if, \mathcal{P} is a rank 1 local system.

Let X be a n-dimensional smooth complex quasi-projective variety with alb : $X \to Alb(X)$ being proper. If $\bigcup_{i=0}^{2n} \mathcal{V}^i(X)$ has an isolated point, then alb is surjective.

Proof.

By decomposition theorem,

$$R \operatorname{alb}_* \mathbb{C}_X[n] = \oplus_j P_j[-]$$

Let X be a n-dimensional smooth complex quasi-projective variety with alb : $X \to Alb(X)$ being proper. If $\bigcup_{i=0}^{2n} \mathcal{V}^i(X)$ has an isolated point, then alb is surjective.

Proof.

By decomposition theorem,

$$R \operatorname{alb}_* \mathbb{C}_X[n] = \oplus_j P_j[-]$$

$$\bigcup_{i=0}^{2n} \mathcal{V}^i(X) = \bigcup_j \mathcal{V}^0(\mathcal{P}_j)$$

Yongqiang Liu (BCAM)

Let X be a n-dimensional smooth complex quasi-projective variety with alb : $X \to Alb(X)$ being proper. If $\bigcup_{i=0}^{2n} \mathcal{V}^i(X)$ has an isolated point, then alb is surjective.

Proof.

By decomposition theorem,

$$R \operatorname{alb}_* \mathbb{C}_X[n] = \oplus_j P_j[-]$$

$$\bigcup_{i=0}^{2n} \mathcal{V}^i(X) = \bigcup_j \mathcal{V}^0(\mathcal{P}_j)$$

Then there exists at least one simple perverse sheaf \mathcal{P}_j such that $\mathcal{V}^0(\mathcal{P}_j)$ is exactly this isolated point.

Let X be a n-dimensional smooth complex quasi-projective variety with alb : $X \to Alb(X)$ being proper. If $\bigcup_{i=0}^{2n} \mathcal{V}^i(X)$ has an isolated point, then alb is surjective.

Proof.

By decomposition theorem,

$$R \operatorname{alb}_* \mathbb{C}_X[n] = \oplus_j P_j[-]$$

$$\bigcup_{i=0}^{2n} \mathcal{V}^i(X) = \bigcup_j \mathcal{V}^0(\mathcal{P}_j)$$

Then there exists at least one simple perverse sheaf \mathcal{P}_j such that $\mathcal{V}^0(\mathcal{P}_j)$ is exactly this isolated point. So \mathcal{P}_j is indeed a rank 1 local system on Alb(X), hence alb is surjective.

Let X be a n-dimensional smooth complex quasi-projective variety with alb : $X \rightarrow Alb(X)$ being proper. If X is homotopy equivalent to a real torus, then X is isomorphic to a semi-abelian variety.

A B A A B A

Thank you !

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