VECTOR-VALUED LITTEWOOD-PALEY-STEIN THEORY FOR SEMIGROUPS II

QUANHUA XU

Abstract

Inspired by a recent work of Hytönen and Naor, we solve a problem left open in our previous work joint with Martínez and Torrea on the vector-valued Littlewood-Paley-Stein theory for symmetric diffusion semigroups. We prove a similar result in the discrete case, namely, for any T which is the square of a symmetric Markovian operator on a measure space (Ω, μ). Moreover, we show that $T \otimes \operatorname{Id}_{X}$ extends to an analytic contraction on $L_{p}(\Omega ; X)$ for any $1<p<\infty$ and any uniformly convex Banach space X.

1. Introduction

Let $(\Omega, \mathcal{A}, \mu)$ be a σ-finite measure space. By a symmetric diffusion semigroup on $(\Omega, \mathcal{A}, \mu)$ in Stein's sense [24, section III.1], we mean a family $\left\{T_{t}\right\}_{t>0}$ of linear maps satisfying the following properties:

- T_{t} is a contraction on $L_{p}(\Omega)$ for every $1 \leq p \leq \infty$;
- $T_{t} T_{s}=T_{t+s}$;
- $\lim _{t \rightarrow 0} T_{t} f=f$ in $L_{2}(\Omega)$ for every $f \in L_{2}(\Omega)$;
- T_{t} is positive (i.e. positivity preserving) and $T_{t} 1=1$;
- T_{t} is selfadjoint on $L_{2}(\Omega)$.

It is a classical fact that the orthogonal projection from $L_{2}(\Omega)$ onto the fixed point subspace of $\left\{T_{t}\right\}_{t>0}$ extends to a contractive projection on $L_{p}(\Omega)$ for every $1 \leq p \leq \infty$. We will denote this projection by F . Then F is also positive and $\mathrm{F}\left(L_{p}(\Omega)\right)$ is the fixed point subspace of $\left\{T_{t}\right\}_{t>0}$ on $L_{p}(\Omega)$ (cf. e.g. [4]).

Stein proved in [24, chapter IV] the following result which considerably extends the classical inequality on the Littlewood-Paley g-function in harmonic analysis: For every $1<p<\infty$

$$
\begin{equation*}
\|f-\mathrm{F}(f)\|_{L_{p}(\Omega)} \approx\left\|\left(\int_{0}^{\infty}\left|t \frac{\partial}{\partial t} T_{t} f\right|^{2} \frac{d t}{t}\right)^{1 / 2}\right\|_{L_{p}(\Omega)}, \quad \forall f \in L_{p}(\Omega) \tag{1}
\end{equation*}
$$

where the equivalence constants depend only on p.
The vector-valued Littlewood-Paley-Stein theory was developed in 26, 15. Given a Banach space X, we denote by $L_{p}(\Omega ; X)$ the usual L_{p} space of strongly measurable functions from Ω to X. It is a well known elementary fact that if T is a positive bounded operator on $L_{p}(\Omega)$ with $1 \leq p \leq \infty$, then $T \otimes \operatorname{Id}_{X}$ is bounded on $L_{p}(\Omega ; X)$ with the same norm. For notational convenience, throughout this paper, we will denote $T \otimes \operatorname{Id}_{X}$ by T too. Thus $\left\{T_{t}\right\}_{t>0}$ is also a semigroup of contractions on $L_{p}(\Omega ; X)$ for any Banach space X.

The one-sided vector-valued extension of (1) was obtained in 15 not for the semigroup $\left\{T_{t}\right\}_{t>0}$ itself but for its subordinated Poisson semigroup $\left\{P_{t}\right\}_{t>0}$ that is defined by

$$
P_{t} f=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{e^{-s}}{\sqrt{s}} T_{\frac{t^{2}}{4 s}} f d s
$$

$\left\{P_{t}\right\}_{t>0}$ is again a symmetric diffusion semigroup. Recall that if A denotes the negative infinitesimal generator of $\left\{T_{t}\right\}_{t>0}$, then $P_{t}=e^{-\sqrt{A} t}$.

