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1. Introduction

Collective behaviors in complex systems is ubiquitous in our nature, to name a

few, e.g., aggregation of bacteria, flocking of birds, and swarming of fish in biolog-

ical system, herding of volatilities in financial markets and formation of dominant

opinions in social systems2,14–16,25,29,33,35–38 etc. In 2007, Cucker and Smale intro-

duced a particle model in their famous paper.13 The C-S model can be regarded as

a dynamical system on a symmetric complete graph where all vertices(particles) are

connected with symmetric weights. To fix the idea, we consider an ensemble of C-S

particles on a directed and weighted network denoted by G, and let (xi, vi) be the

spatial position-velocity coordinate of the i-th particle in phase space Rdx ×Rdv. We

denote the set of vertices, connectivity and weight by V := {1, · · · , N}, E = (χij)

and W = (wij), respectively:

V := {1, · · · , N}, wij :=
1

(1 + |xj − xi|2)β
, β ≥ 0,

χij =

{
1, if the j-th particle influences the i-th particle,

0, otherwise.

(1.1)

Under the setting (1.1), the dynamics of (xi, vi) is governed by the first-order dy-

namical system on a graph G = (N , (χij), (wij)):

ẋi = vi, t > 0, i ∈ N ,

v̇i = κ
∑
k∈Ni

1

(1 + |xj − xi|2)β
(vk − vi),

(1.2)

where Ni := {j : χij > 0} is the set of neighbors of the i-th particle, or in other

words, Ni consists of the agents which influence the particle i.

For the all-to-all case with Ni = N , system (1.2) has been extensively studied

in previous literature in Ref. 7, 10, 13. In particular, Ha and Liu22 introduced a

nonlinear functional approach for (1.2) with a general ψ. The nonlinear functional

approach has been successfully applied in the flocking analysis for the C-S model, for

example, the collision avoidance,3,11 extra forces for special targets,20,34 white noise

environment,4,21 multi-cluster flocking analysis8,9 and a variant with normalized

weights,27,31 etc. This approach was also extended to the kinetic C-S model as a

typical approach in its flocking analysis, e.g., Ref. 6, 7, 19. As a direct application

of Ha-Liu’s result, if ψ is non-integrable, i.e., β ≤ 1
2 , then they showed that system

(1.2) exhibits a mono-cluster flocking for any initial data and positive coupling

strength κ > 0. In contrast, for an integrable ψ, i.e., β > 1
2 , system can exhibit

multi-cluster flocking depending on the initial data and coupling strength κ (see

Ref. 23 for a one-dimensional case). In literature, the exponent which distinguishes

mono-cluster flocking and multi-cluster flocking is called “critical exponent” (see

Ref. 12). On the other hand, for a general network topology (χij) which is not all-

to-all and non-symmetric, there are several technical difficulties due to the lack of
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conservation of total momentum. It seems that the nonlinear functional approach

in Ref. 22 cannot be applied for (1.2) as it is. Hence, it is also difficult to derive

critical exponent unlike to the all-to-all case for the inverse power communication

weight in (1.1).

Recently, the authors in Ref. 18, 30 considered a network topology with rooted

leadership, and they found that unconditional mono-cluster flocking can be achieved

for a small exponent β, which is less than 1
2 and depends on the depth of the graph,

see Ref. 30 for rooted leadership case and Ref. 18 for more general digraph. In fact,

the approaches in Ref. 18, 30 rely on the decay estimate for the discrete-time iter-

ation of relative velocities, and this type of approaches fails to provide the critical

exponent for unconditional flocking since the decay is not strict at each iteration.

Recall that the nonlinear functional approach in Ref. 22 crucially relies on the sym-

metry of the interaction topology. In Ref. 31, the nonlinear functional approach was

extended to a variant of C-S model in which the interaction is not fully symmetric;

however, the global structural symmetry was still imposed in the sense that the in-

teraction should be all-to-all. In this paper, we will address the following questions:

• (Q1): Can we extend the nonlinear functional approach to (1.2) with a

general network?

• (Q2): For a general network with weight ψ(s) = 1
(1+s2)β

, can the critical

exponent for mono-cluster flocking be 1
2? Moreover, can the unconditional

flocking emerge at the critical exponent?

The purpose of this paper is to answer the above questions affirmatively in one-

dimension. More precisely, we will study the following one-dimensional C-S system

with a general communication weight ψ on a digraph containing a spanning tree

(see Subsection 2.2)

ẋi = vi, t > 0, i = 1, 2, · · · , N,

v̇i = κ
∑
k∈Ni

ψ(xk − xi)(vk − vi), (1.3)

where the communication weight ψ(r) satisfies parity, positivity, regularity and

monotonicity conditions: there exists a positive constant M > 0 such that

ψ(−r) = ψ(r), 0 ≤ ψ(r) ≤M, ∀ r ∈ R,
ψ is monotonically decreasing (increasing) for r ≥ 0 (r ≤ 0),

ψ is not zero and an analytic function on R.
(1.4)

In this work, we develop a new nonlinear functional approach which do not need

a symmetry of a network topology. Compared to the all-to-all case, there are two

technical difficulties. First, the total momentum
∑N
i=1 vi may not be conserved due

to the lack of symmetry in the network topology (χij). Second, the decay rate

of the velocity diameter may depend on the network structure. Therefore, we can
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not expect a Gronwall type differential inequality with constant coefficient for the

velocity diameter for all time. In fact, we will derive the decay rate through the

hypo-coercivity type estimates which is highly non-trivial for nonlinear systems

(see the related results1,5 for linear systems). To overcome these two difficulties, we

introduce two key ingredients. First, we introduce a node decomposition Lemma

which provides a hierarchical structure and allows us to apply induction principle

with respect to the graph (see Lemma 2.5). Second, we construct some nonlinear

functionals Qk and Y k in terms of weighted mean position and mean velocity and

show that these functionals are equivalent to the diameters (see (3.31) and (4.16)).

The advantage is that, with the good properties of these quantities, we can still use

the induction principle to yield the dissipation from hypo-coercivity estimates and

derive a flocking estimate. Our main result can be summarized as follows.

Theorem 1.1. Suppose that the network topology (χij) contains a spanning tree,

and let (xi, vi) be a solution to (1.3) with (1.4). Then, unconditional mono-cluster

flocking emerges exponentially fast if and only if the communication weight function

ψ is non-integrable. More precisely, there exist positive constants Λ and C such that

max
1≤i,j≤N

|vj(t)− vi(t)| ≤ Ce−Λt max
1≤i,j≤N

|vj(0)− vi(0)|, t ≥ 0.

Remark 1.1. For ψ(s) = 1
(1+s2)β

, the critical exponent for mono-cluster flocking

is β = 1
2 , and mono-cluster flocking emerges for any β ≤ 1

2 . Thus, this resolves

the conjecture posed in Ref. 12. If ψ(s) is short-ranged, i.e., integrable, then mono-

cluster flocking may not emerge even for the all-to-all case, see Ref. 13 for details.

Therefore, for a general network, the emergence of unconditional flocking occurs

only when ψ(s) is non-integrable.

The rest of the paper is organized as follows: in Section 2, we provide several

concepts such as node and node decomposition to be used essentially in later sec-

tions. In Section 3, we review the first-order reduction of the second-order system

(1.3), and then obtain a uniform upper bound for the relative distances in the long

range interaction regime. In Section 4, we use this uniform bound to verify the

exponential emergence of mono-cluster flocking. Finally, Section 5 is devoted to be

a brief summary of our main results and remaining open problems to be explored

in a future work.

2. Preliminaries

In this section, we present some basic concepts such as relative equilibria, mono-

cluster flocking, spanning tree and node decomposition of a general network (1.3).
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2.1. Relative equilibria

First, we note the Galilean invariance of the C-S model in the following lemma.

Lemma 2.1. The C-S model (1.3) is Galilean invariant in the sense that for any

solution {(xi, vi)} to (1.3) and c ∈ Rd, (xi + tc, vi + c) is also a solution to (1.3).

Proof. Since the right-hand side of (1.3) is given by the relative distances and

velocities, i.e., xi−xj and vi−vj , system (1.3) is clearly invariant under the Galilean

transformation.

By direct inspection of system (1.3), all equilibrium solution (xi, vi) satisfies

vi(t) = 0, xi(t) = xi(0), t ≥ 0.

Thus, the traveling state with nonzero common velocity v∞ = c 6= 0 is not an

equilibrium for (1.2). Hence, we need to relax the concept of equilibrium as in the

N -body system in celestial mechanics as follows.

Definition 2.1. We say (X∞, V∞) is a relative equilibrium for (1.2)-(1.4) if it

can be represented by the following relations: there exist constant vectors X̃ :=

(x̃1, · · · , x̃N ) and Ṽ = ṽ(1, . . . , 1) in RN such that

X∞ = X̃ + tṼ , V∞ = Ṽ , t ∈ R.

For simplicity, we set

X (t) := max
1≤i,j≤N

|xj(t)− xi(t)|, V(t) := max
1≤i,j≤N

|vj(t)− vi(t)|.

Then, the concept of mono-cluster flocking (unconditional flocking) can be expressed

in terms of X and V.

Definition 2.2. System (1.3) exhibits a mono-cluster flocking if for any solution

(xi, vi), the following two conditions hold.

sup
0≤t<∞

X (t) <∞ and lim
t→∞

V(t) = 0.

2.2. Spanning tree

Next, we introduce some basic notions in digraph theory. Note that the network

structure is registered by the neighbor set Ni which consists of all neighbors of the

i-th particle, or in other words, Ni consists of the particles which influence particle

i. For convenience, we associate the vertices {1, 2, . . . , N} of the C-S diagraph G
with particles in system (1.3). Then, for a given set of {Ni}Ni=1 in system (1.3), we

can use an associated digraph to model the interaction topology in the following

definition.

Definition 2.3.
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(1) The C-S digraph G = (V, E) associated to (1.3) consists of a finite set

V = {1, 2, . . . , N} of vertices, a set E ⊂ V × V of arcs with ordered pair

(j, i) ∈ E if j ∈ Ni.

(2) A path in G from i1 to ik is a sequence i1, i2, . . . , ik such that

is ∈ Nis+1
for 1 ≤ s ≤ k − 1.

If there exists a path from j to i, then vertex i is said to be reachable from

vertex j.

(3) The C-S digraph G contains a spanning tree if we can find a vertex such

that any other vertex of G is reachable from it.

Now, we introduce a lemma which provides a necessary condition for uncondi-

tional mono-cluster flocking in C-S network.

Lemma 2.2. If the C-S digraph dose not contain a spanning tree, then mono-cluster

flocking will not emerge for some initial configuration.

We put the proof of Lemma 2.2 in the end of this chapter. Since we are interested

in the unconditional mono-cluster flocking which means that mono-cluster flocking

occurs for any initial data, we will always assume the existence of a spanning tree

structure throughout the paper. Next, we will show a connectivity or transitivity

of the spanning tree.

Let l, k ∈ N with 1 ≤ l ≤ k ≤ N , and let Cl,k = (cl, cl+1, . . . , ck) be a vector in

Rk−l+1 such that

ci ≥ 0, l ≤ i ≤ k, and

k∑
i=l

ci = 1.

For an ensemble of N -particles with state {zi := (xi, vi)}Ni=1, we set Lkl (Cl,k) to be

a convex combination of {zi}ki=l with the coefficient Cl,k:

Lkl (Cl,k) :=

k∑
i=l

cizi.

Note that each zi is a convex combination of itself, in particular, zN = LNN (1) and

z1 = L1
1(1).

Definition 2.4 (Root and general root).

(1) We say zk is a root if it is not affected by the rest particles; in other words,

j /∈ Nk for any j ∈ {1, 2, . . . , N}\{k}.

(2) We say Lkl (Cl,k) is a general root if Lkl (Cl,k) is not affected by the rest parti-

cles; in other words, for any i ∈ {l, l+1, . . . , k} and j ∈ {1, 2, . . . , N}\{l, l+
1, . . . , k}, we have j /∈ Ni.
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Lemma 2.3. The following assertions hold.

(1) If the network contains a spanning tree, then there is at most one root.

(2) If LNk (Ck,N ) is a general root, then Ll1(C1,l) is not a general root for each

l ∈ {1, 2, . . . , k − 1}.

Proof. (1) Due to the existence of a spanning tree, it is impossible for two roots

exist simultaneously. Otherwise, the two roots cannot affect each other through a

directed path, which means each of them cannot be a root.

(2) The similar argument also implies that if LNk (Ck,N ) is a general root, then

Ll1(C1,l) is not a general root for any 1 ≤ l ≤ k − 1.

2.3. Node decomposition

In this subsection, we will introduce the concept of node. Then we can intro-

duce node decomposition to represent the whole graph G (or say vertex set V) as a

disjoint union of a sequence of nodes. The most important point is that the node

decomposition shows a hierarchical structure which allows us to apply the induction

principle. Let G = (V, E) and V1 ⊂ V, a subgraph G1 = (V1, E1) is the digraph with

vertex set V1 and arc set E1 which consists of the arcs in G connecting members

in V1. For simplicity, for a given digraph G = (V, E) we will identify a subgraph

G1 = (V1, E1) with its vertex set V1. Let’s introduce the definition of nodes below.

Definition 2.5 (Node). Let G be a digraph. A subset G1 of vertices is called a

node if it satisfies the following condition: For any subset G2 of G1, G2 is affected by

G1\G2. Moreover, if G1 is not affected by G\G1, we say G1 is a maximum node.

Intuitively, a node means that a set of particles can be viewed as a “large”

particle. In the following, we will see that the concept of node can simplify the

structure of the graph and help us to catch the attraction effect more clearly in a

network.

Lemma 2.4. Any graph G contains at least one maximum node.

Proof. We will use induction principle to prove the lemma.

(Step 1) If G is a maximum node, we are done. If not, there exists a subset G1 such

that G1 is not affected by G\G1.

(Step 2) If G1 is a node, G1 is obvious a maximum node. Otherwise, we can find G2

such that G2 $ G1 and G2 is not affected by G\G2.

(Step 3) As G contains N particles, we can repeat Step 2 at most N times to find

a strict decreasing sequence such that

Gk $ Gk−1 · · · $ G1 $ G, 0 ≤ k ≤ N,
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where Gk is a maximum node. This finishes the proof of the lemma

Lemma 2.5. (Node decomposition) Suppose G to be any graph. Then we can de-

compose G to be a union as G =
d⋃
i=0

( ki⋃
j=1

Gji
)

such that

(1) Gj0 are the maximum nodes of G, where 1 ≤ j ≤ k0.

(2) For any p, q where 1 ≤ p ≤ d and 1 ≤ q ≤ kp, Gqp are the maximum nodes

of G\
( p−1⋃
i=0

( ki⋃
j=1

Gji
))

.

