$\begin{array}{l} \mbox{McShane's identity}\\ \mbox{Goncharov-Shen potentials on } \mathcal{A}_{\rm SL,\eta,\hat{S}}\\ \mathcal{X} \mbox{ coordinates and applications} \end{array}$

McShane identities for Higher Teichmuller theory and the Goncharov-Shen potential

Zhe Sun, University of Luxembourg

Conference on geometry and beyond IASM, HIT, 2019.1.18-1.21

 $\begin{array}{l} {\rm McShane's\ identity}\\ {\rm Goncharov-Shen\ potentials\ on\ }\mathcal{A}_{{\rm SL}_{g},\hat{S}}\\ \mathcal{X}\ {\rm coordinates\ and\ applications} \end{array}$

Objects that we interest

- Riemann surface $S = S_{g,m}$ of genus g with m holes. (\mathbb{Z} for number theory)
- Simple/primitive closed curves on S. (primes in \mathbb{Z})
- Geometry: Horocycle length ↔ representation theory: Goncharov–Shen potential.
- Identities encode all the simple closed curves.

 $\begin{array}{l} {\rm McShane's\ identity}\\ {\rm Goncharov-Shen\ potentials\ on\ } {\mathcal A}_{{\rm SL},n,\hat{S}}\\ {\mathcal X}\ {\rm coordinates\ and\ applications} \end{array}$

Table of contents

McShane's identity

- Original case
- Our generalizations

2 Goncharov–Shen potentials on $\mathcal{A}_{SL_{n}\hat{S}}$

- Higher Teichmüller spaces
- Goncharov–Shen potential
- Proof of identities
- 3 $\mathcal X$ coordinates and applications
 - Fuchsian rigidity
 - Boundedness of triple ratio
 - Collar lemma and others

McShane's identity

Goncharov–Shen potentials on $\mathcal{A}_{SL_{\eta},\hat{S}}$ \mathcal{X} coordinates and applications Original case Our generalizations

McShane's identity

• (McShane) Punctured surface $S_{g,m}$ has a hyperbolic structure ρ , $\ell(\gamma) = \log \left| \frac{\lambda_1(\rho(\gamma))}{\lambda_2(\rho(\gamma))} \right|$

$$\sum_{Y \in \mathcal{P}_{p}} \frac{1}{1 + e^{\frac{1}{2}(\ell(\beta) + \ell(\gamma))}} = \frac{1}{2}.$$
 (1)

For (g, m) = (1, 1)

$$\sum_{\gamma \in \mathcal{C}_{1,1}} \frac{1}{1 + e^{\ell(\gamma)}} = \frac{1}{2}.$$
 (2)

McShane's identity

 $\begin{array}{l} \text{Goncharov-Shen potentials on } \mathcal{A}_{\mathrm{SL}_n,\hat{\mathbb{S}}} \\ \mathcal{X} \text{ coordinates and applications} \end{array}$

Original case Our generalizations

McShane's identity

Figure: Gap term for an embedded pair of pants

Zhe Sun, University of Luxembourg

 $\begin{array}{l} \textbf{McShane's identity} \\ \textbf{Goncharov-Shen potentials on } \mathcal{A}_{\text{SL}n,\hat{S}} \\ \mathcal{X} \text{ coordinates and applications} \end{array}$

Original case Our generalizations

McShane–Mirzakhani identity

• (Mirzakhani) Surface $S_{g,m}$ has a hyperbolic structure ρ with holes

$$\sum_{[Y]\in\vec{\mathcal{P}}_{\alpha}}\mathcal{D}(\ell(\alpha),\ell(\beta),\ell(\gamma)) + \sum_{[Y]\in\mathcal{S}_{\alpha}}\mathcal{R}(\ell(\alpha),\ell(\gamma),\ell(\beta)) = \ell(\alpha)$$
(3)

Where

$$\mathcal{D}(x, y, z) = 2 \log \left(\frac{e^{\frac{x}{2}} + e^{\frac{y+z}{2}}}{e^{\frac{-x}{2}} + e^{\frac{y+z}{2}}} \right)$$
(4)

$$\mathcal{R}(x, y, z) = x - \log\left(\frac{\cosh(\frac{y}{2}) + \cosh(\frac{x+z}{2})}{\cosh(\frac{y}{2}) + \cosh(\frac{x-z}{2})}\right)$$
(5)