[^0]Let $1<q<\infty$. Recall that a Banach space X is of martingale cotype q if there exists a positive constant C such that every finite X-valued L_{q}-martingale $\left(f_{n}\right)$ defined on some probability space satisfies the following inequality

$$
\sum_{n} \mathbb{E}\left\|f_{n}-f_{n-1}\right\|_{X}^{q} \leq C^{q} \sup _{n} \mathbb{E}\left\|f_{n}\right\|_{X}^{q},
$$

where \mathbb{E} denotes the expectation on the underlying probability space. We then must have $q \geq 2$. X is of martingale type q if the reverse inequality holds. It is easy to see that X is of martingale cotype q iff the dual space X^{*} is of martingale type q^{\prime}, where q^{\prime} denotes the conjugate index of q. We refer to 19, 20 for more information.

The following is the principal result of [15]. In the sequel, we will use the abbreviation $\partial=\partial / \partial t$.
Theorem 1 (Martínez-Torrea-Xu). Let $1<q<\infty$ and X be a Banach space.
(i) X is of martingale cotype q iff for every $1<p<\infty$ (or equivalently, for some $1<p<\infty$) there exists a constant C such that every subordinated Poisson semigroup $\left\{P_{t}\right\}_{t>0}$ as above satisfies the following inequality

$$
\left\|\left(\int_{0}^{\infty}\left\|t \partial P_{t} f\right\|_{X}^{q} \frac{d t}{t}\right)^{1 / q}\right\|_{L_{p}(\Omega)} \leq C\|f\|_{L_{p}(\Omega ; X)}, \quad \forall f \in L_{p}(\Omega ; X)
$$

(ii) X is of martingale type q iff for for every $1<p<\infty$ (or equivalently, for some $1<p<\infty$) there exists a constant C such that every subordinated Poisson semigroup $\left\{P_{t}\right\}_{t>0}$ as above satisfies the following inequality

$$
\|f\|_{L_{p}(\Omega ; X)} \leq\|\mathrm{F}(f)\|_{L_{p}(\Omega ; X)}+C\left\|\left(\int_{0}^{\infty}\left\|t \partial P_{t} f\right\|_{X}^{q} \frac{d t}{t}\right)^{1 / q}\right\|_{L_{p}(\Omega)}, \quad \forall f \in L_{p}(\Omega ; X)
$$

Note that the above theorem for the Poisson semigroup of the torus \mathbb{T} was first proved in [26]. The main problem left open in [15] asks whether the theorem holds for the semigroup $\left\{T_{t}\right\}_{t>0}$ itself instead of its subordinated Poisson semigroup $\left\{P_{t}\right\}_{t>0}$ (see Problem 2 on page 447 of [15]). Very recently, Hytönen and Naor [8] proved that the answer is affirmative for the heat semigroup of \mathbb{R}^{n} and for $p=q$; the resulting inequality plays a key role in their work on the approximation of Lipschitz functions by affine maps. Stimulated by their result and using a clever idea of them, we are able to resolve the problem in full generality.

Theorem 2. Let X be a Banach space and k a positive integer.
(i) If X is of martingale cotype q with $2 \leq q<\infty$, then for every symmetric diffusion semigroup $\left\{T_{t}\right\}_{t>0}$ and for every $1<p<\infty$ we have

$$
\left\|\left(\int_{0}^{\infty}\left\|t^{k} \partial^{k} T_{t} f\right\|_{X}^{q} \frac{d t}{t}\right)^{1 / q}\right\|_{L_{p}(\Omega)} \leq C\|f\|_{L_{p}(\Omega ; X)}, \quad \forall f \in L_{p}(\Omega ; X)
$$

where C is a constant depending only on p, q, k and the martingale cotype q constant of X.
(ii) If X is of martingale type q with $1<q \leq 2$, then for every symmetric diffusion semigroup $\left\{T_{t}\right\}_{t>0}$ and for every $1<p<\infty$ we have

$$
\|f\|_{L_{p}(\Omega ; X)} \leq\|\mathrm{F}(f)\|_{L_{p}(\Omega ; X)}+C\left\|\left(\int_{0}^{\infty}\left\|t^{k} \partial^{k} T_{t} f\right\|_{X}^{q} \frac{d t}{t}\right)^{1 / q}\right\|_{L_{p}(\Omega)}, \quad \forall f \in L_{p}(\Omega ; X)
$$

where C is a constant depending only on p, q, k and the martingale type q constant of X.
Remark 3. Applied to the heat semigroup $\left\{H_{t}\right\}_{t>0}$ of \mathbb{R}^{n}, the above theorem implies a dimension free estimate for the g-function associated to $\left\{H_{t}\right\}_{t>0}$:

$$
\left\|\left(\int_{0}^{\infty}\left\|t \partial H_{t} f\right\|_{X}^{q} \frac{d t}{t}\right)^{1 / q}\right\|_{L_{p}\left(\mathbb{R}^{n}\right)} \leq C\|f\|_{L_{p}\left(\mathbb{R}^{n} ; X\right)}, \quad \forall f \in L_{p}\left(\mathbb{R}^{n} ; X\right)
$$

when X is of martingale cotype q. Compare this with [8, Theorem 17] (and the paragraph thereafter).