Proof. This result is very intuitive. According to Lemma 2.4, G contains at least

one maximum node. Therefore we can collect all maximum nodes and label them

by Gj0 for 1 ≤ j ≤ k0, where k0 is the number of maximum nodes of G. Then we

get rid of
( k0⋃
j=1

Gj0
)

and find all maximum nodes of the remain G\
( k0⋃
j=1

Gj0
)

. Denote

the maximum nodes of G\
( k0⋃
j=1

Gj0
)

by Gj1 for 1 ≤ j ≤ k1, provided there are k1

maximum nodes. We can repeat this process and construct the maximum nodes Gqp

of G\
( p−1⋃
i=0

( ki⋃
j=1

Gji
))

for 1 ≤ q ≤ kp. As G contains finite N particles, after d steps,

we will obtain G =
d⋃
i=0

( ki⋃
j=1

Gji
)

.

Remark 2.1. Below, we give comments on important notation and properties to

be used later.

(1) By definition of maximum node, we know Gqp and Gq′p do not affect each

other for 1 ≤ q 6= q′ ≤ kp. In fact, Gqp will be only affected by G0 and Gji ,

where 1 ≤ i ≤ p− 1. Therefore, without loss of generality, we may assume

ki = 1 for all 1 ≤ i ≤ d in the proof of the main theorems in the paper (see

Lemma 3.6). Thus the decomposition can be expressed by

G =

d⋃
i=0

Gi,

where Gp is a maximum node of G\
⋃p−1
i=0 Gi.

(2) Given a particle zk+1
i ∈ Gk+1, we denote the set of neighbors of zk+1

i by
k+1⋃
j=0

N k+1
i (j), where N k+1

i (j) represents the neighbors of zk+1
i in Gj . The

node decomposition and spanning tree in G guarantee that for any 0 ≤
k ≤ d − 1 there exists at least one particle in Gk+1, say zk+1

p , such that
k⋃
j=0

N k+1
p (j) 6= ∅.
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Lemma 2.6. A graph G contains a unique maximum node if and only if G contains

a spanning tree.

Proof. • (If part): Suppose G contains a spanning tree and two maximum nodes.

Then the two nodes are not affected by each other which is a contradiction to the

existence of spanning tree.

• (Only if part): Suppose G contains a unique maximum node G0. Then according

to Lemma 2.5, we know all the maximum nodes Gj1 of the remain G\G0 should

be reachable from G0. Otherwise, there are two maximum nodes of G which is a

contradiction to the uniqueness assumption of the maximum node of G. Then we

can repeat this process to show that all the maximum nodes Gjp of the remain

G\
( p−1⋃
i=0

( ki⋃
j=1

Gji
))

should be reachable from
( p−1⋃
i=0

( ki⋃
j=1

Gji
))

. In particular, this

implies that all Gqp are reachable from G0. Then combining the strong connectivity

of each Gqp , we conclude that all the particles are reachable from any zi ∈ G0, which

implies the existence of the spanning tree.

Now, with the definitions and notations above, we can apply the node decom-

position in Lemma 2.5 to prove the Lemma 2.2 rigorously.

Proof of Lemma 2.2. According to Lemma 2.6, if the graph contains no spanning

tree, we can find at least two maximum nodes G1
0 and G2

0 such that, G1
0 is not

reachable from G \ G1
0 and G2

0 is not reachable from G \ G2
0 . Then we set initial

configuration as following

xi(0) = 0, 1 ≤ i ≤ N,
vi(0) = −1, zi = (xi, vi) ∈ G1

0 ,

vi(0) = 1, zi = (xi, vi) ∈ G2
0 ,

vi(0) = 0, zi = (xi, vi) ∈ G \
(
G1

0 ∪ G2
0

)
.

(2.1)

Now, as G1
0 is a maximum node, the dynamics of zi = (xi, vi) will not affected by

G \ G1
0 . Moreover, as zi ∈ G1

0 have the same initial velocity, we immediately have

(xi(t), vi(t)) = (xi(0) + vi(0)t, vi(0)) = (−t,−1), zi ∈ G1
0 .

Similarly we have for zi ∈ G2
0 that

(xi(t), vi(t)) = (xi(0) + vi(0)t, vi(0)) = (t, 1), zi ∈ G2
0 .

Therefore, we conclude the non-existence of flocking emergence provided the initial

data (2.1) and finish the proof.
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3. Uniform boundedness of relative positions

In this section, we recall the first-order reformulation of the C-S model (1.3)

on a real line, and we combine the node decomposition and induction principle to

show that the relative positions are uniformly bounded for a digraph containing a

spanning tree.

3.1. A first-order reformulation

In this subsection, we discuss the first-order system for position which can be

derived from the second-order system (1.3).

Consider the following first-order system on the real line:
ẋi = νi + κ

∑
k∈Ni

Ψ(xk − xi), t > 0,

xi(0) = x0
i , i = 1, 2, · · · , N,

(3.1)

where νi is the natural velocity of the i-th particle, and Ψ is the coupling function

which is an anti-derivative of the communication function ψ:

Ψ(y) :=

∫ y

0

ψ(s)ds, y ∈ R. (3.2)

Then, it is easy to check the equivalence between the second-order system (1.3) and

the first-order system (3.1) (see Ref. 23,24). In fact, we have the following lemma.

Lemma 3.1. For one-dimensional case, the second-order system (1.3) and the first-

order system (3.1) are equivalent to each other.

Proof. (i) (From the second-order to the first-order): Note that for one-dimensional

case, we have

ψ(xk − xi)(vk − vi) =
d

dt

∫ xk−xi

0

ψ(y)dy =
d

dt
Ψ(xk − xi). (3.3)

Thus, the momentum equation in (1.3) and (3.3) yield

d

dt

[
vi − κ

∑
k∈Ni

Ψ(xk − xi)
]

= 0.

We integrate the above relation to get

vi(t)− κ
∑
k∈Ni

Ψ(xk(t)− xi(t)) = v0
i − κ

∑
k∈Ni

Ψ(x0
k − x0

i ) =: νi(X
0, V 0),

or equivalently,

vi(t) = νi(X
0, V 0) + κ

∑
k∈Ni

Ψ(xk(t)− xi(t)). (3.4)
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Finally, we combine (1.3)1 and (3.4) to get the first-order system for xi:

ẋi = νi + κ
∑
k∈Ni

Ψ(xk − xi),

νi = v0
i − κ

∑
k∈Ni

Ψ(x0
k − x0

i ),

xi(0) = x0
i , t > 0, i = 1, 2, · · · , N.

(3.5)

(ii) (From the first-order to the second-order): We differentiate (3.1) with respect

to t, and then obtain the second-order system (1.3) with initial data:

(x0
i , v

0
i ) := (x0

i , νi + κ
∑
k∈Ni

Ψ(x0
k − x0

i )).

In next lemma, we provide some basic and important properties of the coupling

function Ψ in (3.2) to be crucially used in later analysis.

Lemma 3.2. Suppose that ψ satisfies the condition (1.4) and non-integrable. Then,

the corresponding coupling function Ψ is odd, analytic, non-decreasing and unbound-

ed:

−Ψ(−s) = Ψ(s),
d

ds
Ψ(s) ≥ 0, lim

s→+∞
Ψ(s) = +∞.

Moreover, Ψ(s) is concave for s ≥ 0 and convex for s ≤ 0.

Proof. The desired estimates are mainly due to the properties of ψ in (1.4). The

facts that ψ is even, analytic and non-negativity imply that anti-deriviative Ψ is

odd, analytic and non-decreasing. Moreover, Ψ(s) is concave for s ≥ 0 because ψ is

non-increasing if s ≥ 0. Similarly, we conclude Ψ is convex for s ≤ 0. Finally, the

unboundedness comes from the non-integrability of ψ.

3.2. A priori estimates

In this subsection we will derive some a priori estimates for the first-order system

(3.1) leading to the uniform boundedness of relative positions for the second order

system (1.3) in next subsection. For this purpose, we need to introduce an algorithm

so that at each time we can derive a differential inequality for the functional Q(t)

which is equivalent to X (t). The algorithm consists of the following three steps:

Step 1: For any given time t, we reorder the particle indexes to make the particle

position from minimum to maximum. More precisely, by relabelling the agents at

time t, we set

x1(t) ≤ x2(t) · · · ≤ xN (t). (3.6)
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To introduce the following steps, we first introduce the processes of iterations for

L̄Nk (C̄k,N ) and Ll1(C1,l) as follows.

• (A1): If L̄Nk (C̄k,N ) is not a general root, then we set

L̄Nk−1(C̄k−1,N ) =
āk−1L̄Nk (C̄k,N ) + zk−1

āk−1 + 1
.

• (A2): If Ll1(C1,l) is not a general root, then we construct

Ll+1
1 (C1,l+1) =

al+1L
l
1(C1,l) + zl+1

al+1 + 1
.

Step 2: We start from zN and follow the process A1 to construct L̄Nk (C̄k,N ) until

either k = 1 or L̄Nk (C̄k,N ) is a general root at some k > 1. If the former happens,

we denote k∗ = 1. If the latter happens, we denote by k∗ the first k producing a

general root L̄Nk (C̄k,N ) in process A1.

Step 3: We start from z1 and follow the process A2 until either l = N or Ll1(C1,l)

is a general root at some l < N . If the former happens, we denote k∗ = N . If the

latter happens, we denote by k∗ the first l producing a general root Ll1(C1,l) in

process A2.

Remark 3.1.

(1) For convenience, the algorithm with Step 1 to Step 3 will be referred as

Algorithm A.

(2) At each iteration in A1, the right-hand side is a convex combination

of L̄Nk (C̄k,N ) and zk−1, hence it is a convex combination of subsets of

{zi}Ni=k−1. Similarly, each Ll1(C1,l) is a convex combination of {zi}li=1. Here

the coefficients āk−1 ≥ 0 and al+1 ≥ 0 will be determined later (see Lemma

3.4).

(3) Note that k∗ ≤ k∗ because of the assumption of existence of spanning tree.

In fact, according to Lemma 2.3, as L̄Nk∗(C̄k∗,N ) is a general root, Ll1(C1,l)

is not a general root for any l < k∗. This means that the iteration process

A2 can continue until l = k∗ − 1. Therefore, by Algorithm A we finally

obtain two convex combination L̄Nk∗(C̄k∗,N ) and Lk∗1 (C1,k∗), which consist

of two subgroups of agents with nonempty intersection.

In the next lemmas, we will show a monotone property of Ψ and construct an a

priori estimate which will be used to prove the uniform bound of the relative distance

of particles in the second order system (1.3), provided ψ(s) is non-integrable.

Lemma 3.3. Suppose that the network contains a spanning tree, and let (xi) be a

solution to the first-order system (3.1). Moreover we also assume the particles are
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well-ordered at time t as (3.6). Then at time t, we have

N∑
i=m

min
k∈Ni,
k≤i

Ψ(xk − xi) ≤ min
k∈∪NmNi

Ψ(xk − xN ), k∗ ≤ m ≤ N,

m∑
i=1

max
k∈Ni,
k≥i

Ψ(xk − xi) ≥ max
k∈∪m1 Ni

Ψ(xk − x1), 1 ≤ m ≤ k∗,

where k∗, k∗ ∈ {1, . . . , N} are obtained in Algorithm A,

Proof. We will prove the first relation, and the second one can be verified simi-

larly. If k∗ = N, i.e., N is a root, then the desired result holds according to the

monotonicity of Ψ and the well-ordering in (xi). Next, we focus on the situation

that k∗ ≤ N − 1. Note that Algorithm A means L̄Nk (C̄k,N ) is not a general root for

any k with k∗ + 1 ≤ k ≤ N . For given m ∈ [k∗, N ], we set

k̄ = min
k∈∪NmNi

k.

Then for k̄ we have

Ψ(xk̄ − xN ) = min
k∈∪NmNi

Ψ(xk − xN ).

Since k̄ ∈ ∪NmNi, there exists m0 ∈ [m,N ] such that k̄ ∈ Nm0 . For m0, as

L̄Nm0+1(C̄m0+1,N ) is not a general root, there exist k0 ≤ m0 and m1 ∈ [m0 + 1, N ]

such that k0 ∈ Nm1
. For m1, as L̄Nm1+1(C̄m1+1,N ) is not a general root, there exist

k1 ≤ m1 and m2 ∈ [m1 + 1, N ] such that k1 ∈ Nm2 . This process can be repeated

until we find mj0 = N and kj0−1 ≤ mj0−1 such that kj0−1 ∈ NN . Note that

N∑
i=m

min
k∈Ni
k≤i

Ψ(xk − xi) ≤ Ψ(xk̄ − xm0
) + Ψ(xk0 − xm1

) + Ψ(xk1 − xm2
) + · · ·+ Ψ(xkj0−1

− xN ),

where ki ≤ mi for all 0 ≤ i ≤ j0. Then we can use the convexity of Ψ when s ≤ 0

in Lemma 3.2 to obtain

N∑
i=m

min
k∈Ni
k≤i

Ψ(xk − xi) ≤ Ψ(xk̄ − xN ).

For the second assertion, we note that Lemma 2.3 tells that Lk1(C1,k) is not a general

root for any k ∈ [1,m− 1]. With the similar argument but applying the concavity of

Ψ(s) when s ≥ 0 instead of convexity, we can prove

m∑
i=1

max
k∈Ni,
k≥i

Ψ(xk − xi) ≥ max
k∈∪m1 Ni

Ψ(xk − x1), 1 ≤ m ≤ k∗.

According to Lemma 2.3, for any fixed m, either L̄Nk (C̄k,N ) is not a general

root for m ≤ k ≤ N or Lk1(C1,k) is not a general root for 1 ≤ k ≤ m. Moreover,
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Lemma 3.3 allows us to estimate the rate of change for the relative distance between

L̄Nk∗(C̄k∗,N ) and Lk∗1 (C1,k∗
), which is studied in the next lemma.

Lemma 3.4. Suppose that the network contains a spanning tree, and let (xi) be

the solution to the first-order system (3.1). We can design suitable coefficients ak’s

and al depending only on N , so that if we apply Algorithm A at each time t and set

x̄k := ProjxL̄Nk (C̄k,N ), xk := ProjxLk1(C1,k),

then we have:

(i) there exist positive constants C1(νi) and C2(N,κ) such that at each time t

d

dt
(x̄k∗ − xk∗) ≤ C1 − C2Ψ(X ).

(ii) at each time t,

X
4
≤ x̄k∗ − xk∗ ≤ X .

Proof. (i) We will design suitable coefficients āk’s and al’s inductively, and prove

the desired relation in two steps. In the first step, we construct the differential in-

equality for x̄k∗ . In the second step, we use the same method to construct similar

differential inequality for xk∗ and finish the proof of (i).