McShane's identity

 $\begin{array}{l} \text{Goncharov-Shen potentials on } \mathcal{A}_{\mathrm{SL}_{\eta},\hat{\mathrm{S}}} \\ \mathcal{X} \text{ coordinates and applications} \end{array}$

Original case Our generalizations

McShane–Mirzakhani identity

Figure: $\mathcal{D}(\ell(\alpha), \ell(\beta), \ell(\gamma))$ and $\mathcal{R}(\ell(\alpha), \ell(\gamma), \ell(\beta))$

Original case Our generalizations

McShane-Mirzakhani identity

- Witten-Kontsevich theorem: two different models of 2-dimensional quantum gravity should have the same partition function.
- First: intersection numbers on the moduli stack of algebraic curves.
- Second: the logarithm of the τ -function of the KdV hierarchy.
- Maryam Mirzakhani: integrates the above identities over $\mathcal{T}(S)/Mod(S)$, then obtain a recursive formula which satisfies Virasoro constraint. Thus again prove Witten–Kontsevich theorem.
- \bullet geometric recursion \rightarrow topological recursion.

McShane's identity

 $\begin{array}{l} \text{Goncharov-Shen potentials on } \mathcal{A}_{\mathrm{SL}_{n},\hat{\mathrm{S}}} \\ \mathcal{X} \text{ coordinates and applications} \end{array}$

Original case Our generalizations

McShane-Mirzakhani identity

Figure: From Wikipedia: Topological recursion

 $\begin{array}{c} \textbf{McShane's identity}\\ \textbf{Goncharov-Shen potentials on } \mathcal{A}_{SL,n,\hat{S}}\\ \mathcal{X} \text{ coordinates and applications} \end{array}$

Original case Our generalizations

Punctured case

(Y. Huang–S.) Theorem: Given the positive representation
 ρ ∈ p(A<sub>SL_n, S_{g,m}(ℝ_{>0})) with parabolic boundary monodromy,
 for any puncture p and any i = 1, · · · , n − 1

</sub>

$$1 = \sum_{[Y]\in\vec{\mathcal{P}}_{p}} \frac{1}{1 + \frac{\cosh\frac{d_{2}}{2}}{\cosh\frac{d_{1}}{2}} \cdot e^{\frac{1}{2}(\kappa_{i}(p,\gamma) + \ell_{i}(\gamma) + \kappa_{i}(p,\beta) + \ell_{i}(\beta))}}.$$
 (6)

• For (g, m) = (1, 1)

$$1 = \sum_{[\gamma] \in \overrightarrow{\mathcal{C}}_{1,1}} \frac{1}{1 + e^{\kappa_i(\rho,\gamma) + \ell_i(\gamma)}}.$$
(7)

• In Fuchsian case,
$$\frac{\cosh \frac{d_2}{2}}{\cosh \frac{d_1}{2}} = 1$$
, $\kappa_i(p, \gamma) = 0$, $\ell_i = \ell$.

McShane's identity

 $\begin{array}{l} \text{Goncharov-Shen potentials on } \mathcal{A}_{\mathrm{SL}_n,\hat{S}} \\ \mathcal{X} \text{ coordinates and applications} \end{array}$

Original case Our generalizations

Boundary case

• (Y. Huang–S.) Theorem: Given the Hitchin (positive) representation $\rho \in H_n(S_{g,m})$ with loxodromic boundary monodromy, for any oriented boundary curve α and any $i = 1, \dots, n-1$

$$\ell_{i}(\alpha) = \sum_{[\gamma]\in\vec{\mathcal{P}}_{\alpha}} \log \frac{e^{\frac{\ell_{i}(\alpha)}{2}} + \frac{\cosh \frac{d_{2}}{2}}{\cosh \frac{d_{1}}{2}} \cdot e^{\frac{1}{2}\left(\kappa_{i}(\alpha^{-},\gamma)+\ell_{i}(\gamma)+\kappa_{i}(\alpha^{-},\beta)+\ell_{i}(\beta)\right)}}{e^{-\frac{\ell_{i}(\alpha)}{2}} + \frac{\cosh \frac{d_{2}}{2}}{\cosh \frac{d_{1}}{2}} \cdot e^{\frac{1}{2}\left(\kappa_{i}(\alpha^{-},\gamma)+\ell_{i}(\gamma)+\kappa_{i}(\alpha^{-},\beta)+\ell_{i}(\beta)\right)}} + \sum_{[\gamma]\in\mathcal{S}_{\alpha}} \cdots$$
(8)

- Fuchsian case recovers McShane-Mirzakhani identity.
- κ_i(α⁻, γ): an invariant associates to an ideal triangle.
 cosh d/2/2 cosh d/2/2: an invariant associates to a pair of pants Y.