Remark 4. Theorem2allows one to improve some recent results of Hong and Ma on vector-valued variational inequalities associated to symmetric diffusion semigroups. For instance, using it, one can extend [6, Theorem 5.2] to any Banach space X of martingale cotype q_{0}. See also [5] for related results in the Banach lattice case.

Theorem 2 admits a discrete analogue. First recall that a power bounded operator R on a Banach space Y is said to be analytic if

$$
\sup _{n \geq 1} n\left\|R^{n}(R-1)\right\|<\infty
$$

where the norm is the operator norm on Y. It is known that the analyticity of R is equivalent to

$$
\sup _{z \in \mathbb{C},|z|>1}|1-z|\left\|(z-R)^{-1}\right\|<\infty
$$

Moreover, if R is analytic, its spectrum $\sigma(R)$ is contained in $\overline{B_{\gamma}}$ for some $0<\gamma<\pi / 2$, where B_{γ} denotes the Stolz domain which is the interior of the convex hull of 1 and the disc $D(0, \sin \gamma)$ (see figure 1). We refer to [2, 17] for more information.

Figure 1.
Now consider a symmetric Markovian operator T on $(\Omega, \mathcal{A}, \mu)$, that is, T satisfies the following conditions:

- T is a linear contraction on $L_{p}(\Omega)$ for every $1 \leq p \leq \infty$;
- T is positivity preserving and $T 1=1$;
- T is a selfadjoint operator on $L_{2}(\Omega)$.

With a slight abuse of notation, we use again F to denote the projection on the fixed point subspace of T. Both T and F extend to contractions on $L_{p}(\Omega ; X)$ for any Banach space X. In the following two theorems, $T=S^{2}$ with S a symmetric Markovian operator, so T is a symmetric Markovian operator too, The following is the discrete analogue of a theorem of Pisier [21] for semigroups.
Theorem 5. Let $T=S^{2}$ with S a symmetric Markovian operator, $1<p<\infty$ and X be a uniformly convex Banach space. Then the extension of T to $L_{p}(\Omega ; X)$ is analytic. More precisely, there exist constants C and $\gamma \in(0, \pi / 2)$, depending only on p and the modulus of uniform convexity of X, such that

$$
\begin{equation*}
\sigma(T) \subset \overline{B_{\gamma}} \text { and }\left\|(z-T)^{-1}\right\| \leq \frac{C}{|1-z|}, \quad \forall z \in \mathbb{C} \backslash \overline{B_{\gamma}} \tag{2}
\end{equation*}
$$

The discrete analogue of Theorem 2 is the following
Theorem 6. Let $T=S^{2}$ be as above and $1<p<\infty$.
(i) If X is of martingale cotype q with $2 \leq q<\infty$, then

$$
\left\|\left(\sum_{n=1}^{\infty} n^{q-1}\left\|\left(T^{n}-T^{n-1}\right) f\right\|_{X}^{q}\right)^{1 / q}\right\|_{L_{p}(\Omega)} \leq C\|f\|_{L_{p}(\Omega ; X)}, \quad \forall f \in L_{p}(\Omega ; X)
$$

where the constant C depends only on p, q and the martingale cotpye q constant of X.
(ii) If X is of martingale type q with $1<q \leq 2$, then

$$
\|f\|_{L_{p}(\Omega ; X)} \leq C\left\|\left(\|\mathrm{~F} f\|_{X}^{q}+\sum_{n=1}^{\infty} n^{q-1}\left\|\left(T^{n}-T^{n-1}\right) f\right\|_{X}^{q}\right)^{1 / q}\right\|_{L_{p}(\Omega)}, \quad \forall f \in L_{p}(\Omega ; X)
$$

where the constant C depends only on p, q and the martingale tpye q constant of X.
Remark 7. If the inequality in Theorem 6 (i) holds for every positive symmetric Markovian operator T, then the corresponding inequality of Theorem $\mathbb{\square}$ holds for every subordinated Poisson semigroup $\left\{P_{t}\right\}_{t>0}$. Thus X is of martingale cotype q. Therefore, the validity of the inequality in Theorem6(i) characterizes the martingale cotype q of X. A similar remark applies to part (ii).
Remark 8. It is worth to note that all constants involved in the preceding theorems are independent of the semigroup $\left\{T_{t}\right\}_{t>0}$ or contraction T in consideration. They depend only on the indices p, q and the relevant geometric constants of the space X.