• (Step 1): We apply the process A1 from xN to xk∗ and construct

L̄Nk−1(C̄k−1,N ) with āN = 0, āk−1 = (N − k + 2)(āk + 1), 2 ≤ k ≤ N. (3.7)

By induction, we can derive

āk−1 =

N−k+1∑
i=1

P (N − k + 2, i), 2 ≤ k ≤ N. (3.8)

Then we consider the dynamic of the quantities L̄Nk−1(C̄k−1,N ) according to the

first-order system. We set x̄k := ProjxL̄Nk (C̄k,N ) and have

ẋN = νN + κ
∑
k∈NN

Ψ(xk − xN ) ≤ νN + κ min
k∈NN

Ψ(xk − xN ).

The last inequality above comes from the negativity of Ψ(xk−xN ) due to the well-

ordering assumption (3.6). Similarly, according to A1 and āN−1 = 2 in (3.7), we
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simply have for L̄NN−1(C̄N−1,N ) that

d

dt
x̄N−1 =

2ẋN + ẋN−1

3

=
2

3
κ
∑
k∈NN

Ψ(xk − xN ) +
1

3
κ

∑
k∈NN−1

Ψ(xk − xN−1) +
2

3
νN +

1

3
νN−1

≤ 2

3
κ min
k∈NN

Ψ(xk − xN ) +
1

3
κ
(

Ψ(xN − xN−1) + min
k∈NN−1

k≤N−1

Ψ(xk − xN−1)
)

+
2

3
νN +

1

3
νN−1

≤ 2

3
νN +

1

3
νN−1 +

κ

3

(
min
k∈NN

Ψ(xk − xN ) + min
k∈NN−1

k≤N−1

Ψ(xk − xN−1)
)
.

(3.9)

Next we use method of induction to deal with L̄Nm(C̄m,N ). In fact, suppose for

L̄Nm(C̄m,N ), where k∗ + 1 ≤ m ≤ N − 1, we have

d

dt
x̄m ≤

νm
ām + 1

+

N∑
i=m+1

∏i−1
l=m ālνi∏i

l=m(āl + 1)
+

κ

ām + 1

( N∑
i=m

min
k∈Ni
k≤i

Ψ(xk − xi)
)
. (3.10)

Then (3.9) already shows (3.10) holds for m = N − 1. Now by Algorithm A1 we

obtain

d

dt
x̄m−1 =

ām−1 ˙̄xm + ẋm−1

ām−1 + 1
=

ām−1 ˙̄xm
ām−1 + 1

+
ẋm−1

ām−1 + 1
= I11 + I12. (3.11)

� For the term I11, we can apply (3.7) and (3.10) to obtain

I11 ≤
ām−1

ām−1 + 1

( νm
ām + 1

+

N∑
i=m+1

νi
∏i−1
l=m āl∏i

l=m(āl + 1)

)

+
ām−1

ām−1 + 1

( κ

ām + 1

( N∑
i=m

min
k∈Ni
k≤i

Ψ(xk − xi)
))

=

N∑
i=m

νi
∏i−1
l=m−1 āl∏i

l=m−1(āl + 1)
+

(N −m+ 2)κ

ām−1 + 1

( N∑
i=m

min
k∈Ni
k≤i

Ψ(xk − xi)
)
.

(3.12)

� For the term I12, we can use the equation (3.5) to have

I12 =
1

ām−1 + 1

(
νm−1 + κ

∑
k∈Nm−1

Ψ(xk − xm−1)
)
. (3.13)
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Now, we combine (3.11), (3.12) and (3.13) to get

d

dt
x̄m−1 ≤

νm−1

ām−1 + 1
+

N∑
i=m

νi
∏i−1
l=m−1 āl∏i

l=m−1(āl + 1)︸ ︷︷ ︸
I21

+
(N −m+ 2)κ

ām−1 + 1

( N∑
i=m

min
k∈Ni
k≤i

Ψ(xk − xi)
)

+
κ

ām−1 + 1

( ∑
k∈Nm−1

Ψ(xk − xm−1)
)

︸ ︷︷ ︸
I22

.

(3.14)

� For the term I21, it already satifies the induction rule. Thus, we only need to

focus on I22. Due to the well-ordering assumption (3.6), we have

I22 =
κ

ām−1 + 1

( N∑
i=m

min
k∈Ni
k≤i

Ψ(xk − xi) +
∑

k∈Nm−1

k≤m−1

Ψ(xk − xm−1)
)

+
κ

ām−1 + 1

(
(N −m+ 1)

N∑
i=m

min
k∈Ni,
k≤i

Ψ(xk − xi) +
∑

k∈Nm−1

k>m−1

Ψ(xk − xm−1)
)

(3.15)

According to Lemma 3.3 and the fact that L̄Nm(Cm,N ) is not a general root for all

k∗ + 1 ≤ m ≤ N , we have

κ

ām−1 + 1

(
(N −m+ 1)

N∑
i=m

min
k∈Ni
k≤i

Ψ(xk − xi) +
∑

k∈Nm−1

k>m−1

Ψ(xk − xm−1)
)

≤ κ

ām−1 + 1

(
(N −m+ 1) min

k∈∪NmNi
Ψ(xk − xN ) +

∑
k∈Nm−1

k>m−1

Ψ(xk − xm−1)
)

≤ κ

ām−1 + 1

(
(N −m+ 1)Ψ(xm−1 − xN ) +

∑
k∈Nm−1

k>m−1

Ψ(xk − xm−1)
)

≤ 0.

(3.16)
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Therefore, we combine (3.14), (3.15) and (3.16) to get

d

dt
x̄m−1 ≤

νm−1

ām−1 + 1
+

N∑
i=m

νi
∏i−1
l=m−1 āl∏i

l=m−1(āl + 1)

+
κ

ām−1 + 1

( N∑
i=m

min
k∈Ni
k≤i

Ψ(xk − xi) +
∑

k∈Nm−1

k≤m−1

Ψ(xk − xm−1)
)

≤ νm−1

ām−1 + 1
+

N∑
i=m

νi
∏i−1
l=m−1 āl∏i

l=m−1(āl + 1)
+

κ

ām−1 + 1

( N∑
i=m−1

min
k∈Ni,
k≤i

Ψ(xk − xi)
)
.

By induction hypothesis and Lemma 3.3, we can apply the connectivity to get

d

dt
x̄k∗ ≤

νk∗

āk∗ + 1
+

N∑
i=k∗+1

νi
∏i−1
l=k∗ āl∏i

l=k∗(āl + 1)
+

κ

āk∗ + 1

( N∑
i=k∗

min
k∈Ni
k≤i

Ψ(xk − xi)
)

≤ νk∗

āk∗ + 1
+

N∑
i=k∗+1

νi
∏i−1
l=k∗ āl∏i

l=k∗(āl + 1)
+

κ

āk∗ + 1

(
min

k∈∪Nk∗Ni
Ψ(xk − xN )

)

=
νk∗

āk∗ + 1
+

N∑
i=k∗+1

νi
∏i−1
l=k∗ āl∏i

l=k∗(āl + 1)
+

κ

āk∗ + 1
Ψ(xk∗ − xN ).

(3.17)

Here the last equality is due to the case that L̄Nk∗(C̄k∗,N ) is a general root and

L̄Nk (C̄k,N ) are not general root for all k∗ < k ≤ N .

• (Step 2): In order to estimate ẋk∗ , we recall Step 3 in Algorithm A, and construct

Lk+1
1 (C1,k+1) with a1 = 0, ak+1 = (k + 1)(ak + 1), 1 ≤ k ≤ N − 1.

Therefore, we have

ak+1 =

k∑
i=1

P (k + 1, i), 1 ≤ k ≤ N − 1. (3.18)

According to Lemma 2.3, the process A2 can continue until k∗, thus we set

xk∗ := ProjxL
k∗
1 (C1,k∗

)

and apply a similar method as before to derive

d

dt
xk∗ ≥

νk∗
ak∗ + 1

+

k∗−1∑
i=1

νi
∏k∗
l=i+1 al∏k∗

l=i(al + 1)
+

κ

ak∗ + 1

( k∗∑
i=1

max
k∈Ni
k≥i

Ψ(xk − xi)
)

≥ νk∗
ak∗ + 1

+

k∗−1∑
i=1

νi
∏k∗
l=i+1 al∏k∗

l=i(al + 1)
+

κ

ak∗ + 1
Ψ(xk∗ − x1).

(3.19)
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Here, for the second inequality we used the fact that Lk1(C1,k) is not a general root

for any k ∈ [1, k∗ − 1]. We combine (3.17) and (3.19) to get

d

dt
(x̄k∗ − xk∗)

≤ νk∗

āk∗ + 1
+

N∑
i=k∗+1

νi
∏i−1
l=k∗ āl∏i

l=k∗(āl + 1)
− νk∗
ak∗ + 1

−
k∗−1∑
i=1

νi
∏k∗
l=i+1 al∏k∗

l=i(al + 1)

+
κ

āk∗ + 1
Ψ(xk∗ − xN )− κ

ak∗ + 1
Ψ(xk∗ − x1)

≤ νk∗

āk∗ + 1
− νk∗
ak∗ + 1

+

N∑
i=k∗+1

νi
∏i−1
l=k∗ āl∏i

l=k∗(āl + 1)
−
k∗−1∑
i=1

νi
∏k∗
l=i+1 al∏k∗

l=i(al + 1)

+ min

{
κ

āk∗ + 1
,

κ

ak∗ + 1

}
Ψ(x1 − xN ).

(3.20)

The last inequality is due to the fact k∗ ≤ k∗ in Remark 3.1. Here, the constants

āk∗ and ak∗ are given as in (3.8) and (3.18), i.e.,

āk∗ =

N−k∗∑
i=1

P (N − k∗ + 1, i) and ak∗ =

k∗−1∑
i=1

P (k∗, i).

We can verify that the terms in (3.20) involving νi is the difference of a convex com-

bination of νk∗ , νk∗+1, . . . , νN and a convex combination of ν1, ν2, . . . , νk∗ Therefore,

it follows from (3.20) that

d

dt
(x̄k∗ − xk∗) ≤ |νM − νm| −

κ∑N−1
i=1 P (N, i) + 1

Ψ(X ).

This finishes the proof of (i).

(ii) From the convex combination structure of x̄k∗(t) and xk∗(t), we immediately

have

x̄k∗(t)− xk∗(t) ≤ X (t).

We now prove the left part of the desired relation. In fact, as we assume the order

of position, we can continue (3.7) to construct L̄N1 (C̄1,N ). Similarly, we construct

LN1 (C1,N ). Clearly, one has

ProjxL̄Nk∗(C̄k∗,N ) ≥ ProjxL̄N1 (C̄1,N ), ProjxL
k∗
1 (C1,k∗

) ≤ ProjxLN1 (C1,N ).

Therefore we have

x̄k∗(t)− xk∗(t)

= ProjxL̄Nk∗(C̄k∗,N )− ProjxL
k∗
1 (C1,k∗

) ≥ ProjxL̄N1 (C̄1,N )− ProjxLN1 (C1,N ).

(3.21)

According to (3.8) and (3.18), we have

āN−i = a1+i.
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Therefore, we immediately obtain a symmetric property:∏N
l=i+1 al∏N

l=i(al + 1)
=

∏N−i
l=1 āl∏N−i+1

l=1 (āl + 1)
.

With above relation, we can apply (3.7) to have

ProjxL̄N1 (C̄1,N )− ProjxLN1 (C1,N )

=
x1

ā1 + 1
+

N∑
i=2

xi
∏i−1
l=1 āl∏i

l=1(āl + 1)
− xN
aN + 1

−
N−1∑
i=1

xi
∏N
l=i+1 al∏N

l=i(al + 1)

=
x1

ā1 + 1
+

N∑
i=2

xi
∏i−1
l=1 āl∏i

l=1(āl + 1)
− xN
ā1 + 1

−
N−1∑
i=1

xi
∏N−i
l=1 āl∏N−i+1

l=1 (āl + 1)

=
1

ā1 + 1

N∑
i=1

xi

( N !

(N − i+ 1)!
− N !

i!

)
.

(3.22)

With the symmetric structure, we can rewrite (3.22) as

ProjxL̄N1 (C̄1,N )− ProjxLN1 (C1,N )

=
N !− 1

ā1 + 1
(xN − x1) +

bN2 c−1∑
k=1

(xN−k − xk+1)

ā1 + 1

( N !

(k + 1)!
− N !

(N − k)!

)
≥ N !− 1

ā1 + 1
(xN − x1).

(3.23)

According to (3.8), we have

ā1 =

N−1∑
i=1

P (N, i).

We combine the above formula of ā1 and (3.23) to find

ProjxL̄N1 (C̄1,N )− ProjxLN1 (C1,N )

≥ N !

2(
∑N−1
i=1 P (N, i) + 1)

(xN − x1) =
X

2(
∑N
i=1

1
i! )
≥ X

2(
∑N−1
i=0

1
2i )
≥ X

4
.

(3.24)

Finally, we combine (3.21) and (3.24) to finish the proof of (ii).

3.3. Uniform boundedness of relative positions

In next lemma, we show that the particles in a maximum node G0 will aggregate

and thus the maximum node G0 can be really viewed as one particle.

Lemma 3.5. Suppose that the graph G contains a spanning tree, and let (xi) be a

solution to the system (3.1). Moreover, we denote the unique maximum node by G0.

If Ψ is unbounded, then the diameter of spatial variable X0(t) of G0 is uniformly

bounded i.e. there exists a positive constant M0 such that

sup
0≤t<∞

max
i,j∈G0

|xj(t)− xi(t)| ≤ 4M0 <∞.
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Proof. According to Lemma 2.4, the maximum node G0 is not affected by G\G0.

Therefore, we can get rid of the other particles and we only consider the subgraph

G0. For simplicity, we say that G0 consists of N0 particles labeled {1, 2, . . . , N0}.
Moreover, according to Lemma 3.2, Ψ is analytic and thus the system (3.1) has a

unique analytical solution. Therefore, for any two particles, they either collide finite

times or always stay together in any finite time period [0, T ]. Thus we fix the time

period [0, T ] and consider these two cases separately.

• (Case 1): No pair of particles stay together through [0, T ]. In this situation, only

finite many collisions happen in [0, T ]. Therefore, we can construct the set

T = {t | xi(t) = xj(t), for some i 6= j},

which has finite cardinality. Without loss of generality, we can arrange T ∪ {0, T}
as

0 = t1 < t2 · · · < tM = T.

In the following, we will prove the uniform boundedness of X0(t) in three steps. In

the first two steps, we will construct a quantity Q0(t) and show the equivalence be-

tween Q0(t) and X0(t). Then in the third step we will show that Q0(t) is uniformly

bounded which implies the uniform boundedness of X0(t).