 $\begin{array}{l} \mbox{McShane's identity}\\ \mbox{Goncharov-Shen potentials on } \mathcal{A}_{{\rm SL}_n,\,\hat{{\rm S}}}\\ \mathcal{X} \mbox{ coordinates and applications} \end{array}$

Higher Teichmüller spaces Goncharov–Shen potential Proof of identities

Hitchin component

- $S = S_g$, *n*-Fuchsian representation $\rho : \pi_1(S) \xrightarrow{d.f.} PSL(2, \mathbb{R}) \xrightarrow{irr.} PGL(n, \mathbb{R})$
- Hitchin component H_n(S) is a connected component of Hom(S, PGL(n, ℝ))// PGL(n, ℝ) that contains n-Fuchsian representations.
- (Hitchin) Theorem: $S = S_{g,0}$ closed. $H_n(S)$ as a section of Hitchin fibration is topologically a $(n^2 1)(2g 2)$ dimensional cell.
- (Labourie, Fock–Goncharov $S = S_{g,m}$) Theorem: For every $\rho \in H_n(S)$, we have $\rho(\pi_1(S))$ is discrete faithful in PGL (n, \mathbb{R}) . There is a lift into SL (n, \mathbb{R}) , for any non-trivial simple closed geodesic (non-homotopy to hole or cusp) $\gamma \in \pi_1(S)$ and its eigenvalue $\lambda_1(\gamma) > \cdots > \lambda_n(\gamma) > 0$.

 $\begin{array}{l} \mbox{McShane's identity}\\ \mbox{Goncharov-Shen potentials on } \mathcal{A}_{\mbox{SL}_{n},\hat{\mbox{S}}}\\ \mathcal{X} \mbox{ coordinates and applications} \end{array}$

Higher Teichmüller spaces Goncharov–Shen potential Proof of identities

Limit curve and geometric structures

- (Labourie–Guichard) Theorem: $\rho \in H_n(S)$, $\exists ! \xi_{\rho}^1 : \partial_{\infty} \pi_1(S) \cong S^1 \to \mathbb{RP}^{n-1}$ which is ρ -equivariant and hyperconvex.
- (Benoist-Sambarino) Theorem: If $\rho \in H_n(S)$ is not *n*-Fuchsian, then $\xi_{\rho}^1(S^1)$ is C^1 not C^2 . If it is C^2 then ρ is *n*-Fuchsian, then $\xi_{\rho}^1(S^1)$ is conic.
- When n = 3, ξ_ρ(S¹) bounds a domain Ω_ρ, Ω_ρ/(π₁(S)) ≅ S, (PSL(3, ℝ), ℝP²) structure—strictly convex real projective structure on S.
- Equipped with a metric: $\phi(\widetilde{S}) = \Omega \subset \mathbb{RP}^2$ is equipped with Hilbert metric, then $S \cong \Omega/\pi_1(S)$ is equipped with an induced metric.

 $\begin{array}{l} \mbox{McShane's identity}\\ \mbox{Goncharov-Shen potentials on } \mathcal{A}_{{\rm SL}_n,\hat{\mathcal{S}}}\\ \mathcal{X} \mbox{ coordinates and applications} \end{array}$

Higher Teichmüller spaces Goncharov–Shen potential Proof of identities

Fock–Goncharov $(\mathcal{X}_{PGL_n,\hat{S}}, \mathcal{A}_{SL_n,\hat{S}})$ moduli spaces

- Let $\hat{S} = (S, m_b)$, where S is a connected oriented Riemann surface of $\chi(S) < 0$ with at least one hole, marked points $m_b \subset \partial S$ finite, considered modulo homotopy.
- E is n dimensional vector space. Flag variety

$$\mathcal{B} := \{F_0 \subset F_1 \subset \cdots \subset F_n = E \mid \dim F_i = i\}$$

equipped with fixed volume form Ω in *E*.