The preceding three theorems will be proved in the next three sections. The proofs of Theorem 2 and Theorem 6 follow the same pattern although the latter one is more involved. The last section contains some open problems.

We will use the symbol \lesssim to denote an inequality up to a constant factor; all constants will depend only on X, p, q, etc. but never on the function f in consideration.

2. A spectral estimate

This section contains a spectral estimate for positive symmetric Markovian operators. Let X be a uniformly convex Banach space and $1<p<\infty$. Then $Y=L_{p}(\Omega ; X)$ is uniformly convex too. By Pisier's renorming theorem [19], we can assume that Y is uniformly convex of power type q for some $2 \leq q<\infty$, namely,

$$
\begin{equation*}
\left\|\frac{x+y}{2}\right\|^{q}+\delta\left\|\frac{x-y}{2}\right\|^{q} \leq \frac{1}{2}\left(\|x\|^{q}+\|y\|^{q}\right), \quad \forall x, y \in Y \tag{3}
\end{equation*}
$$

for some positive constant δ. Note that the above inequality implies the martingale cotype q of Y. Conversely, if Y is of martingale cotype q, then it admits an equivalent norm which satisfies (31). Let $T=S^{2}$ with S a symmetric Markovian operator on $(\Omega, \mathcal{A}, \mu)$. We extend T to a contraction on Y, still denoted by T. In the following the norm and spectrum of T is taken for T viewed as an operator on Y.
Lemma 9. Under the above assumptions we have
(i) $\|1-T\| \leq \min \left(\frac{3}{2}, 2\left(1-\frac{\delta}{2^{q}}\right)^{1 / q}\right)<2$;
(ii) the spectrum of T is contained in a Stolz domain $\overline{B_{\gamma}}$ for some $\gamma \in(0, \pi / 2)$ depending only on δ and q in (3).
Part (i) above is already contained in 21 (see, in particular, Remark 1.8 there). In fact, our proof below is modeled on that of [21, Lemma 1.5]. As in [21, We will need the following one step version of Rota's dilation theorem for positive symmetric Markovian operators. We refer to 24, Chapter IV] for its proof as well as its full version.
Lemma 10 (Rota). Let $T=S^{2}$ with S a symmetric Markovian operator on $(\Omega, \mathcal{A}, \mu)$. Then there exist a larger measure space $(\widetilde{\Omega}, \widetilde{\mathcal{A}}, \widetilde{\mu})$ containing $(\Omega, \mathcal{A}, \mu)$, and a σ-subalgebra \mathcal{B} of $\widetilde{\mathcal{A}}$ such that

$$
T f=\mathbb{E}_{\mathcal{A}} \mathbb{E}_{\mathcal{B}} f, \quad \forall f \in L_{p}(\Omega, \mathcal{A}, \mu)
$$

where $\mathbb{E}_{\mathcal{A}}$ denotes the conditional expectation relative to \mathcal{A} (and similarly for $\mathbb{E}_{\mathcal{B}}$).
Proof of Lemma 9 Rota's dilation extends to X-valued functions:

$$
T=\left.\mathbb{E}_{\mathcal{A}} \mathbb{E}_{\mathcal{B}}\right|_{Y}
$$

Here we have used our usual convention that $\mathbb{E}_{\mathcal{A}} \otimes \operatorname{Id}_{X}$ and $\mathbb{E}_{\mathcal{B}} \otimes \operatorname{Id}_{X}$ are abbreviated to $\mathbb{E}_{\mathcal{A}}$ and $\mathbb{E}_{\mathcal{B}}$, respectively. Thus for any $\lambda \in \mathbb{C}$ (with $P=\mathbb{E}_{\mathcal{B}}$)

$$
\lambda+T=\left.\mathbb{E}_{\mathcal{A}}(\lambda+P)\right|_{Y}
$$

Let y be a unit vector in Y. Using (33), we get

$$
\left\|\frac{\lambda y+P y}{2}\right\|^{q}+\delta\left\|\frac{\lambda y-P y}{2}\right\|^{q} \leq \frac{1}{2}\left(|\lambda|^{q}+1\right)
$$