� (Step 1): It is obvious that, in each interval (ti, ti+1) where 1 ≤ i ≤ M − 1, no

particles collide and the order of xi’s are fixed. This enables us to apply algorithm

A to the maximum node G0. In fact, we can construct L̄N0

k∗ (C̄k∗,N0
) and Lk∗1 (C1,k∗

)

in the same way for all t ∈ Ji := [ti, ti+1). Therefore, following Lemma 3.4, we can

construct x̄k∗ and xk∗ so that their form does not depend on t ∈ Ji. Then we denote

Q0
i (t) := x̄k∗(t)− xk∗(t), t ∈ Ji.

By Lemma 3.4, we have

d

dt
Q0
i (t) ≤ |νM − νm| −

κ∑N0−1
i=1 P (N0, i) + 1

Ψ(X0(t)), t ∈ Ji.

� (Step 2): As G0 is a node, we immediately have k∗ = 1 and k∗ = N0 for any Ji.

In other words, for i 6= j, the terms Q0
i and Q0

j are convex combinations of all the

members in G0. Therefore, we have

lim
t→ti+1

Q0
i (t) = Q0

i+1(ti+1), 1 ≤ i ≤M.

Then, if we define Q0(t) = Q0
i (t) where t ∈ Ji, we can conclude that Q0(t) is a well

defined Lipschitz function and it has the following properties
X0(t)

4
≤ Q0(t) ≤ X0(t), t ∈ Ji,

d

dt
Q0(t) ≤ |νM − νm| −

κ∑N0−1
i=1 P (N0, i) + 1

Ψ(X0(t)) a.e. t ∈ [0, T ].
(3.25)



May 12, 2020 17:26 WSPC/INSTRUCTION FILE HLZ-v13(20-5-11)

Critical exponent of one-dimensional Cucker-Smale model 21

� (Step 3): In this part, we prove the uniform boundedness of X0. As Ψ is unbounded

and monotone increasing, we can find a positive constant M0 such that

M0 := max

Q0(0), max

s ∣∣∣ Ψ(s) ≤
|νM − νm|

(∑N0−1
i=1 P (N0, i) + 1

)
κ


 .

(3.26)

Next we claim

Q0(t) ≤M0 for all t ∈ [0, T ].

Proof of the claim: Suppose not, then we have some t̄ ∈ [0, T ] such that

Q0(t̄) > M0.

Consider the set:

M0 := {t | t < t̄, Q0(t) ≤M0}.

It is obvious that 0 ∈M0, thereforeM0 is not empty and we denote t∗ := supM0.

Moreover, it is easy to show that t∗ < t̄. According to the construction of M0 in

(3.26), we have

Q0(t∗) = M0 and |νM − νm| −
κ∑N0−1

i=1 P (N0, i) + 1
Ψ(Q0(t)) ≤ 0, t∗ ≤ t ≤ t̄.

(3.27)

Now we apply (3.25)2 to have

0 < Q0(t̄)−M0 = Q0(t̄)−Q0(t∗)

≤
∫ t̄

t∗
|νM − νm| −

κ∑N0−1
i=1 P (N0, i) + 1

Ψ(Q0(t))dt ≤ 0,
(3.28)

which is a contradictory. Therefore, we finish the proof of claim and show that

Q0(t) ≤M0 for all t ∈ [0, T ].

Finally, it follows from (3.25)1 that

X0(t) ≤ 4Q0(t) ≤ 4M0, t ∈ [0, T ].

Since T is arbitrary chosen, and M0 in (3.26) is independent of T , we conclude

X0(t) ≤ 4M0, t ≥ 0.

• (Case 2): If there are some xi and xj stay together in all period [0, T ], then we can

view them as one particle and thus the total number of particles that we need to

study is reduced. Therefore, for this even simpler situation, we can apply previous

method in the same way to obtain

X0(t) ≤ 4M0, t ≥ 0.
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In next lemma, we will further show the uniform boundedness of the spatial

diameter of the whole graph G. However, as Gk’s are not nodes in G for k ≥ 1, we

have to reproduce āki and akj to construct the coefficients of convex combination.

Lemma 3.6. Suppose that the network G contains a spanning tree, and let (xi)

be a solution to the system (3.1). If Ψ is unbounded, then the diameter of spatial

variable X (t) is uniformly bounded: there exists a positive constant M̄ such that

sup
0≤t<∞

max
1≤i,j≤N

|xj(t)− xi(t)| ≤ M̄ <∞.

Proof. According to Remark 2.1, we apply node decomposition to represent G as

G =
d⋃
k=0

Gk, |Gk| = Nk.

Now we define a sequence of quantities Qk(t) as following. First, we denote the

particles in Gk by zki = (xki , v
k
i ) with 1 ≤ i ≤ Nk. Then we can assume xki are well

ordered as below

xk1 ≤ xk2 · · · ≤ xkNk .

According to Lemma 2.5 and Remark 2.1, Gk is the maximum node in G\
⋃k−1
i=0 Gi.

Therefore, we can define L̄Nk1 (C̄1,Nk) and LNk1 (C1,Nk
) for each Gk similar to Lemma

3.4. In fact, we can set āki and aki as below, where 1 ≤ i ≤ Nk:
ākNk = 0, āki−1 = (Nk − i+ 2 + gk−1)(āki + 1), gk−1 :=

k−1∑
j=1

Nj , 2 ≤ i ≤ Nk,

ak1 = 0, aki+1 = (i+ 1 + gk−1)(aki + 1), 1 ≤ i ≤ Nk − 1.

(3.29)

By induction argument, we can derive
āki−1 =

Nk−i+1∑
j=1

P (Nk − i+ 2 + gk−1, j + gk−1), 2 ≤ i ≤ Nk,

aki+1 =

i∑
j=1

P (i+ 1 + gk−1, j + gk−1), 1 ≤ i ≤ Nk − 1.

(3.30)

Next, we set

x̄k := ProjxL̄
Nk
1 (C̄1,Nk) and xk := ProjxL

Nk
1 (C1,Nk

).

Then we can define

Qk(t) := max
0≤i≤k

{x̄i} − min
0≤i≤k

{xi}. (3.31)
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It is obvious that Qk(t) is Lipschitz continuous and Lemma 3.5 provides positive

constants C0
1 , C0

2 and C0
3 such that

d

dt
Q0(t) ≤ C0

1 − C0
2Ψ(Q0), X 0(t) ≤ C0

3 .

Note that the construction of x̄k and xk do not involve the particles in Gi for i 6= k.

However, for k ≥ 1, we cannot directly apply the previous method that we used for

Q0. This is because the particles in Gi with i < k perform as a source and thus we

cannot miss the information from Gi with i < k. Therefore, we will study Qk which

contains all informations of Gi with i ≤ k. In the following, we will construct the

induction process in two steps to finish the proof.

• (Step 1): In this step, we prove that for 0 ≤ k ≤ d − 1, if there exist positive

constants Ck1 , Ck2 and Ck4 such that

d

dt
Qk(t) ≤ Ck1 − Ck2 Ψ(Qk), Dk ≤ Ck4 ,

where Dk :=
(

max
0≤i≤k

max
1≤j≤Ni

{xij} − min
0≤i≤k

min
1≤j≤Ni

{xij}
)

. Then, we can find positive

constants Ck+1
1 and Ck+1

2 such that

d

dt
Qk+1(t) ≤ Ck+1

1 − Ck+1
2 Ψ(Qk+1). (3.32)

Please see Section Appendix A.1 for details.

• (Step 2): In this step, we prove that if

d

dt
Qk+1(t) ≤ Ck+1

1 − Ck+1
2 Ψ(Qk+1), 0 ≤ k ≤ d− 1,

then there exist positive constants Ck+1
3 and Ck+1

4 such that

X k+1 ≤ Ck+1
3 , Dk+1 ≤ Ck+1

4 .

Please see Section A.2 for details.

• (Step 3): Now, we are ready to finish the proof of the lemma. According to Lemma

3.5, we have

d

dt
Q0(t) ≤ C0

1 − C0
2Ψ(Q0) and D0 = X 0 ≤ C0

3 = C0
4 .

Then, with the analysis in (Step 1) and (Step 2), we can apply induction principle

to conclude that there exists a positive constant M̄ such that

sup
0≤t<∞

max
1≤i,j≤N

|xj(t)− xi(t)| = sup
0≤t<∞

Dd ≤ Cd4 = M̄ <∞.

According to the equivalence between the first-order system (3.1) and second-

order system (1.3) from Lemma 3.1, we can apply Lemma 3.6 to obtain the corre-

sponding result for second order system (1.3) as follows.
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Corollary 3.1. Suppose that (xi, vi) is a solution to the system (1.3) and the net-

work contains a spanning tree. If ψ is non-integrable and satisfies (1.4), then the

diameter of spatial variable X (t) is uniform bounded: there exists a positive constant

M1 such that

sup
0≤t<∞

max
1≤i,j≤N

|xj(t)− xi(t)| ≤M1 <∞.

Proof. For any fixed initial data (x0
i , v

0
i ), we apply Lemma 3.1 to construct the

equivalent first-order system as (3.5). Then we apply Lemma 3.6 to obtain the

uniform bound of the diameter of relative distance.

4. Unconditional flocking

In this section, we show the unconditional flocking for the second-order system

(1.3) with long ranged interactions. The method is quite similar to the previous

section. In fact, we will construct a reduction algorithm for velocity, and then con-

struct a quantity which is exponentially decaying. Finally we use this quantity to

control the velocity diameter and show the unconditional flocking emergence.

4.1. Algorithm and a priori estimate

In this subsection, we will first introduce algorithm B and then construct a basic

a priori estimate for velocity diameter which is very important for flocking of G0.

The following algorithm consisting of Step 1-Step 3, will be referred as Algorithm

B.

Step 1: For any given time t, we reorder particle velocities from minimum to

maximum. More precisely, by relabelling the agents at time t, we let

v1(t) ≤ v2(t) · · · ≤ vN (t).

To introduce the following steps, we first introduce the processes of iterations

for L̄Nk (C̄k,N ) and Ll1(C1,l) as follows.

(B1): If L̄Nk (C̄k,N ) is not a general root, then we set

L̄Nk−1(C̄k−1,N ) =
b̄k−1L̄Nk (C̄k,N ) + zk−1

b̄k−1 + 1
.

(B2): If Ll1(C1,l) is not a general root, then we construct

Ll+1
1 (C1,l+1) =

bl+1L
l
1(C1,l) + zl+1

bl+1 + 1
.
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Step 2: We start from zN and follow the process B1 to construct L̄Nk (C̄k,N ) until

either k = 1 or L̄Nk (C̄k,N ) is a general root at some k > 1. If the former happens,

then we denote k∗ = 1. If the later happens, we denote by k∗ the first k producing

a general root L̄Nk (C̄k,N ) in the process B1.

Step 3: We start from z1 and follow the process B2 until either l = N or Ll1(C1,l)

is a general root at some l < N . If the former happens, then we denote k∗ = N . If

the later happens, we denote by k∗ the first l producing a general root Ll1(C1,l) in

process B2.

Algorithm B is very similar to Algorithm A except that B is designed according

to the velocities. By Algorithm B with suitable coefficients {b̄k} and {bl}, we will

finally obtain two convex combination L̄Nk∗(C̄k∗,N ) and Lk∗1 (C1,k∗
). Now we denote

v̄k := ProjvL̄Nk (C̄k,N ), vk := ProjvLk1(C1,k).

As in Section 3, the quantity v̄k∗ − vk∗ is non-negative but may not be a contin-

uous function due to the possible change of order of velocity. But we can use the

analyticity of vi to imply that both v̄k∗ and vk∗ are piecewise smooth in any time

interval [0, T ]. Therefore, the time derivative of v̄k∗ and vk∗ are well defined a.e.

t ∈ [0, T ] except for finite many tk. The next lemma provides an a priori estimate

for v̄k∗ − vk∗ in any interval such that both v̄k∗ and vk∗ are smooth.

Lemma 4.1. (Hypo-coercivity) Suppose that there is a spanning tree in the network

topology for system (1.3) and ψ is non-integrable which satisfies (1.4). Then, on any

interval J which preserves the order of {vi}, we can design suitable coefficients b̄k’s

and bl’s depending only on N such that

d

dt

(
v̄k∗ − vk∗

)
≤ −BψmV(t),

2ψ0 − ψm
2ψ0

V(t) ≤
(
v̄k∗ − vk∗

)
≤ V(t).

Here B is a positive constant, ψ0 := ψ(0) and ψm := ψ(M1) with M1 being obtained

in Lemma 3.6 or Corollary 3.1. Moreover, the constant B depends only on N and

the initial data.

Proof. In order to construct proper v̄k∗ and vk∗ , we first introduce the inductive

process to produce b̄k and bl:
b̄N = 0, b̄k−1 =

ψ0

ψm
(N − k + 2)(b̄k + 1), 2 ≤ k ≤ N,

b1 = 0, bl+1 =
ψ0

ψm
(l + 1)(bl + 1), 1 ≤ l ≤ N − 1.

(4.1)
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By direct calculation, we have
b̄k−1 =

N−k+1∑
i=1

(
ψ0

ψm

)N−k+2−i

P (N − k + 2, i), 2 ≤ k ≤ N,

bl+1 =

l∑
i=1

(
ψ0

ψm

)l+1−i

P (l + 1, i), 1 ≤ l ≤ N − 1.

(4.2)

Now we are going to prove lemma based on the setting (4.1) and (4.2). If N = 2, it is

clear and thus we assume N ≥ 3. Moreover, according to Lemma 3.6 and Corollary

3.1, the relative positions among particles are uniformly bounded by M1. Therefore

we have

ψm ≤ ψ(xi(t)− xj(t)) ≤ ψ0, ∀ 1 ≤ i, j ≤ N, ∀ t ≥ 0.

Similar to Lemma 3.4, we can split the proof in two steps.

• (Step 1): In this step, we will show the equivalence between V and the quantity(
v̄k∗ − vk∗

)
and finish the proof of the first part:

2ψ0 − ψm
2ψ0

V(t) ≤
(
v̄k∗ − vk∗

)
≤ V(t). (4.3)

In fact, by the property of convex combination, we immediately have(
v̄k∗ − vk∗

)
≤ V(t).

Next, with the same argument as in Lemma 3.4 (ii), we apply the construction (4.1)

and (4.2) to have

v̄k∗(t)− vk∗(t)

= ProjvL̄Nk∗(C̄k∗,N )− ProjvL
k∗
1 (C1,k∗) ≥ ProjvL̄N1 (C̄1,N )− ProjvLN1 (C1,N )

≥
( ∏N−1

l=1 b̄l∏N
l=1(b̄l + 1)

− 1

b̄1 + 1

)
(vN − v1) =

(( ψ0

ψm

)N−1

N !− 1

b̄1 + 1

)
(vN − v1).

(4.4)

The last equality is due to the relation:

b̄k−1 =
ψ0

ψm
(N − k + 2)(b̄k + 1).

Now we apply (4.2) and (4.4) to obtain

v̄k∗(t)− vk∗(t) ≥
(( ψ0

ψm

)N−1

N !