• An affine flag is $F \in \mathcal{B}$ and a choice of $\overline{f}_i \neq 0 \in F_i/F_{i-1}$ for $i = 1, \dots, n-1$. Let \mathcal{A} be the collection of affine flags.

 $\begin{array}{l} \mbox{McShane's identity}\\ \mbox{Goncharov-Shen potentials on } \mathcal{A}_{{\rm SL}_n,\hat{S}}\\ \mathcal{X} \mbox{ coordinates and applications} \end{array}$

Higher Teichmüller spaces Goncharov–Shen potential Proof of identities

Fock–Goncharov $(\mathcal{X}_{PGL_n,\hat{S}}, \mathcal{A}_{SL_n,\hat{S}})$ moduli spaces

- A framed G-local system $(\rho, \xi) \in \mathcal{X}_{\mathsf{PGL}_n, \hat{S}}$ is a G-local system ρ and monodromy invariant map $\xi : m_b \cup m_p \to \mathcal{B}$.
- A decorated G-local system (ρ, ξ) ∈ A_{SLn,Ŝ} is a twisted G-local system ρ with parabolic boundary monodromy and monodromy invariant map ξ : m_b ∪ m_p → A.
- (Labourie–Mcshane) Theorem: When m_b = Ø, X_{PGLn,S}(ℝ_{>0}) is a finite cover of H_n(S), related by Weyl group actions on the flags for boundary components.
- (Fock, Goncharov) Cluster ensemble structure generalizes cluster algebra introduced by Fomin and Zelevinsky. Positive structure, parametrization following Lusztig, tropicalization and compactification. Duality conjecture (solved by GHKK) and mirror symmetry.

 $\begin{array}{l} \mbox{McShane's identity}\\ \mbox{Goncharov-Shen potentials on } \mathcal{A}_{\mbox{SL}_{\mathcal{D}},\hat{\mathcal{S}}}\\ \mathcal{X} \mbox{ coordinates and applications} \end{array}$

Higher Teichmüller spaces Goncharov–Shen potential Proof of identities

Fock–Goncharov coordinates for
$$(\mathcal{X}_{\mathsf{PGL}_n,\hat{S}},\mathcal{A}_{\mathsf{SL}_n,\hat{S}})$$

• Given an ideal triangulation \mathcal{T} of S, each vertex decorated by a flag invariant by monodromy.

$$a_i = \pm \Delta \left(x^m \wedge y^l \wedge z^p \right) \tag{9}$$

$$X_{j} = \prod_{j} a_{j}^{\epsilon_{ij}} \tag{10}$$

• $\mathcal{X}_{PGL_n,\hat{S}}$ ($\mathcal{A}_{SL_n,\hat{S}}$ resp.) is birational to a variety obtained by taking split tori parametrized by the Fock–Goncharov \mathcal{X} (\mathcal{A} resp.) coordinates in one fundamental domain, and gluing them with **subtraction free** transition maps given by cluster transformations.

 $\begin{array}{l} \mbox{McShane's identity}\\ \mbox{Goncharov-Shen potentials on } \mathcal{A}_{\rm SL_{p},\hat{S}}\\ \mathcal{X} \mbox{ coordinates and applications} \end{array}$

Higher Teichmüller spaces Goncharov–Shen potential Proof of identities

Quiver for n = 3

Figure: $\epsilon_{ij} = \#\{arrow \ i \ to \ j\} - \#\{arrow \ j \ to \ i\}$ Fock–Goncharov(Goldman) Poisson bracket $\{X_i, X_j\} = \epsilon_{ij}X_iX_j$ $\begin{array}{l} \mbox{McShane's identity}\\ \mbox{Goncharov-Shen potentials on } \mathcal{A}_{{\rm SL}_n,\hat{\mathcal{S}}}\\ \mathcal{X} \mbox{ coordinates and applications} \end{array}$