However (noting that P is a contractive projection),

$$
\|\lambda y-P y\| \geq|1-\lambda|\|P y\| \geq|1-\lambda|(\|\lambda y+P y\|-|\lambda|) \geq|1-\lambda|(\|\lambda y+T y\|-|\lambda|) .
$$

When $\|\lambda y+T y\|$ approaches $\|\lambda+T\|$, we then deduce

$$
\begin{equation*}
\left\|\frac{\lambda+T}{2}\right\|^{q}+\delta|1-\lambda|^{q}\left(\frac{\|\lambda+T\|-|\lambda|}{2}\right)^{q} \leq \frac{1}{2}\left(|\lambda|^{q}+1\right) . \tag{4}
\end{equation*}
$$

In particular, for $\lambda=-1$ we obtain

$$
\|1-T\|^{q}+\delta 2^{q}(\|1-T\|-1)^{q} \leq 2^{q}
$$

which implies

$$
\|1-T\| \leq \min \left(\frac{3}{2}, 2\left(1-\frac{\delta}{2^{q}}\right)^{1 / q}\right)
$$

This is part (i). On the other hand, if $\lambda \in \sigma(T)$, then (4) yields

$$
|\lambda|^{q}+\delta|1-\lambda|^{q}|\lambda|^{q} \leq \frac{1}{2}\left(|\lambda|^{q}+1\right)
$$

whence

$$
|1-\lambda||\lambda| \leq\left(\frac{q}{2 \delta}\right)^{1 / q}(1-|\lambda|)
$$

The last inequality implies (in fact, is equivalent to) that $\lambda \in \overline{B_{\gamma}}$ for some $\gamma \in(0,, \pi / 2)$ depending only on the constant $(q /(2 \delta))^{1 / q}$. The proof of the lemma is thus complete.

Lemma 9 (i) implies the following result which is [21, Remark 1.8].
Lemma 11. Let X and p be as above and $\left\{T_{t}\right\}_{t>0}$ be a symmetric diffusion semigroup on $(\Omega, \mathcal{A}, \mu)$. Then the extension of $\left\{T_{t}\right\}_{t>0}$ to $Y=L_{p}(\Omega ; X)$ is analytic. Consequently, $\left\{t \partial T_{t}\right\}_{t>0}$ is a uniformly bounded family of operators on Y, namely,

$$
\begin{equation*}
\sup _{t>0}\left\|t \partial T_{t}\right\| \leq C \tag{5}
\end{equation*}
$$

where C is a constant depending only on δ and q in (3).
Proof. Applying Lemma 9 to $T=T_{t}$, we get

$$
\sup _{t>0}\left\|1-T_{t}\right\| \leq \min \left(\frac{3}{2}, 2\left(1-\frac{\delta}{2^{q}}\right)^{1 / q}\right)<2 .
$$

Then using Kato's characterization of analytic semigroups in [10], we deduce (55).

3. Proof of Theorem 2

This section is devoted to the proof of Theorem 2. Let us first note that assertion (ii) follows easily from (i) by duality. Indeed, let $\left\{e_{\lambda}\right\}$ be the resolution of the identity of $\left\{T_{t}\right\}_{t>0}$ on $L_{2}(\Omega)$:

$$
T_{t} f=\int_{0}^{\infty} e^{-\lambda t} d e_{\lambda} f, \quad f \in L_{2}(\Omega)
$$

Then

$$
\partial^{k} T_{t} f=(-1)^{k} \int_{0}^{\infty} \lambda^{k} e^{-\lambda t} d e_{\lambda} f
$$

It thus follows that

$$
\begin{aligned}
\int_{\Omega} \int_{0}^{\infty}\left|t^{k} \partial^{k} T_{t} f\right|^{2} \frac{d t}{t} d \mu & =\int_{0}^{\infty} \int_{0}^{\infty} t^{2 k} \lambda^{2 k} e^{-2 \lambda t} d\left\langle e_{\lambda} f, f\right\rangle \frac{d t}{t} \\
& =4^{-k} \int_{0}^{\infty} \int_{0}^{\infty} t^{2 k} e^{-t} \frac{d t}{t} d\left\langle e_{\lambda} f, f\right\rangle \\
& =4^{-k}(2 k-1)!\int_{0}^{\infty} d\left\langle e_{\lambda} f, f\right\rangle \\
& =4^{-k}(2 k-1)!\int_{\Omega}|f-\mathrm{F}(f)|^{2} d \mu
\end{aligned}
$$