2(b̄1 + 1)

)
(vN − v1) =

V(t)

2
∑N−1
i=1

(
ψm
ψ0

)i−1
1
i!

≥ V(t)

2
∑N−2
i=0

(
ψm
2ψ0

)i ≥ 2ψ0 − ψm
4ψ0

V(t).

(4.5)
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• (Step 2): In this step, we will study on the interval where both v̄k∗ and vk∗ are

smooth. Then we will construct the differential inequality for the quantity (v̄k∗ −
vk∗):

d

dt

(
v̄k∗ − vk∗

)
≤ −BV(t).

We will use similar method as in Lemma 3.4 to construct the inequality by induction

process. In fact, we claim that

d

dt
v̄l ≤

κψm
b̄l + 1

(
min

k∈∪Ni=lNi
{vk} − vN

)
, k∗ ≤ l ≤ N. (4.6)

We will prove the claim by induction. If l = N , then we immediately have

d

dt
vN (t) = κ

∑
i∈NN

ψ(xi − xN )(vi − vN ) ≤ κψm
(

min
k∈NN

{vk} − vN
)
.

Therefore, we assume that (4.6) holds for v̄N , . . . , v̄l and consider the term v̄l−1, for

k∗ + 1 ≤ l ≤ N . Similar to (3.11), we have

d

dt
v̄l−1 =

b̄l−1 ˙̄vl + v̇l−1

b̄l−1 + 1
=

b̄l−1 ˙̄vl
b̄l−1 + 1

+
v̇l−1

b̄l−1 + 1
= I31 + I32. (4.7)

Now for the term I31, we can apply (4.1) and (4.6) to obtain

I31 ≤
b̄l−1

b̄l−1 + 1

( κ

b̄l + 1
ψm

(
min

k∈∪Ni=lNi
{vk} − vN

))
=

(N − l + 2)κψ0

b̄l−1 + 1

(
min

k∈∪Ni=lNi
{vk} − vN

)
.

(4.8)

For the term I32, we can use the equation (1.3) to have

I32 =
κ

b̄l−1 + 1

∑
k∈Nl−1

ψ(xk − xl−1)(vk − vl−1)

≤ κ

b̄l−1 + 1

( ∑
k∈Nl−1

k≤l−1

ψm(vk − vl−1) +
∑

k∈Nl−1

k≥l−1

ψ0(vk − vl−1)
)

≤ κ

b̄l−1 + 1

(
ψm

[
min

k∈Nl−1

k≤l−1

{vk} − vl−1

]
+ (N − l + 1)ψ0 (vN − vl−1)

)
.

(4.9)

We combine (4.7), (4.8) and (4.9) to obtain

d

dt
v̄l−1 ≤

(N − l + 1)κψ0

b̄l−1 + 1

(
min

k∈∪Ni=lNi
{vk} − vN + vN − vl−1

)
+

κψ0

b̄l−1 + 1

(
min

k∈∪Ni=lNi
{vk} − vN

)
+

κψm
b̄l−1 + 1

(
min

k∈Nl−1

k≤l−1

{vk} − vl−1

)
= I41 + I42.

(4.10)
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For the term I41, note that LNl (Cl,N ) is not a general root for each k∗+ 1 ≤ l ≤ N .

Therefore, we have

min
k∈∪Ni=lNi

{vk} ≤ vl−1, i.e., I41 ≤ 0. (4.11)

With the same argument, we have

I42 =
κψ0

b̄l−1 + 1

(
min

k∈∪Ni=lNi
{vk} − vN

)
+

κψm
b̄l−1 + 1

(
min

k∈Nl−1

k≤l−1

{vk} − vl−1

)
≤ κψm
b̄l−1 + 1

(
min

k∈∪Ni=lNi
{vk} − vN + min

k∈Nl−1

k≤l−1

{vk} − vl−1

)
=

κψm
b̄l−1 + 1

(
min

{
min

k∈∪Ni=lNi
{vk}, min

k∈Nl−1

k≤l−1

{vk}
}
− vN

)
+

κψm
b̄l−1 + 1

(
max

{
min

k∈∪Ni=lNi
{vk}, min

k∈Nl−1

k≤l−1

{vk}
}
− vl−1

)
≤ κψm
b̄l−1 + 1

(
min

k∈∪Ni=l−1Ni
{vk} − vN

)
.

(4.12)

Finally, we combine (4.10), (4.11) and (4.12) to get

d

dt
v̄l−1 ≤

κψm
b̄l−1 + 1

(
min

k∈∪Ni=l−1Ni
{vk} − vN

)
.

This completes the proof of the claim (4.6). Therefore, we set l = k∗ + 1, and we

immediately obtain

d

dt
v̄k∗ ≤

κψm
b̄k∗ + 1

(
min

k∈∪Ni=k∗Ni
{vk} − vN

)
=

κψm
b̄k∗ + 1

(vk∗ − vN ). (4.13)

Similarly, we can derive the differential inequality for vk∗ and obtain that

d

dt
vk∗ ≥

κψm
bk∗ + 1

(vk∗ − v1). (4.14)

Now, due to the existence of spanning tree, we have k∗ ≥ k∗ and thus vk∗ ≥ vk∗ .

Therefore we combine (4.13), (4.14) to obtain the following estimates:

d

dt
(v̄k∗ − vk∗) ≤ −min

{ κ

b̄k∗ + 1
,

κ

bk∗ + 1

}
ψmV(t).

Now, according to the rules (4.1) and (4.2), we find that

b̄k∗ =

N−k∗∑
i=1

(
ψ0

ψm

)N−k∗+1−i

P (N − k∗ + 1, i), bk∗ =

k∗−1∑
i=1

(
ψ0

ψm

)k∗−i
P (k∗, i),

both of which are not greater than
∑N−1
i=1

(
ψ0

ψm

)N−i
P (N, i). Therefore, we combine

the analysis in Step 1 and Step 2 to obtain

2ψ0 − ψm
4ψ0

V(t) ≤
(
v̄k∗ − vk∗

)
≤ V(t),

d

dt
(v̄k∗ − vk∗) ≤ −BψmV(t),



May 12, 2020 17:26 WSPC/INSTRUCTION FILE HLZ-v13(20-5-11)

Critical exponent of one-dimensional Cucker-Smale model 29

where B is a positive constant defined by

B =
κ∑N−1

i=1

(
ψ0

ψm

)N−i
P (N, i) + 1

.

4.2. Unconditional flocking

In this subsection, we prove the emergence of unconditional flocking (Theorem

1.1). According to Lemma 2.5 and Remark 2.1, we have the node decomposition

G =
⋃d
i=0 Gi, where Gp is a maximum node of G\

⋃p−1
i=0 Gi. We denote particles in

Gi by zij where 1 ≤ j ≤ Ni and denote the velocity diameter of Gi by Vi. Then,

we will use induction principle based on the node decomposition to prove Theorem

1.1. The following lemma performs as the initial step of the induction.

Lemma 4.2. Under the condition in Theorem 1.1, unconditional flocking emerges

in the maximum node G0. More precisely, we can find positive constants C0
6 and C0

7

such that

V0(t) ≤ C0
6e
−C0

7 tV0(0).

Proof. Consider a finite time interval [0, T ]. We follow the argument in Lemma

3.5 to construct a time sequence 0 = t1 < t2 < · · · < tM = T such that the order

of velocity vi is preserved in each Ji = [ti, ti+1]. We assume that G0 consists of

N0 particles which can be labeled as {1, 2, . . . , N0}. Then we can apply the same

method in Lemma 3.5 to define

Y 0(t) := (v̄k∗(t)− vk∗(t)), t ∈ Ji.

With a similar argument as in Lemma 3.5, since G0 is a maximum node, we conclude

k∗ = N0 and k∗ = 1.

Therefore, Y 0(t) is Lipschitz continuous in [0, T ], and we follow Lemma 4.1 to obtain

d

dt
Y 0(t) ≤ −BψmV0(t),

2ψ0 − ψm
4ψ0

V0(t) ≤ Y 0(t) ≤ V0(t), a.e. 0 ≤ t ≤ T.

(4.15)

Here V0 := max{|v0
i − v0

j |}. We combine the two inequalities in (4.14) to find

d

dt
Y 0(t) ≤ −BψmY 0(t), a.e. 0 ≤ t ≤ T.

Therefore, we have the decay estimate of the quantity Y (t):

Y 0(t) ≤ e−BψmtY 0(0), 0 ≤ t ≤ T.

As T was arbitrary chosen and all the constants are independent of T in above

formula, we immediately obtain the exponential decay of Y 0(t):

Y 0(t) ≤ e−BψmtY 0(0), t ≥ 0.
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Then, we apply the inequality Y 0(t) ≤ V0(t) ≤ 4ψ0

2ψ0−ψmY
0(t) to obtain that

V0(t) ≤ 4ψ0

2ψ0 − ψm
e−BψmtV0(0), t ≥ 0.

We set

C0
6 =

4ψ0

2ψ0 − ψm
and C0

7 = −Bψm

to finish the proof.

Now we are ready to prove Theorem 1.1 by induction principle. The proof is very

similar to Lemma 3.6 and thus we may omit some details.

Proof of Theorem 1.1: According to Remark 2.1, we apply node decomposition

to represent G as

G =

d⋃
k=0

Gk, |Gk| = Nk.

Now we define a sequence of quantities Qk(t) as follows. First we assume vki are

well ordered as below

vk1 ≤ vk2 · · · ≤ vkNk .

According to Lemma 2.5 and Remark 2.1, Gk is the maximum node in G\
⋃k−1
i=0 Gi.

Therefore, we can define L̄Nk1 (C̄1,Nk) and LNk1 (C1,Nk
) for each Gk similar to Lemma

3.7 and Lemma 3.9. In fact, we can set b̄ki and bki as below, where 1 ≤ i ≤ Nk:
b̄kNk = 0, b̄ki−1 =

ψ0

ψm
(Nk − i+ 2 + gk−1)(b̄ki + 1), gk−1 :=

k−1∑
j=1

Nj , 2 ≤ i ≤ Nk,

bk1 = 0, bki+1 =
ψ0

ψm
(i+ 1 + gk−1)(bki + 1), 1 ≤ i ≤ Nk − 1.

By induction, we can derive that
b̄ki−1 =

Nk−i+1∑
j=1

( ψ0

ψm

)Nk−i+2−j
P (Nk − i+ 2 + gk−1, j + gk−1), 2 ≤ i ≤ Nk,

bki+1 =

i∑
j=1

( ψ0

ψm

)i+1−j
P (i+ 1 + gk−1, j + gk−1), 1 ≤ i ≤ Nk − 1.

Next, we set

v̄k := ProjvL̄
Nk
1 (C̄1,Nk) and vk := ProjvL

Nk
1 (C1,Nk

),

and we can define

Y k(t) := max
0≤i≤k

{v̄i} − min
0≤i≤k

{vi}. (4.16)



May 12, 2020 17:26 WSPC/INSTRUCTION FILE HLZ-v13(20-5-11)

Critical exponent of one-dimensional Cucker-Smale model 31

Then, it is clear to see that Y k(t) is Lipschitz continuous.

• (Step 1): In this step, we prove that, for 0 ≤ k ≤ d − 1, if there exist positive

constants Ck5 , Ck6 , Ck7 and Ck8 such that

d

dt
Y k(t) ≤ −Ck5Y k + Ck8Rk−1(t), Rk(t) ≤ Ck6 e−C

k
7 tRk(0),

where R−1 := 0 and Rk :=
(

max
0≤i≤k

max
1≤j≤Ni

{vij} − min
0≤i≤k

min
1≤j≤Ni

{vij}
)

, then we can

find positive constants Ck+1
5 and Ck+1

8 such that

d

dt
Y k+1(t) ≤ −Ck+1

5 Y k+1 + Ck+1
8 Rk(t). (4.17)

Please see Section B.1 for details.

• (Step 2): In this step, we prove that if

d

dt
Y k+1(t) ≤ −Ck+1

5 Y k+1 +Ck+1
8 Rk(t), Rk(t) ≤ Ck6 e−C

k
7 tRk(0), 0 ≤ k ≤ d−1,

(4.18)

then there exist positive constants Ck+1
6 and Ck+1

7 such that

Rk+1(t) ≤ Ck+1
6 e−C

k+1
7 tRk+1(0).

Please see Section B.2 for details.

• (Step 3): Now, we are ready to finish the proof of lemma. According to Lemma

4.2, we have

d

dt
Y 0(t) ≤ −C0

5Y
0 and R0(t) = V0(t) ≤ C0

6e
−C0

7 tV0(0) = C0
6e
−C0

7 tR0(0).

Then, with the analysis in (Step 1) and (Step 2), we can apply induction principle

to conclude that there exist positive constants B and C such that

V(t) = Rd(t) ≤ Cd6e−C
d
7 tRd(0) = Ce−BtV(0), t ≥ 0.

Remark 4.1. In Ref. 18, the author derived an estimate depending on the depth

of the graph. In our result, all the information of the depth is contained in the

exponent. In fact, the exponential decay rate is far from optimal, we can obtain

similar decay rate depending on depth as in Ref. 18.

5. Conclusion

In this paper, we have studied the critical exponent of the Cucker-Smale model

on a line with an algebraically decaying communication weight, and obtained the

sufficient and necessary condition for unconditional flocking (mono-cluster flocking).
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For this, we introduced a node decomposition argument to construct new nonlin-

ear functionals which are equivalent to diameters. In fact, these quantities can be

bounded by the diameter and, on the other hand, bound the half diameter. Thus

we can yield the decay rate of the diameter by the estimates of the more relaxed

quantities. This idea is reminiscent of the Harnack inequality in Laplace’s equation,

and the result is highly independent of graph structures. In fact, we only need to

assume that the network topology contains a spanning tree. There are several issues

that we did not cover in this paper. For example, our methodology relies on the

first-order reduction for position variable which is valid for one-dimensional setting

at present, although a node decomposition still works for multi-dimensional set-

ting. Thus, it would be interesting whether our result on the critical exponent for

unconditional flocking can be extended for the multi-dimensional setting or not.
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Appendix A. Proof of Lemma 3.6

In this section, we provide all the details of Step 1 and Step 2 in the proof of

Lemma 3.6, respectively.

A.1. Proof of Step 1

Since x̄i and xi are analytic for all i, x̄i and x̄j will always stay together or

just collide for finite times in [0, T ]. As the discussion in Lemma 3.5, without loss of

generality, we can assume x̄i and x̄j do not always stay together for [0, T ]. Therefore,

the order of x̄i will only exchange finite times in [0, T ], so does xi. So we can set

[0, T ] :=

q⋃
i=1

Ji,

where Ji = [ti−1, ti] and 0 = t0 < t1 · · · < tq = T , such that the order of both

{x̄j}k+1
j=0 and {xj}k+1

j=0 are preserved in each Ji. Now we pick out any Jp, where

1 ≤ p ≤ q, and consider four cases depending on the relative position between
k⋃
i=0

Gi and Gk+1.