Higher Teichmüller spaces Goncharov–Shen potential Proof of identities

Triple ratio in \mathbb{RP}^2

Figure: $F_1 = (D, \overline{BC})$, $F_2 = (E, \overline{AC})$, $F_3 = (F, \overline{AB})$, triple ratio $T(F_1, F_2, F_3) = \frac{|BD|}{|DC|} \cdot \frac{|CE|}{|EA|} \cdot \frac{|AF|}{|FB|} = \frac{|AU|}{|AV|} \frac{|DV|}{|DU|} = \frac{|BV|}{|BW|} \frac{|EW|}{|EV|} = \frac{|CW|}{|CU|} \frac{|FU|}{|FW|}$. $T(F_1, F_3, F_2) = \frac{1}{T(F_1, F_2, F_3)} > 1$. $\begin{array}{l} \mbox{McShane's identity}\\ \mbox{Goncharov-Shen potentials on } \mathcal{A}_{\mbox{SL}_{n},\hat{\mbox{S}}}\\ \mathcal{X} \mbox{ coordinates and applications} \end{array}$

Higher Teichmüller spaces Goncharov–Shen potential Proof of identities

Definition

- For any (F, G, H) ∈ A³ in generic position, let π : A → B be the natural projection. There is a unique unipotent matrix u ∈ U such that (F, π(H)) · u = (F, π(G)).
- The (n i, n i + 1) entry of u is additive when F is fixed, called *i*-th character. Denoted by $P_i(F; G, H)$, $P_i(f; g, h)$ and $P_i(\theta)$ depending on each case.
- The ratio of two *i*-th character with same F is *i*-th ratio.
- Given $(\rho, \xi) \in A_{SL_n, S_{g,m}}$. For $p \in m_p$ and $i = 1, \cdots, n-1$, Goncharov–Shen potential is

$$P_i^p = \sum_{\substack{\theta \text{ marked triangle around cusp } p}} P_i(\theta).$$
(11)

 $\begin{array}{l} \mbox{McShane's identity}\\ \mbox{Goncharov-Shen potentials on } \mathcal{A}_{\rm SL_{2},S}\\ \mathcal{X} \mbox{ coordinates and applications} \end{array}$

Higher Teichmüller spaces Goncharov–Shen potential Proof of identities

Explicit matrix for n = 3

Figure:

$$u = x_1(S_f^{g,h}) \cdot x_2(R_f^{g,h}) \cdot x_1(T_f^{g,h}) = \begin{pmatrix} 1 & S_f^{g,h} + T_f^{g,h} & S_f^{g,h}R_f^{g,h} \\ 0 & 1 & R_f^{g,h} \\ 0 & 0 & 1 \end{pmatrix},$$

 $\begin{array}{l} \mbox{McShane's identity}\\ \mbox{Goncharov-Shen potentials on } \mathcal{A}_{SL_{\mathcal{D}},\hat{S}}\\ \mathcal{X} \mbox{ coordinates and applications} \end{array}$

Higher Teichmüller spaces Goncharov–Shen potential Proof of identities

Explicit examples

• For $(
ho,\xi)\in\mathcal{A}_{\mathsf{SL}_2,\mathcal{S}_{1,1}}$, it provides Markoff equation

$$P_{p,1} = \frac{\lambda_a}{\lambda_b \lambda_c} + \frac{\lambda_b}{\lambda_c \lambda_a} + \frac{\lambda_c}{\lambda_a \lambda_b}.$$
 (12)

• For
$$(\rho,\xi) \in \mathcal{A}_{\mathsf{SL}_3,S_{1,1}}$$

$$P_1^p = \frac{w}{br} + \frac{w}{ds} + \frac{w}{ac} + \frac{q}{cr} + \frac{q}{bd} + \frac{q}{as},$$
 (13)

$$P_2^p = \frac{bc}{aw} + \frac{rd}{ws} + \frac{bs}{wr} + \frac{ad}{wc} + \frac{ar}{bw} + \frac{cs}{dw} + \frac{ar}{sq} + \frac{cb}{dq} + \frac{dr}{cq} + \frac{bs}{aq} + \frac{ad}{bq} + \frac{cs}{rq}.$$
(14)

 $\begin{array}{l} \mbox{McShane's identity}\\ \mbox{Goncharov-Shen potentials on } \mathcal{A}_{SL_{\mathcal{D}},\hat{S}}\\ \mathcal{X} \mbox{ coordinates and applications} \end{array}$

Higher Teichmüller spaces Goncharov–Shen potential Proof of identities

Explicit examples

Figure: $A_{SL_3,S_{1,1}}$, mutation formula $r' = \frac{bq+cw}{r}$, $s' = \frac{aw+dq}{s}$, $w' = \frac{as'+cr'}{w}$, $q' = \frac{br'+ds'}{q}$.