By polarization, for $f, g \in L_{2}(\Omega)$ we have

$$
\int_{\Omega}(f-\mathrm{F}(f))(g-\mathrm{F}(g)) d \mu=\frac{4^{k}}{(2 k-1)!} \int_{\Omega} \int_{0}^{\infty}\left(t^{k} \partial^{k} T_{t} f\right)\left(t^{k} \partial^{k} T_{t} g\right) \frac{d t}{t} d \mu
$$

We then deduce that for any $f \in L_{1}(\Omega) \cap L_{\infty}(\Omega) \otimes X$ and $g \in L_{1}(\Omega) \cap L_{\infty}(\Omega) \otimes X^{*}$

$$
\int_{\Omega}\langle g-\mathrm{F}(g), f-\mathrm{F}(f)\rangle d \mu=\frac{4^{k}}{(2 k-1)!} \int_{\Omega} \int_{0}^{\infty}\left\langle t^{k} \partial^{k} T_{t} g, t^{k} \partial^{k} T_{t} f\right\rangle \frac{d t}{t} d \mu
$$

where \langle,$\rangle denotes the duality bracket between X$ and X^{*}. Hence

$$
\begin{aligned}
\left|\int_{\Omega}\langle g-\mathrm{F}(g), f-\mathrm{F}(f)\rangle d \mu\right| \leq \frac{4^{k}}{(2 k-1)!} & \left\|\left(\int_{0}^{\infty}\left\|t^{k} \partial^{k} T_{t} g\right\|_{X^{*}}^{q^{\prime}} \frac{d t}{t}\right)^{1 / q^{\prime}}\right\|_{L_{p^{\prime}}(\Omega)} \\
\cdot & \left\|\left(\int_{0}^{\infty}\left\|t^{k} \partial^{k} T_{t} f\right\|_{X}^{q} \frac{d t}{t}\right)^{1 / q}\right\|_{L_{p}(\Omega)}
\end{aligned}
$$

where r^{\prime} is the conjugate index of r. Under the assumption of (ii) and by duality, we have that X^{*} is of martingale cotype q^{\prime}. Therefore, (i) implies

$$
\left\|\left(\int_{0}^{\infty}\left\|t^{k} \partial^{k} T_{t} g\right\|_{X^{*}}^{q^{\prime}} \frac{d t}{t}\right)^{1 / q^{\prime}}\right\|_{L_{p^{\prime}}(\Omega)} \leq \frac{4^{k} C}{(2 k-1)!}\|g\|_{L_{p^{\prime}}\left(\Omega ; X^{*}\right)}
$$

Combining the previous inequalities and taking the supremum over all g in the unit ball of $L_{p^{\prime}}\left(\Omega ; X^{*}\right)$, we derive assertion (ii).

Thus we are left to showing assertion (i). In the rest of this section, we will assume that X is a Banach space of martingale cotype q with $2 \leq q<\infty$. The following lemma, due to Hytönen and Naor [8, Lemma 24], will play an important role in our argument.

Lemma 12 (Hytönen-Naor). For any $f \in L_{q}(\Omega ; X)$ we have

$$
\left(\int_{0}^{\infty}\left\|\left(T_{t}-T_{3 t}\right) f\right\|_{L_{q}(\Omega ; X)}^{q} \frac{d t}{t}\right)^{1 / q} \lesssim\|f\|_{L_{q}(\Omega ; X)}, \quad \forall f \in L_{q}(\Omega ; X)
$$

Based on Rota's dilation theorem quoted in the previous section, the proof is simple. Below is the main idea. First write

$$
\begin{aligned}
\int_{0}^{\infty}\left\|\left(T_{t}-T_{3 t}\right) f\right\|_{L_{q}(\Omega ; X)}^{q} \frac{d t}{t} & =\sum_{k \in \mathbb{Z}} \int_{3^{k}}^{3^{k+1}}\left\|\left(T_{t}-T_{3 t}\right) f\right\|_{L_{q}(\Omega ; X)}^{q} \frac{d t}{t} \\
& =\int_{1}^{3} \sum_{k \in \mathbb{Z}}\left\|\left(T_{3^{k} t}-T_{3^{k+1} t}\right) f\right\|_{L_{q}(\Omega ; X)}^{q} \frac{d t}{t}
\end{aligned}
$$

Then Rota's dilation theorem allows us to turn $\left\{T_{3^{k} t}-T_{3^{k+1} t}\right\}_{k}$ for each fixed t into a martingale difference sequence.