• (Case 1): Consider the case

max
0≤i≤k+1

{x̄i} = max
0≤i≤k

{x̄i}, min
0≤i≤k+1

{xi} = min
0≤i≤k

{xi} on Jp.

In this case, we immediately have Qk+1(t) = Qk(t) and

d

dt
Qk+1(t) =

d

dt
Qk(t) ≤ Ck1 − Ck2 Ψ(Qk) = Ck1 − Ck2 Ψ(Qk+1), tp−1 < t < tp.

Therefore, we simply let Ck+1
1 = Ck1 and Ck+1

2 = Ck2 to obtain (3.32).

• (Case 2): Consider the case

max
0≤i≤k+1

{x̄i} = x̄k+1, min
0≤i≤k+1

{xi} = xk+1 on Jp.

In this case, we assume

xk+1
1 ≤ xk+1

2 ≤ · · · ≤ xk+1
Nk+1

, x̄k+1
j := ProjxL̄

Nk+1

j (C̄j,Nk+1
), xk+1

j := ProjxL
j
1(C1,j).

It is obvious that

x̄k+1
1 = x̄k+1 and xk+1

Nk+1
= xk+1.

Similar to the formula (3.10), we claim that: for 1 ≤ m ≤ Nk+1 we have

d

dt
x̄k+1
m ≤ νk+1

m

āk+1
m + 1

+

Nk+1∑
i=m+1

∏i−1
l=m ā

k+1
l νk+1

i∏i
l=m(āk+1

l + 1)
+ κgkΨ(Dk)

+
κ

āk+1
m + 1

(Nk+1∑
i=m

min
j∈Nk+1

i (k+1)
j≤i

Ψ(xk+1
j − xk+1

i )
)
.

(A.1)
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Proof of claim (A.1): We will prove the claim by induction.

� (Step 1): As an initial step, we verify that (A.1) holds for m = Nk+1. In fact, we

have the differential equation of x̄k+1
Nk+1

as below:

d

dt
x̄k+1
Nk+1

=
d

dt
xk+1
Nk+1

= νk+1
Nk+1

+ κ
∑

j∈Nk+1
Nk+1

(k+1)

Ψ(xk+1
j − xk+1

Nk+1
) + κ

k∑
l=0

∑
j∈Nk+1

Nk+1
(l)

Ψ(xlj − xk+1
Nk+1

).

(A.2)

Since xk+1
Nk+1

is assumed to be the largest one among the particles in the (k + 1)th

node, we have

Ψ(xk+1
j − xk+1

Nk+1
) ≤ 0 for all j ∈ N k+1

Nk+1
(k + 1).

Therefore, we obtain from Lemma 3.3 that

∑
j∈Nk+1

Nk+1
(k+1)

Ψ(xk+1
j − xk+1

Nk+1
) ≤ min

j∈Nk+1
Nk+1

(k+1)
Ψ(xk+1

j − xk+1
Nk+1

). (A.3)

On the other hand, as max
0≤i≤k+1

{x̄i} = x̄k+1, we immediately have

xk+1
Nk+1

≥ min
0≤i≤k

min
1≤j≤Ni

{xij}.

Otherwise, the convex combination x̄k+1 will be strictly smaller than all x̄i for

0 ≤ i ≤ k. Therefore, we have

Ψ(xlj − xk+1
Nk+1

) ≤ Ψ(xlj − min
0≤i≤k

min
1≤j≤Ni

{xij}) ≤ Ψ(Dk). (A.4)

We combine (A.2), (A.3) and (A.4) to get

d

dt
x̄k+1
Nk+1

≤ νk+1
Nk+1

+ κ min
j∈Nk+1

Nk+1
(k+1)

Ψ(xk+1
j − xk+1

Nk+1
) + κgkΨ(Dk).

Therefore, (A.1) holds for x̄k+1
Nk+1

.

� (Step 2): Now we suppose that (A.1) holds for m with 2 ≤ m ≤ Nk+1. Next, we

verify (A.1) for m − 1. The calculation is almost the same as Lemma 3.4. In fact,



May 12, 2020 17:26 WSPC/INSTRUCTION FILE HLZ-v13(20-5-11)

Critical exponent of one-dimensional Cucker-Smale model 35

we use the same argument in Lemma 3.4 to derive

d

dt

( āk+1
m−1x̄

k+1
m

āk+1
m−1 + 1

+
xk+1
m−1

āk+1
m−1 + 1

)
≤

νk+1
m−1

āk+1
m−1 + 1

+

Nk+1∑
i=m

∏i−1
l=m−1 ā

k+1
l νk+1

i∏i
l=m−1(āk+1

l + 1)
+

āk+1
m−1

āk+1
m−1 + 1

κgkΨ(Dk)

+
κ(Nk+1 −m+ 2 + gk)

āk+1
m−1 + 1

(Nk+1∑
i=m

min
j∈Nk+1

i (k+1)
j≤i

Ψ(xk+1
j − xk+1

i )
)

+
κ

āk+1
m−1 + 1

( ∑
j∈Nk+1

m−1(k+1)

Ψ(xk+1
j − xk+1

m−1)

︸ ︷︷ ︸
Ia

+

k∑
l=0

∑
j∈Nk+1

m−1(l)

Ψ(xlj − xk+1
m−1)

︸ ︷︷ ︸
Ib

)
.

(A.5)

For the term Ia, we can apply the same method in Lemma 3.4 to obtain

Ia =
∑

j∈Nk+1
m−1(k+1)

Ψ(xk+1
j − xk+1

m−1)

=
∑

j∈Nk+1
m−1(k+1)

j>m−1

Ψ(xk+1
j − xk+1

m−1) +
∑

j∈Nk+1
m−1(k+1)

j≤m−1

Ψ(xk+1
j − xk+1

m−1)

≤ (Nk+1 −m+ 1)Ψ(xk+1
Nk+1

− xk+1
m−1) +

∑
j∈Nk+1

m−1(k+1)

j≤m−1

Ψ(xk+1
j − xk+1

m−1).

(A.6)

For the term Ib, we observe that there are three possible orderings between xlj and

xk+1
m−1:

(1) If xlj ≤ x
k+1
m−1, then Ψ(xlj − x

k+1
m−1) ≤ 0.

(2) If xk+1
m−1 ≤ xlj ≤ x

k+1
Nk+1

, then Ψ(xlj − x
k+1
m−1) ≤ Ψ(xk+1

Nk+1
− xk+1

m−1).

(3) If xk+1
Nk+1

≤ xlj , then Ψ(xlj − x
k+1
m−1) ≤ Ψ(xlj − x

k+1
Nk+1

) + Ψ(xk+1
Nk+1

− xk+1
m−1).

Therefore, we apply the analysis in (A.4) again to conclude

Ib ≤ gkΨ(xk+1
Nk+1

− xk+1
m−1) + gkΨ(Dk). (A.7)
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Now, we combine the estimates of (A.5), (A.6), (A.7) and Lemma 3.3 to get

d

dt
x̄k+1
m−1 =

d

dt

( āk+1
m−1x̄

k+1
m

āk+1
m−1 + 1

+
xk+1
m−1

āk+1
m−1 + 1

)
≤

νk+1
m−1

āk+1
m−1 + 1

+

Nk+1∑
i=m

∏i−1
l=m−1 ā

k+1
l νk+1

i∏i
l=m−1(āk+1

l + 1)
+ κgkΨ(Dk)

+
κ

āk+1
m−1 + 1

( Nk+1∑
i=m−1

min
j∈Nk+1

i (k+1)
j≤i

Ψ(xk+1
j − xk+1

i )
)
.

This finishes the proof of claim (A.1).

According to the node decomposition, we obtain

Nk+1∑
i=1

min
j∈Nk+1

i (k+1)
j≤i

Ψ(xk+1
j − xk+1

i ) ≤ Ψ(xk+1
1 − xk+1

Nk+1
). (A.8)

We combine (A.1) and (A.8) to obtain the estimate of x̄k+1:

d

dt
x̄k+1 =

d

dt
x̄k+1

1

≤ νk+1
1

āk+1
1 + 1

+

Nk+1∑
i=2

∏i−1
l=1 ā

k+1
l νk+1

i∏i
l=1(āk+1

l + 1)
+ κgkΨ(Dk) +

κΨ(xk+1
1 − xk+1

Nk+1
)

āk+1
1 + 1

.

(A.9)

Similarly, we can derive a differential inequality of xk+1:

d

dt
xk+1 =

d

dt
xk+1
Nk+1

≥
νk+1
Nk+1

āk+1
1 + 1

+

Nk+1∑
i=2

∏i−1
l=1 ā

k+1
l νk+1

Nk+1−i+1∏i
l=1(āk+1

l + 1)
− κgkΨ(Dk)−

κΨ(xk+1
1 − xk+1

Nk+1
)

āk+1
1 + 1

.

(A.10)

Finally, for (Case 2), we can combine (A.9) and (A.10) to conclude that for t ∈ Jp,

d

dt
Qk+1(t) =

d

dt
(x̄k+1 − xk+1) ≤ Ck+1

1 − Ck+1
2 Ψ(X k+1) ≤ Ck+1

1 − Ck+1
2 Ψ(Qk+1).

• (Case 3): Consider the case

max
0≤i≤k+1

{x̄i} = x̄k+1, min
0≤i≤k+1

{xi} = min
0≤i≤k

{xi} on Jp.

For this case, without loss of generality, we set

xq = min
0≤i≤k

{xi},
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where 0 ≤ q ≤ k. Further more, we assume

xk+1
1 ≤ xk+1

2 ≤ · · · ≤ xk+1
Nk+1

, xq1 ≤ x
q
2 ≤ · · · ≤ x

q
Nq
.

Then, we apply the same analysis in (Case 2) to find positive constant Cq1 and Cq2
such that

d

dt
xq ≥ −C

q
1 − C

q
2Ψ(xq1 − x

q
Nq

). (A.11)

� (Case 3.1): If xk+1
1 ≤ max

1≤i≤k
max

1≤j≤Ni
{xij}, then we can apply (A.9) to have

d

dt
Qk+1(t) =

d

dt
(x̄k+1 − xq)

≤ νk+1
1

āk+1
1 + 1

+

Nk+1∑
i=2

∏i−1
l=1 ā

k+1
l νk+1

i∏i
l=1(āk+1

l + 1)
+ κgkΨ(Dk) +

κΨ(xk+1
1 − xk+1

Nk+1
)

āk+1
1 + 1

+ Cq1 + Cq2Ψ(xq1 − x
q
Nq

)

+ min{ κ

āk+1
1 + 1

, Cq2}Ψ(xq1 − max
1≤i≤k

max
1≤j≤Ni

{xij})−min{ κ

āk+1
1 + 1

, Cq2}Ψ(xq1 − max
1≤i≤k

max
1≤j≤Ni

{xij})

≤ Ck+1
1 + min{ κ

āk+1
1 + 1

, Cq2}Ψ(xq1 − max
1≤i≤k

max
1≤j≤Ni

{xij}) + min{ κ

āk+1
1 + 1

, Cq2}Ψ(xk+1
1 − xk+1

Nk+1
)

≤ Ck+1
1 + Ck+1

2 Ψ(xq1 − x
k+1
Nk+1

)

≤ Ck+1
1 − Ck+1

2 Ψ(Qk+1).

� (Case 3.2): If xk+1
1 ≥ max

1≤i≤k
max

1≤j≤Ni
{xij}, similar to Case 2, we can apply the

induction principle to prove that for 1 ≤ m ≤ Nk+1,

d

dt
x̄k+1
m ≤ νk+1

m

āk+1
m + 1

+

Nk+1∑
i=m+1

∏i−1
l=m ā

k+1
l νk+1

i∏i
l=m(āk+1

l + 1)
+

κ

āk+1
m + 1

k∑
l=0

∑
j∈Nk+1

m (l)

Ψ(xlj − xk+1
m )

+

Nk+1∑
i=m+1

∏i−1
l=m ā

k+1
l κ∏i

l=m(āk+1
l + 1)

k∑
l=0

∑
j∈Nk+1

i (l)

Ψ(xlj − xk+1
i )

+
κ

āk+1
m + 1

(Nk+1∑
i=m

min
j∈Nk+1

i (k+1)
j≤i

Ψ(xk+1
j − xk+1

i )
)
.

(A.12)

Since the proof of (A.12) is similar to the proof of (A.1), we will omit the details.
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Then, we set m = 1 and apply Lemma 3.3 to have

d

dt
x̄k+1 ≤

νk+1
1

āk+1
1 + 1

+

Nk+1∑
i=2

∏i−1
l=1 ā

k+1
l νk+1

i∏i
l=1(āk+1

l + 1)

+
κ

āk+1
1 + 1

k∑
l=0

∑
j∈Nk+1

1 (l)

Ψ(xlj − xk+1
1 ) +

Nk+1∑
i=2

∏i−1
l=1 ā

k+1
l κ∏i

l=1(āk+1
l + 1)

k∑
l=0

∑
j∈Nk+1

i (l)

Ψ(xlj − xk+1
i )

︸ ︷︷ ︸
Ic

+
κ

āk+1
1 + 1

Ψ(xk+1
1 − xk+1

Nk+1
).

Since

xk+1
1 ≥ max

1≤i≤k
max

1≤j≤Ni
{xij},

we note that all Ψ(xlj − x
k+1
i ) in Ic are non-positive. Therefore, we have

d

dt
x̄k+1 ≤

νk+1
1

āk+1
1 + 1

+

Nk+1∑
i=2

∏i−1
l=1 ā

k+1
l νk+1

i∏i
l=1(āk+1

l + 1)

+
κ

āk+1
1 + 1

k∑
l=0

∑
j∈Nk+1

1 (l)

Ψ( max
1≤i≤k

max
1≤j≤Ni

{xij} − xk+1
1 )

+

Nk+1∑
i=2

∏i−1
l=1 ā

k+1
l κ∏i

l=1(āk+1
l + 1)

k∑
l=0

∑
j∈Nk+1

i (l)

Ψ( max
1≤i≤k

max
1≤j≤Ni

{xij} − xk+1
i )

+
κ

āk+1
1 + 1

Ψ(xk+1
1 − xk+1

Nk+1
).

(A.13)

Moreover, according to the existence of spanning tree in G and the node decompo-

sition,

Nk+1⋃
i=1

k⋃
l=0

N k+1
i (l) 6= ∅.