Zhe Sun, University of Luxembourg

 $\begin{array}{l} \mbox{McShane's identity}\\ \mbox{Goncharov-Shen potentials on } \mathcal{A}_{{\rm SL}_{\mathcal{D}},\,\hat{\mathcal{S}}}\\ \mathcal{X} \mbox{ coordinates and applications} \end{array}$

Higher Teichmüller spaces Goncharov–Shen potential Proof of identities

Mirror symmetry conjecture after Goncharov–Shen

- $W = \sum_{p} \sum_{i} P_{i}^{p}$
- $\mathcal{Y}^+_{\mathcal{W}}(\mathbb{Z}^t) := \{ l \in \mathcal{Y}(\mathbb{Z}^t) \mid \mathcal{W}^t(l) \ge 0 \}.$
- (Goncharov–Shen)Theorem:

$$Conf_n^+(\mathcal{A})(\mathbb{Z}^t) \sim \{\overline{Conf_n(Gr)_{t.d.}}\}$$

- The latter, using geometric Satake correspondence, parametrizes $(V_{\lambda_1} \otimes \cdots \otimes V_{\lambda_n})^{G^L}$.
- Generalize

$$Conf_3^+(\mathcal{A})(\mathbb{Z}^t) \sim \{Knutson - Tao's hives\}$$

Mirror symmetry conjecture after Goncharov-Shen

(Goncharov–Shen) Conjecture: (Conf[×]_n(A), W, Ω) is mirror dual to (Conf_n(A_L)_a)

 $\mathcal{FS}_{\textit{wr}}\left(\textit{Conf}_n^{\times}(\mathcal{A}), \mathcal{W}, \Omega\right) \sim \textit{D^bCoh}\left(\textit{Conf}_n(\mathcal{A}_L)_{a}\right)$

- Compactification: each partial potential gives rise to a divisor in the dual side.
- (Shen–Zhou–Zaslow) The above two are true for n = 5, G = SL₂. Provided 5 divisors + cluster completion =Deligne–Mumford compactification.

 $\begin{array}{l} \mbox{McShane's identity}\\ \mbox{Goncharov-Shen potentials on } \mathcal{A}_{{\rm SL}_n,\hat{\mathbb{S}}}\\ \mathcal{X} \mbox{ coordinates and applications} \end{array}$

Higher Teichmüller spaces Goncharov–Shen potential Proof of identities

Proof of identities for punctured case

Figure: The half pair of pants μ is glued to $\overline{\mu}$ and μ' is glued to $\overline{\mu}'$.

Zhe Sun, University of Luxembourg

 $\begin{array}{l} \mbox{McShane's identity}\\ \mbox{Goncharov-Shen potentials on } \mathcal{A}_{{\rm SL}_{\mathcal{D}},\,\hat{\mathcal{S}}}\\ \mathcal{X} \mbox{ coordinates and applications} \end{array}$

Higher Teichmüller spaces Goncharov–Shen potential Proof of identities

Proof of identities for punctured case

- Splitting Goncharov–Shen potential by Dehn twists (or cluster transformations).
- Compute gap term for one pair of pants in the beginning

$$\frac{1}{1+\frac{\cosh\frac{d_2}{2}}{\cosh\frac{d_1}{2}}\cdot e^{\frac{1}{2}(\kappa_i(\boldsymbol{p},\boldsymbol{\gamma})+\ell_i(\boldsymbol{\gamma})+\kappa_i(\boldsymbol{p},\boldsymbol{\beta})+\ell_i(\boldsymbol{\beta}))}}.$$
(15)

Obtain " \leq ".

• (Y. Huang–S.) Birman–Series Theorem for convex projective structure. Then obtain "=" for n = 3.

 $\begin{array}{l} \mbox{McShane's identity}\\ \mbox{Goncharov-Shen potentials on } \mathcal{A}_{{\rm SL}_n,\hat{\rm S}}\\ \mathcal{X} \mbox{ coordinates and applications} \end{array}$

Higher Teichmüller spaces Goncharov–Shen potential Proof of identities

Proof of identities for boundary case

Figure: The pair of pants Y has the boundary components α , β , γ with $\alpha\beta^{-1}\gamma = 1$ and Y is cut into μ, μ' along the simple curve γ_{α} . Here $\partial\mu$ contains γ_{α} and γ , and $\partial\mu'$ contains γ_{α} and β .