The following lemma shows Theorem 2 in the case of $p=q$.
Lemma 13. Let k be a positive integer. Then

$$
\begin{equation*}
\left(\int_{0}^{\infty}\left\|t^{k} \partial^{k} T_{t} f\right\|_{L_{q}(\Omega ; X)}^{q} \frac{d t}{t}\right)^{1 / q} \lesssim\|f\|_{L_{q}(\Omega ; X)}, \quad \forall f \in L_{q}(\Omega ; X) \tag{6}
\end{equation*}
$$

where the relevant constant depends on k and the martingale cotype q constant of X.
Proof. We will use the idea of the proof of Theorem 17 of [8]. By virtue of the identity $\partial T_{t+s}=$ $\partial T_{t} T_{s}$, we write

$$
\partial T_{t} f=\sum_{k=-1}^{\infty}\left(\partial T_{2^{k+1} t}-\partial T_{2^{k+2} t}\right) f=\sum_{k=-1}^{\infty} \partial T_{2^{k} t}\left(T_{2^{k} t}-T_{3 \cdot 2^{k} t}\right) f .
$$

Then by the triangle inequality we get

$$
\begin{aligned}
\left(\int_{0}^{\infty}\left\|t \partial T_{t} f\right\|_{L_{q}(\Omega ; X)}^{q} \frac{d t}{t}\right)^{1 / q} & \leq \sum_{k=-1}^{\infty}\left(\int_{0}^{\infty}\left\|t \partial T_{2^{k} t}\left(T_{2^{k} t}-T_{3 \cdot 2^{k} t}\right) f\right\|_{L_{q}(\Omega ; X)}^{q} \frac{d t}{t}\right)^{1 / q} \\
& =\sum_{k=-1}^{\infty} 2^{-k}\left(\int_{0}^{\infty}\left\|t \partial T_{t}\left(T_{t}-T_{3 t}\right) f\right\|_{L_{q}(\Omega ; X)}^{q} \frac{d t}{t}\right)^{1 / q} \\
& =4\left(\int_{0}^{\infty}\left\|t \partial T_{t}\left(T_{t}-T_{3 t}\right) f\right\|_{L_{q}(\Omega ; X)}^{q} \frac{d t}{t}\right)^{1 / q}
\end{aligned}
$$

We are now in a position of using Lemma 11 with $p=q$. Indeed, since X is of martingale cotype q, so is $Y=L_{q}(\Omega ; X)$. Then by [19, Y can be renormalized into a uniformly convex space of power type q, that is, Y admits an equivalent norm satisfying (3). Thus we have (5); moreover, the constant C there depends only on q and the martingale cotype q constant of X.

Therefore,

$$
\left\|t \partial T_{t}\left(T_{t}-T_{3 t}\right) f\right\|_{L_{q}(\Omega ; X)} \lesssim\left\|\left(T_{t}-T_{3 t}\right) f\right\|_{L_{q}(\Omega ; X)}, \quad \forall t>0
$$

Combining the above inequalities together with Lemma 12 we deduce

$$
\left(\int_{0}^{\infty}\left\|t \partial T_{t} f\right\|_{L_{q}(\Omega ; X)}^{q} \frac{d t}{t}\right)^{1 / q} \lesssim\left(\int_{0}^{\infty}\left\|\left(T_{t}-T_{3 t}\right) f\right\|_{L_{q}(\Omega ; X)}^{q} \frac{d t}{t}\right)^{1 / q} \lesssim\|f\|_{L_{q}(\Omega ; X)}
$$

This is (6) for $k=1$. To handle a general k, by the semigroup identity $T_{t+s}=T_{t} T_{s}$ once more, we have

$$
t^{k} \partial^{k} T_{t}=k^{k}\left(\frac{t}{k} \partial T_{\frac{t}{k}}\right)^{k}
$$

Thus, by (5) and the already proved inequality, we obtain

$$
\begin{aligned}
\int_{0}^{\infty}\left\|t^{k} \partial^{k} T_{t} f\right\|_{L_{q}(\Omega ; X)}^{q} \frac{d t}{t} & =k^{k} \int_{0}^{\infty}\left\|\left(t \partial T_{t}\right)^{k} f\right\|_{L_{q}(\Omega ; X)}^{q} \frac{d t}{t} \\
& \lesssim \int_{0}^{\infty}\left\|t \partial T_{t} f\right\|_{L_{q}(\Omega ; X)}^{q} \frac{d t}{t} \lesssim\|f\|_{L_{q}(\Omega ; X)}^{q}
\end{aligned}
$$