Therefore, (A.13) implies

d

dt
x̄k+1 ≤

νk+1
1

āk+1
1 + 1

+

Nk+1∑
i=2

∏i−1
l=1 ā

k+1
l νk+1

i∏i
l=1(āk+1

l + 1)

+
κ

āk+1
1 + 1

∣∣∣Nk+1⋃
i=1

k⋃
l=0

N k+1
i (l)

∣∣∣Ψ( max
1≤i≤k

max
1≤j≤Ni

{xij} − xk+1
1 ) +

κ

āk+1
1 + 1

Ψ(xk+1
1 − xk+1

Nk+1
)

≤ νk+1
1

āk+1
1 + 1

+

Nk+1∑
i=2

∏i−1
l=1 ā

k+1
l νk+1

i∏i
l=1(āk+1

l + 1)
+

κ

āk+1
1 + 1

Ψ( max
1≤i≤k

max
1≤j≤Ni

{xij} − xk+1
Nk+1

).

(A.14)
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We combine (A.11) and (A.14) to obtain

d

dt
Qk+1 =

d

dt
(x̄k+1 − xq)

≤ νk+1
1

āk+1
1 + 1

+

Nk+1∑
i=2

∏i−1
l=1 ā

k+1
l νk+1

i∏i
l=1(āk+1

l + 1)
+ Cq1

+ Cq2Ψ(xq1 − x
q
Nq

) +
κ

āk+1
1 + 1

Ψ( max
1≤i≤k

max
1≤j≤Ni

{xij} − xk+1
Nk+1

)

+ min{Cq2 ,
κ

āk+1
1 + 1

}Ψ(xqNq − max
1≤i≤k

max
1≤j≤Ni

{xij}) + min{Cq2 ,
κ

āk+1
1 + 1

}Ψ(Dk)

≤ Ck+1
1 + Ck+1

2 Ψ(xq1 − x
k+1
Nk+1

)

≤ Ck+1
1 + Ck+1

2 Ψ(Qk+1).

• (Case 4): Consider the case

max
0≤i≤k+1

{x̄i} = max
0≤i≤k

{x̄i}, min
0≤i≤k+1

{xi} = xk+1 on Jp.

The proof is similar to Case 3. Thus we omit the details.

Finally, we combine all analysis from (Case 1) to (Case 4) to conclude that if there

exist positive constants Ck1 , Ck2 and Ck4 such that

d

dt
Qk(t) ≤ Ck1 − Ck2 Ψ(Qk), Dk ≤ Ck4 .

Then we can find positive constants Ck+1
1 and Ck+1

2 such that

d

dt
Qk+1(t) ≤ Ck+1

1 − Ck+1
2 Ψ(Qk+1). (A.15)

A.2. Proof of Step 2

In fact, if (3.32) holds, we can follow (Step 3) in Lemma 3.5 to construct the

positive constant Mk+1 such that

Qk+1 ≤Mk+1.

On the other hand, according to the definition (3.31) of Qk+1, we have

Qk+1 ≥ x̄k+1 − xk+1.
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Therefore, similar to the proof of (ii) in Lemma 3.4, we can apply (3.29) and (3.30)

to have

Qk+1(t) ≥ x̄k+1 − xk+1

=
xk+1

1

āk+1
1 + 1

+

Nk+1∑
i=2

xk+1
i

∏i−1
l=1 ā

k+1
l∏i

l=1(āk+1
l + 1)

−
xk+1
Nk+1

ak+1
Nk+1

+ 1
−
Nk+1−1∑
i=1

xk+1
i

∏Nk+1

l=i+1 a
k+1
l∏Nk+1

l=i (ak+1
l + 1)

=
xk+1

1

āk+1
1 + 1

+

Nk+1∑
i=2

xk+1
i

∏i−1
l=1 ā

k+1
l∏i

l=1(āk+1
l + 1)

−
xk+1
Nk+1

āk+1
1 + 1

−
Nk+1−1∑
i=1

xk+1
i

∏Nk+1−i
l=1 āk+1

l∏Nk+1−i+1
l=1 (āk+1

l + 1)

=
1

āk+1
1 + 1

N∑
i=1

xk+1
i

( (Nk+1 + gk)!

(Nk+1 − i+ 1 + gk)!
− (Nk+1 + gk)!

(i+ gk)!

)
≥
xk+1
Nk+1

− xk+1
1

āk+1
1 + 1

( (Nk+1 + gk)!

(1 + gk)!
− 1
)

≥ (xk+1
Nk+1

− xk+1
1 )

(Nk+1 + gk)!

2(āk+1
1 + 1)(1 + gk)!

≥
(xk+1
Nk+1

− xk+1
1 )

4
=
X k+1(t)

4
.

(A.16)

Therefore we immediately have

X k+1(t) ≤ 4Qk+1(t) ≤ 4Mk+1 = Ck+1
3 . (A.17)

Next, we show that Gk+1 cannot be far away from the set
k⋃
i=0

Gi. For this aim,

we recall that the set of neighbors of zk+1
i can be denoted by

k+1⋃
j=0

N k+1
i (j), where

N k+1
i (j) represents the neighbors of zk+1

i in Gj . The node decomposition and s-

panning tree in G guarantee that for any k with 0 ≤ k ≤ d − 1, there exists

xk+1
p such that

k⋃
j=0

N k+1
p (j) 6= ∅ (see Remark 2.1). Then we consider the quantity

(xk+1
p − max

1≤i≤k
max

1≤j≤Ni
{xij}) and it is obvious that this quantity is Lipschitz continu-

ous. We fix t at which (xk+1
M − max

1≤i≤k
max

1≤j≤Ni
{xij}) is differentiable. Then we consider

the rate of change for this quantity as below

d

dt
(xk+1
p − max

1≤i≤k
max

1≤j≤Ni
{xij}) ≤ max{|νi|}+ κ

∑
j∈Nk+1

p (k+1)

Ψ(xk+1
j − xk+1

p )

+ κ

k∑
m=0

∑
j∈Nk+1

p (m)

Ψ(xmj − xk+1
p )− d

dt
( max
1≤i≤k

max
1≤j≤Ni

{xij}).

(A.18)
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Note that ( max
1≤i≤k

max
1≤j≤Ni

{xij}) is only affected by the particles in
k⋃
i=0

Gi, whose rela-

tive positions are uniformly bounded by Ck4 . Therefore, we have

d

dt
( max
1≤i≤k

max
1≤j≤Ni

{xij}) ≥ −max{|νi|}+ κ

k∑
m=0

∑
j∈NkM (m)

Ψ(xmj − max
1≤i≤k

max
1≤j≤Ni

{xij})

≥ −max{|νi|} − κgkΨ(Ck4 ),

(A.19)

where gk is defined in (3.29). Moreover, we also have a uniform bound for X k+1 in

(A.17). Therefore, we combine (A.17), (A.18) and (A.19) to get

d

dt
(xk+1
p − max

1≤i≤k
max

1≤j≤Ni
{xij})

≤ 2 max{|νi|}+ κgkΨ(Ck4 ) + κNk+1Ψ(Ck+1
3 )︸ ︷︷ ︸

Bk+1

+κ

k∑
m=0

∑
j∈Nk+1

p (m)

Ψ(xmj − xk+1
p ).

(A.20)

Now we claim:

xk+1
p − max

1≤i≤k
max

1≤j≤Ni
{xij}

≤ max
{

(xk+1
p (0)− max

1≤i≤k
max

1≤j≤Ni
{xij}(0)), Ψ−1

(Bk+1

κ

)}
= Ck+1

6 .
(A.21)

Proof of the claim (A.21): We prove it by contradiction. Suppose not, then we

assume (A.21) does not hold at t̄:

xk+1
p (t̄)− max

1≤i≤k
max

1≤j≤Ni
{xij}(t̄) > max

{
(xk+1
p (0)− max

1≤i≤k
max

1≤j≤Ni
{xij}(0)), Ψ−1

(Bk+1

κ

)}
.

As in Lemma 3.5, we set

Mk+1 := {t | t < t̄, (A.21) holds},

which is obviously non-empty. Then we can define

t∗k+1 := supMk+1.

On the other hand, since
k⋃
j=0

N k+1
p (j) 6= ∅ and the fact that

xk+1
p ≥ max

1≤i≤k
max

1≤j≤Ni
{xij} for t∗k+1 ≤ t ≤ t̄,

we can simplify (A.20) as below:

d

dt
(xk+1
p − max

0≤i≤k
max

1≤j≤Ni
{xij}) ≤ Bk+1 + κΨ( max

0≤i≤k
max

1≤j≤Ni
{xij} − xk+1

p ). (A.22)
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Now, we apply to (A.22) the same argument in (Step 3) of the proof of Lemma 3.5

to finish the proof of claim. Then we set xk+1
M := max{xk+1

j }, and we have

xk+1
M − max

0≤i≤k
max

1≤j≤Ni
{xij}) = xk+1

M − xk+1
p + xk+1

p − max
0≤i≤k

max
1≤j≤Ni

{xij}) ≤ X k+1 + Ck+1
6 .

(A.23)

Similarly, we set xk+1
m := min{xk+1

j } and conclude that there exists a positive

constant C̄k+1
6 such that

min
0≤i≤k

min
1≤j≤Ni

{xij} − xk+1
m ≤ X k+1 + C̄k+1

6 . (A.24)

We combine (A.23) and (A.24) to obtain that there exists a positive constant Ck+1
4

such that

Dk+1 :=
(

max
1≤i≤k+1

max
1≤j≤Ni

{xij} − min
1≤i≤k+1

min
1≤j≤Ni

{xij}
)

≤ Dk + C̄k+1
6 + Ck+1

6 + 2X k+1

≤ Ck4 + C̄k+1
6 + Ck+1

6 + 2Ck+1
3 = Ck+1

4 .

(A.25)
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Appendix B. Proof of Theorem 1.1

In this section, we will provide the details of the two steps in the proof of

Theorem 1.1 in Section 4.

B.1. Proof of Step 1

The proof is similar to Section A.1. We set

[0, T ] :=

q⋃
i=1

Ji,

where Ji = [ti−1, ti] and 0 = t0 < t1 · · · < tq = T , such that the order of both

{v̄j}k+1
j=0 and {vj}k+1

j=0 are preserved in each Ji. Now we pick out any Jp, where

1 ≤ p ≤ q, and consider four cases depending on the relative positions between
k⋃
i=0

Gi and Gk+1.

• (Case 1): Consider the case

max
0≤i≤k+1

{v̄i} = max
0≤i≤k

{v̄i}, min
0≤i≤k+1

{vi} = min
0≤i≤k

{vi} on Jp.

In this case, we immediately have Y k+1(t) = Y k(t) and

d

dt
Y k+1(t) =

d

dt
Y k(t) ≤ −Ck5Y k + Ck8Rk−1 ≤ −Ck5Y k+1 + Ck8Rk, tp−1 < t < tp,

where we use the fact that Rk−1 ≤ Rk, which is obvious according to the definition

of Rk in the proof of the main theorem in Section 4. Therefore, we simply set

Ck+1
5 = Ck5 and Ck+1

8 = Ck8

to obtain (4.17).

• (Case 2): Consider the case

max
0≤i≤k+1

{v̄i} = v̄k+1, min
0≤i≤k+1

{vi} = vk+1 on Jp.

In this case, we assume

vk+1
1 ≤ vk+1

2 ≤ · · · ≤ vk+1
Nk+1

, v̄k+1
j := ProjvL̄

Nk+1

j (C̄j,Nk+1
), vk+1

j := ProjvL
j
1(C1,j).

It is clear to see that

v̄k+1
1 = v̄k+1 and vk+1

Nk+1
= vk+1.

We claim: for 1 ≤ m ≤ Nk+1, we have

d

dt
v̄k+1
m ≤ κgkψ0Rk +

κψm

b̄k+1
m + 1

(
min

j∈
Nk+1⋃
i=m

Nk+1
i (k+1)

{vk+1
j } − vk+1

Nk+1

)
.

(B.1)

Proof of claim: We will prove the claim by induction.
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� (Step 1): We verify that (B.1) holds for m = Nk+1. In fact, we have the differential

equation of v̄k+1
Nk+1

:

d

dt
v̄k+1
Nk+1

=
d

dt
vk+1
Nk+1

= κ
∑

j∈Nk+1
Nk+1

(k+1)

ψ(||xk+1
j − xk+1

Nk+1
||)(vk+1

j − vk+1
Nk+1

)

+ κ

k∑
l=0

∑
j∈Nk+1

Nk+1
(l)

ψ(||xlj − xk+1
Nk+1
||)(vlj − vk+1

Nk+1
).

(B.2)

According to the well ordered assumption, we obtain that

(vk+1
j − vk+1

Nk+1
) ≤ 0 for all j ∈ N k+1

Nk+1
(k + 1).

Therefore, we apply above inequality to obtain

∑
j∈Nk+1

Nk+1
(k+1)

ψ(||xk+1
j − xk+1

Nk+1
||)(vk+1

j − vk+1
Nk+1

) ≤ ψm min
j∈Nk+1

Nk+1
(k+1)

(vk+1
j − vk+1

Nk+1
).

(B.3)

On the other hand, as max
0≤i≤k+1

{v̄i} = v̄k+1, we immediately have

vk+1
Nk+1

≥ min
0≤i≤k

min
1≤j≤Ni

{vij}.

Otherwise, the convex combination v̄k+1 will be strictly smaller than all v̄i for

0 ≤ i ≤ k. Therefore, we have

vlj − vk+1
Nk+1

≤ vlj − min
0≤i≤k

min
1≤j≤Ni

{vij} ≤ Rk. (B.4)

We combine (B.2), (B.3) and (B.4) to derive

d

dt
v̄k+1
Nk+1

≤ κψm min
j∈Nk+1

Nk+1
(k+1)

(vk+1
j − vk+1

Nk+1
) + κgkψ0Rk.

Therefore, (B.1) holds for x̄k+1
Nk+1

.

� (Step 2): Suppose (B.1) holds for m where 2 ≤ m ≤ Nk+1. Next, we verify the

relation (B.1) also holds for m− 1. Following the same argument in Lemma 3.6, we
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can derive

d

dt

( b̄k+1
m−1v̄

k+1
m

b̄k+1
m−1 + 1

+
vk+1
m−1

b̄k+1
m−1 + 1

)
≤

b̄k+1
m−1

b̄k+1
m−1 + 1

κgkψ0Rk

+
κ(Nk+1 −m+ 2 + gk)ψ0

b̄k+1
m−1 + 1

(
min

j∈
Nk+1⋃
i=m

Nk+1
i (k+1)

{vk+1
j } − vk+1

Nk+1

)

+
κ

b̄k+1
m−1 + 1

∑
j∈Nk+1

m−1(k+1)

ψ(||xk+1
j − xk+1

m−1||)(v
k+1
j − vk+1

m−1)

︸ ︷︷ ︸
Ia

+
κ

b̄k+1
m−1 + 1

k∑
l=0

∑
j∈Nk+1

m−1(l)

ψ(||xlj − xk+1
m−1||)(vlj − v

k+1
m−1)

︸ ︷︷ ︸
Ib

.