 $\begin{array}{l} \mbox{McShane's identity}\\ \mbox{Goncharov-Shen potentials on } \mathcal{A}_{{\rm SL}_{P},\,\hat{S}}\\ \mathcal{X} \mbox{ coordinates and applications} \end{array}$

Higher Teichmüller spaces Goncharov–Shen potential Proof of identities

Proof of identities for boundary case

• Gap term for Y in the beginning is $B_i(\alpha^-; \alpha^+, \gamma^+, \beta^+) = \frac{P_i(\alpha^-; \alpha^+, \beta^+)}{P_i(\alpha^-; \alpha^+, \gamma^+)}.$

۲

• Compute explicitly, play *i*-th character as play with hyperbolic geometry.

$$d_{1} := \log \frac{P_{i}(\alpha^{-};\gamma^{+},\gamma(\alpha^{-}))}{P_{i}(\alpha^{-};\beta(\alpha^{-}),\beta^{+})}, \quad d_{2} := \log \frac{P_{i}(\alpha^{-};\gamma^{-1}(\beta^{+}),\gamma^{-1}(\alpha^{-}))}{P_{i}(\alpha^{-};\gamma^{-1}(\alpha^{-}),\gamma^{+})}.$$
(16)

$$\mathcal{K}_{i}(\boldsymbol{p},\delta) = \frac{1 + \sum_{c=1}^{i-1} \prod_{j=1}^{c} T_{n-i,j,i-j}(\delta \boldsymbol{p},\delta^{+},\boldsymbol{p})}{1 + \sum_{c=1}^{i-1} \prod_{j=1}^{c} T_{n-i,j,i-j}(\boldsymbol{p},\delta \boldsymbol{p},\delta^{+})} \cdot \frac{\prod_{j=1}^{n-i-1} T_{n-i-j,j,i}(\boldsymbol{p},\delta \boldsymbol{p},\delta^{+})}{\prod_{j=1}^{i-1} T_{j,n-i,i-j}(\boldsymbol{p},\delta \boldsymbol{p},\delta^{+})}$$
(17)

• Limit of the path from loxodromic to parabolic boundary monodromy, obtain the gap term for the punctured case.

 $\begin{array}{l} \mbox{McShane's identity}\\ \mbox{Goncharov-Shen potentials on } \mathcal{A}_{{\rm SL}_n,\,\hat{{\rm S}}}\\ \mathcal{X} \mbox{ coordinates and applications} \end{array}$

Higher Teichmüller spaces Goncharov–Shen potential Proof of identities

Proof of identities for boundary case

Figure: $\kappa_i(p, \delta) = \log K_i(p, \delta)$

Zhe Sun, University of Luxembourg

 $\begin{array}{l} \mbox{McShane's identity} \\ \mbox{Goncharov-Shen potentials on } \mathcal{A}_{SL_{\mathcal{B}},\hat{S}} \\ \mathcal{X} \mbox{ coordinates and applications} \end{array}$

Fuchsian rigidity Boundedness of triple ratio Collar lemma and others

Fuchsian rigidity

- (Y. Huang–S.) Theorem: For $(\rho, \xi) \in \mathcal{X}_{PGL_n, S_{g,m}}$ is *n*-Fuchsian iff all the triple ratios on any ideal triangle equal to 1.
- (Y. Huang–S.) Theorem: For (ρ, ξ) ∈ X_{PGL3,Sg,m} is 3-Fuchsian iff all the edge functions on any ideal edge are equal.
- Conjecture: The above edge function Fuchsian rigidity is true for any *n*.

 $\begin{array}{l} \mbox{McShane's identity}\\ \mbox{Goncharov-Shen potentials on } \mathcal{A}_{SL,\eta,\hat{S}}\\ \mbox{\mathcal{X} coordinates and applications} \end{array}$

Fuchsian rigidity Boundedness of triple ratio Collar lemma and others

Boundedness of triple ratio

- We find when surface S is closed, for H_n(S), any triple ratio coordinate is bounded under the mapping class group orbit.
 Proved by private communication with Labourie and Zhang.
- Reason: Ordered triple of points up to $\pi_1(S)$ is isomorphic to a compact set $T^1(S)$.
- (Y. Huang, S.) Theorem: For $(\rho, \xi) \in p(\mathcal{A}_{SL_n, S_{g,m}}(\mathbb{R}_{>0}))$, any triple ratio coordinate is bounded under the mapping class group orbit.

 $\begin{array}{l} \mbox{McShane's identity}\\ \mbox{Goncharov-Shen potentials on } \mathcal{A}_{\rm SL,\beta,\hat{S}}\\ \mbox{\mathcal{X} coordinates and applications} \end{array}$

Fuchsian rigidity Boundedness of triple ratio Collar lemma and others

Boundedness of triple ratio

Figure: $\{(x, y, z) | x < y < z < x \in S^1\} / \pi_1(S) \cong \mathbb{T}^1(S)$

Zhe Sun, University of Luxembourg

 $\begin{array}{l} \mbox{McShane's identity}\\ \mbox{Goncharov-Shen potentials on } \mathcal{A}_{SL,\eta,\hat{S}}\\ \mbox{\mathcal{X} coordinates and applications} \end{array}$

Fuchsian rigidity Boundedness of triple ratio Collar lemma and others

Discrete spectral

- (Y. Huang–S.) Corollary: Given (ρ, ξ) ∈ p(A_{SLn,Sg,m}(ℝ_{>0})), the simple closed {log λ₁(ρ(γ)) / λ₂(ρ(γ))}}_γ spectral is discrete in ℝ_{>0}.
- Proof: Boundedness of triple ratio+our generalized Mcshane identity.
- Using identity to define a Thurston-type metric.
 Non-domination property of simple root length spectral.

 $\begin{array}{l} {\rm McShane's\ identity}\\ {\rm Goncharov-Shen\ potentials\ on\ }\mathcal{A}_{{\rm SL},n,\hat{S}}\\ \mathcal{X}\ {\rm coordinates\ and\ applications} \end{array}$

Fuchsian rigidity Boundedness of triple ratio Collar lemma and others

Collar lemma for n = 3

۲

• (Y. Huang–S.) Theorem: Given $(\rho, \xi) \in p(\mathcal{A}_{SL_3, S_{g,m}}(\mathbb{R}_{>0}))$, for two intersecting oriented simple closed geodesics α, β . Let $u_1 = T(x, \alpha x, \alpha^+) \cdot \frac{\lambda_1(\rho(\alpha))}{\lambda_2(\rho(\alpha))}, u_2 = T(x, \alpha^{-1}x, \alpha^-) \cdot \frac{\lambda_1(\rho(\alpha^{-1}))}{\lambda_2(\rho(\alpha^{-1}))}, u_3 = T(x, \beta x, \beta^+) \cdot \frac{\lambda_1(\rho(\beta))}{\lambda_2(\rho(\beta))}, u_4 = T(x, \beta^{-1}x, \beta^-) \cdot \frac{\lambda_1(\rho(\beta^{-1}))}{\lambda_2(\rho(\beta^{-1}))}.$ Let $\{i, j, k, l\} = \{1, 2, 3, 4\}$, then

$$\left((u_i u_j)^{\frac{1}{2}} - 1\right) \cdot \left((u_k u_l)^{\frac{1}{2}} - 1\right) > 4.$$
 (18)

• Especially, when $\{i, j\} = \{1, 2\}$

$$\left(\left(\frac{\lambda_{1}(\rho(\alpha))}{\lambda_{3}(\rho(\alpha))}\right)^{\frac{1}{2}} - 1\right) \cdot \left(\left(\frac{\lambda_{1}(\rho(\beta))}{\lambda_{3}(\rho(\beta))}\right)^{\frac{1}{2}} - 1\right) > 4.$$
(19)

 $\begin{array}{l} \mbox{McShane's identity}\\ \mbox{Goncharov-Shen potentials on } \mathcal{A}_{SL_{\mathcal{D}},\hat{S}}\\ \mbox{\mathcal{X} coordinates and applications} \end{array}$

Fuchsian rigidity Boundedness of triple ratio Collar lemma and others

Details in arXiv:1901.02032.

Thank you!