(B.5)

For the term Ia, we can apply the same method in Lemma 3.4 to obtain

Ia ≤ (Nk+1 −m+ 1)ψ0(vk+1
Nk+1

− vk+1
m−1) +

∑
j∈Nk+1

m−1(k+1)

j≤m−1

ψm(vk+1
j − vk+1

m−1)

≤ (Nk+1 −m+ 1)ψ0(vk+1
Nk+1

− vk+1
m−1) + ψm min

j∈Nk+1
m−1(k+1)

(vk+1
j − vk+1

m−1).

(B.6)

For the term Ib, we observe that there are three possible order relations between

vlj and vk+1
m−1:

(1) If vlj ≤ v
k+1
m−1, then (vlj − v

k+1
m−1) ≤ 0.

(2) If vk+1
m−1 ≤ vlj ≤ v

k+1
Nk+1

, then vlj − v
k+1
m−1 ≤ v

k+1
Nk+1

− vk+1
m−1.

(3) If vk+1
Nk+1

≤ vlj , then vlj − v
k+1
m−1 ≤ (vlj − v

k+1
Nk+1

) + (vk+1
Nk+1

− vk+1
m−1).

Therefore, we again apply the analysis in (B.4) to conclude that

Ib ≤ gkψ0(vk+1
Nk+1

− vk+1
m−1) + gkψ0Rk. (B.7)

Moreover, since Gk+1 is a node, we have(
min

j∈
Nk+1⋃
i=m

Nk+1
i (k+1)

{vk+1
j } − vk+1

Nk+1

)
≤ (vk+1

m−1 − v
k+1
Nk+1

). (B.8)

Now we combine (B.5), (B.6), (B.7) and (B.8) to get

d

dt
v̄k+1
m−1 =

d

dt

( b̄k+1
m−1v̄

k+1
m

b̄k+1
m−1 + 1

+
vk+1
m−1

b̄k+1
m−1 + 1

)
≤ κgkψ0Rk +

κψm

b̄k+1
m + 1

(
min

j∈
Nk+1⋃
i=m−1

Nk+1
i (k+1)

{vk+1
j } − vk+1

Nk+1

)
.

(B.9)
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This completes the proof of the claim.

Due to the fact Gk+1 is a node, we obtain(
min

j∈
Nk+1⋃
i=1

Nk+1
i (k+1)

{vk+1
j } − vk+1

Nk+1

)
= vk+1

1 − vk+1
Nk+1

. (B.10)

Therefore, we further combine (B.9) and (B.10) to derive the estimate of v̄k+1:

d

dt
v̄k+1 =

d

dt
v̄k+1

1 ≤ κgkψ0Rk +
κψm(vk+1

1 − vk+1
Nk+1

)

b̄k+1
1 + 1

. (B.11)

Similarly, we can derive the differential inequality of vk+1 as

d

dt
vk+1 =

d

dt
vk+1
Nk+1

≥ −κgkψ0Rk −
κψm(vk+1

1 − vk+1
Nk+1

)

b̄k+1
1 + 1

. (B.12)

Finally, for (Case 2), we can combine (B.11) and (B.12) to conclude for t ∈ Jp that

d

dt
Y k+1(t) =

d

dt
(v̄k+1 − vk+1) ≤ Ck+1

8 Rk − Ck+1
5 Vk+1 ≤ −Ck+1

5 Y k+1 + Ck+1
8 Rk.

• (Case 3): Consider the case

max
0≤i≤k+1

{v̄i} = v̄k+1, min
0≤i≤k+1

{vi} = min
0≤i≤k

{vi} on Jp.

In this case, without loss of generality, we set

vq := min
0≤i≤k

{vi}, where 0 ≤ q ≤ k.

Further more, we assume

vk+1
1 ≤ vk+1

2 ≤ · · · ≤ vk+1
Nk+1

, vq1 ≤ v
q
2 ≤ · · · ≤ v

q
Nq
.

Then, we apply the same analysis in (Case 2) to find positive constant Cq5 and Cq8
such that

d

dt
vq ≥ −C

q
5(vq1 − v

q
Nq

)− Cq8Rq−1. (B.13)

� (Case 3.1): If vk+1
1 ≤ max

0≤i≤k
max

1≤j≤Ni
{vij}, then we can apply (B.11) and (B.13) to
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have

d

dt
Y k+1(t) =

d

dt
(v̄k+1 − vq)

≤ κgkψ0Rk +
κψm(vk+1

1 − vk+1
Nk+1

)

b̄k+1
1 + 1

+ Cq5(vq1 − v
q
Nq

) + Cq8Rq−1

≤ (κgkψ0 + Cq8)Rk + Cq5( max
0≤i≤k

max
1≤j≤Ni

{vij} − v
q
Nq

) + Cq5(vq1 − max
0≤i≤k

max
1≤j≤Ni

{vij})

≤ (κgkψ0 + Cq8 + Cq5)Rk + Cq5(vq1 − v
k+1
Nk+1

)

≤ −Ck+1
5 Y k+1 + Ck+1

8 Rk.
(B.14)

� (Case 3.2): If vk+1
1 ≥ max

0≤i≤k
max

1≤j≤Ni
{vij}, similar to the (Case 2), we can apply the

induction principle to derive that for 1 ≤ m ≤ Nk+1,

d

dt
v̄k+1
m ≤ κ

b̄k+1
m + 1

k∑
l=0

∑
j∈Nk+1

m (l)

ψ(||xlj − xk+1
m ||)(vlj − vk+1

m )

+

Nk+1∑
i=m+1

∏i−1
l=m b̄

k+1
l κ∏i

l=m(b̄k+1
l + 1)

k∑
l=0

∑
j∈Nk+1

i (l)

ψ(||xlj − xk+1
i ||)(vlj − vk+1

i )

+
κ

b̄k+1
m + 1

ψm

(
min

j∈
⋃Nk+1
i=m Nk+1

i (k+1)

{vk+1
j } − vk+1

Nk+1

)
.

(B.15)

Since the proof of (B.15) is similar to the proof of (B.1), we omit the details. Next,

due to the relation

vk+1
1 ≥ max

0≤i≤k
max

1≤j≤Ni
{vij},

we note all (vlj − v
k+1
i ) are non-positive if 0 ≤ l ≤ k.Then, we set m = 1 and apply

the connectivity of node Gk+1 to have

d

dt
v̄k+1 ≤

κ

b̄k+1
m + 1

k∑
l=0

∑
j∈Nk+1

m (l)

ψm(vlj − vk+1
m )

+

Nk+1∑
i=m+1

∏i−1
l=m b̄

k+1
l κ∏i

l=m(b̄k+1
l + 1)

k∑
l=0

∑
j∈Nk+1

i (l)

ψm(vlj − vk+1
i )

+
κ

b̄k+1
1 + 1

ψm(vk+1
1 − vk+1

Nk+1
).

(B.16)

Moreover, according to the existence of a spanning tree in G and the node decom-

position, we have

Nk+1⋃
i=1

k⋃
l=0

N k+1
i (l) 6= ∅.
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Therefore, (B.16) implies that

d

dt
v̄k+1 ≤

κ

b̄k+1
1 + 1

∣∣∣Nk+1⋃
i=1

k⋃
l=0

N k+1
i (l)

∣∣∣ψm( max
0≤i≤k

max
1≤j≤Ni

{vij} − vk+1
1

)
+

κ

b̄k+1
1 + 1

ψm(vk+1
1 − vk+1

Nk+1
)

≤ κ

b̄k+1
1 + 1

ψm( max
0≤i≤k

max
1≤j≤Ni

{vij} − vk+1
Nk+1

).

(B.17)

We combine (B.13) and (B.17) to obtain

d

dt
Y k+1 =

d

dt
(v̄k+1 − vq)

≤ κ

b̄k+1
1 + 1

ψm( max
0≤i≤k

max
1≤j≤Ni

{vij} − vk+1
Nk+1

) + Cq5(vq1 − v
q
Nq

) + Cq8Rq−1

≤ min{ κψm

b̄k+1
1 + 1

, Cq5}(v
q
1 − v

k+1
Nk+1

) + min{ κψm

b̄k+1
1 + 1

, Cq5}( max
0≤i≤k

max
1≤j≤Ni

{vij} − v
q
Nq

)

+ Cq8Rq−1

≤ −min{ κψm

b̄k+1
1 + 1

, Cq5}Y k+1 + (min{ κψm

b̄k+1
1 + 1

, Cq5}+ Cq8)Rq−1

≤ −Ck+1
5 Y k+1 + Ck+1

8 Rk.

• (Case 4): Consider the case

max
0≤i≤k+1

{v̄i} = max
0≤i≤k

{v̄i}, min
0≤i≤k+1

{vi} = vk+1 on Jp.

The proof is similar to Case 3, hence we omit the details.

We combine all analysis from Case 1 to Case 4 to conclude that if there exist

positive constants Ck5 , Ck6 , Ck7 and Ck8 such that

d

dt
Y k(t) ≤ −Ck5Y k + Ck8Rk−1(t), Rk(t) ≤ Ck6 e−C

k
7 tRk(0),

then we can find positive constants Ck+1
5 and Ck+1

8 such that

d

dt
Y k+1(t) ≤ −Ck+1

5 Y k + Ck+1
8 Rk(t).

B.2. Proof of Step 2

Suppose that we have (4.18):

d

dt
Y k+1(t) ≤ −Ck+1

5 Y k+1 +Ck+1
8 Rk(t), Rk(t) ≤ Ck6 e−C

k
7 tRk(0), 0 ≤ k ≤ d−1.
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Then, since Y k+1 is Lipschitz continuous, we immediately obtain

Y k+1(t) ≤ e−C
k+1
5 tY k+1(0)+

Ck+1
8 Ck6
Ck+1

5

Rk(0)e−C
k
7 t+

Ck+1
8 Ck6
Ck7

Rk(0)e−C
k+1
5 t. (B.18)

By definition of Y k+1(t), it is easy to see

Vk+1(t) ≤ 4ψ0

2ψ0 − ψm
Y k+1(t) ≤ 4ψ0

2ψ0 − ψm
Rk+1(t), t ≥ 0.

Therefore, we can rewrite (B.18) as

Y k+1(t) ≤ Ck+1
9 e−C

k+1
10 tRk+1(0).

Now we need to show Y k+1(t) and Rk+1(t) are of the same order. For this aim, we

consider the four quantities

vk+1
1 , vk+1

Nk+1
, min

0≤i≤k
min

1≤j≤Ni
{vij}, max

0≤i≤k
max

1≤j≤Ni
{vij}.

Similar to the previous analysis, we can set

[0, T ] :=

q⋃
i=1

Ji, where Ji = [ti−1, ti] and 0 = t0 < t1 · · · < tq = T ,

such that the order of above four quantities are preserved in each Ji.

• (Case 1): Consider the case

max
0≤i≤k+1

max
1≤j≤Ni

{vij} = vk+1
Nk+1

, min
0≤i≤k+1

min
1≤j≤Ni

{vij} = vk+1
1 .

In this case, we simply have

Rk+1(t) = Vk+1(t) ≤ 4ψ0

2ψ0 − ψm
Y k+1(t) ≤ 4ψ0C

k+1
9 Rk+1(0)

2ψ0 − ψm
e−C

k+1
10 t.

• (Case 2): Consider the case

max
0≤i≤k+1

max
1≤j≤Ni

{vij} = max
0≤i≤k

max
1≤j≤Ni

{vij}, min
0≤i≤k+1

min
1≤j≤Ni

{vij} = min
0≤i≤k

min
1≤j≤Ni

{vij}.

In this case, we have

Rk+1(t) = Rk(t) ≤ Ck6 e−C
k
7 tRk(0) ≤ Ck6 e−C

k
7 tRk+1(0).

• (Case 3): Consider the case

max
0≤i≤k+1

max
1≤j≤Ni

{vij} = vk+1
Nk+1

, min
0≤i≤k+1

min
1≤j≤Ni

{vij} = min
0≤i≤k

min
1≤j≤Ni

{vij}.

In this case, we will discuss in two subcases:
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� (Case 3.1): Suppose that

max
0≤i≤k+1

max
1≤j≤Ni

{vij} ≥ vk+1
1 .

In this case, we directly obtain

Rk+1(t) ≤ (vk+1
Nk+1

− vk+1
1 ) + ( max

0≤i≤k
max

1≤j≤Ni
{vij} − min

0≤i≤k
min

1≤j≤Ni
{vij})

≤ Vk+1(t) +Rk(t) ≤ 4ψ0C
k+1
9 Rk+1(0)

2ψ0 − ψm
e−C

k+1
10 t + Ck6 e

−Ck7 tRk+1(0).

� (Case 3.2): Suppose that

max
0≤i≤k+1

max
1≤j≤Ni

{vij} ≤ vk+1
1 .

In this case, due to the spanning tree in G, there must be some vk+1
p and vlq, where

0 ≤ l ≤ k, such that vk+1
p is affected by vlq. Therefore, the differential equation of

vk+1
p can be written as

d

dt
vk+1
p = κ

∑
j∈Nk+1

p (k+1)

ψ(‖xk+1
j − xk+1

p ‖)
(
vk+1
j − vk+1

p

)

+ κ

k∑
r=0

∑
j∈Nk+1

p (r)

ψ(‖xrj − xk+1
p ‖)

(
vrj − vk+1

p

)
≤ κNk+1ψ0Vk+1 + κψm(vlq − vk+1

p ).

(B.19)

On the other hand, it is clear to see

d

dt
vlq ≥ −κψ0bkRk. (B.20)

We combine (B.19) and (B.20) to get

d

dt
(vk+1
p − vlq) ≤ κψm(vlq − vk+1

p ) + κNk+1ψ0Vk+1 + κψ0bkRk.

Then we can find positive constants Ck+1
11 and Ck+1

12 such that

vk+1
p − vlq ≤ Ck+1

11 e−C
k+1
12 tRk+1(0).

Therefore, we have

Rk+1 = vk+1
Nk+1

− min
0≤i≤k

min
1≤j≤Ni

{vij}

= (vk+1
Nk+1

− vk+1
p ) + (vk+1

p − vlq) + (vlq − min
0≤i≤k

min
1≤j≤Ni

{vij})

≤ Vk+1 + (vk+1
p − vlq) +Rk

≤ 4ψ0C
k+1
9 Rk+1(0)

2ψ0 − ψm
e−C

k+1
10 t + Ck+1

11 e−C
k+1
12 tRk+1(0) + Ck6 e

−Ck7 tRk+1(0).
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• (Case 4): Consider the case

min
0≤i≤k+1

min
1≤j≤Ni

{vij} = vk+1
1 , max

0≤i≤k+1
max

1≤j≤Ni
{vij} = max

0≤i≤k
max

1≤j≤Ni
{vij}.

This case can be treated similar to Case 3, and thus we omit the analysis. Now we

combine all the cases to obtain that there exist positive constants Ck+1
6 and Ck+1

7

such that

Rk+1(t) ≤ Ck+1
6 e−C

k+1
7 tRk+1(0).
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