The lemma is thus proved.
To show Theorem 2 for any $1<p<\infty$, we will use Stein's complex interpolation machinery. To that end, we will need the fractional integrals. For a (nice) function φ on $(0, \infty)$ define

$$
\mathrm{I}^{\alpha} \varphi(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} \varphi(s) d s, \quad t>0
$$

The integral in the right hand side is well defined for any $\alpha \in \mathbb{C}$ with $\operatorname{Re} \alpha>0$; moreover, $\mathrm{I}^{\alpha} \varphi$ is analytic in the right half complex plane $\operatorname{Re} \alpha>0$. Using integration by parts, Stein showed in [24, section III.3] that $\mathrm{I}^{\alpha} \varphi$ has an analytic continuation to the whole complex plane, which satisfies the following properties

- $\mathrm{I}^{\alpha} \mathrm{I}^{\beta} \varphi=\mathrm{I}^{\alpha+\beta} \varphi$ for any $\alpha, \beta \in \mathbb{C}$;
- $\mathrm{I}^{0} \varphi=\varphi$;
- $\mathrm{I}^{-k}=\partial^{k} \varphi$ for any positive integer k.

We will apply I^{α} to φ defined by $\varphi(s)=T_{s} f$ for a given function f in $L_{p}(\Omega ; X)$ and set

$$
\mathrm{M}_{t}^{\alpha} f=t^{-\alpha} \mathrm{I}^{\alpha} \varphi(t) \text { with } \varphi(s)=T_{s} f
$$

Note that

$$
\mathrm{M}_{t}^{1} f=\frac{1}{t} \int_{0}^{t} T_{s} f d s, \quad \mathrm{M}_{t}^{0} f=T_{t} f \text { and } \mathrm{M}_{t}^{-k} f=t^{k} \partial^{k} T_{t} f \text { for } k \in \mathbb{N}
$$

The following lemma is [15, Theorem 2.3].
Lemma 14. Let q and X be as in Theorem (2. Then for any $1<p<\infty$ we have

$$
\left\|\left(\int_{0}^{\infty}\left\|t \partial \mathrm{M}_{t}^{1} f\right\|_{X}^{q} \frac{d t}{t}\right)^{1 / q}\right\|_{L_{p}(\Omega)} \lesssim\|f\|_{L_{p}(\Omega ; X)}, \quad \forall f \in L_{p}(\Omega ; X)
$$

Lemma 15. Let α and β be complex numbers such that $\operatorname{Re} \alpha>\operatorname{Re} \beta>-1$. Then for any positive integer k

$$
\left(\int_{0}^{\infty}\left\|t^{k} \partial^{k} \mathrm{M}_{t}^{\alpha} f\right\|_{X}^{q} \frac{d t}{t}\right)^{1 / q} \leq C e^{\pi|\operatorname{Im}(\alpha-\beta)|}\left(\int_{0}^{\infty}\left\|t^{k} \partial^{k} \mathrm{M}_{t}^{\beta} f\right\|_{X}^{q} \frac{d t}{t}\right)^{1 / q} \text { on } \Omega
$$

where C is a constant depending only on $\operatorname{Re} \alpha$ and $\operatorname{Re} \beta$.
Proof. Using $\mathrm{I}^{\alpha}=\mathrm{I}^{\alpha-\beta} \mathrm{I}^{\beta}$, we write

$$
\mathrm{M}_{t}^{\alpha} f=\frac{t^{-\alpha}}{\Gamma(\alpha-\beta)} \int_{0}^{t}(t-s)^{\alpha-\beta-1} s^{\beta} \mathrm{M}_{s}^{\beta} f d s=\frac{1}{\Gamma(\alpha-\beta)} \int_{0}^{1}(1-s)^{\alpha-\beta-1} s^{\beta} \mathrm{M}_{t s}^{\beta} f d s
$$

Thus

$$
t^{k} \partial^{k} \mathrm{M}_{t}^{\alpha} f=\frac{1}{\Gamma(\alpha-\beta)} \int_{0}^{1}(1-s)^{\alpha-\beta-1} s^{\beta}(t s)^{k} \partial^{k} \mathrm{M}_{t s}^{\beta} f d s
$$

which implies

$$
\begin{aligned}
\left(\int_{0}^{\infty}\left\|t^{k} \partial^{k} \mathrm{M}_{t}^{\alpha} f\right\|_{X}^{q} \frac{d t}{t}\right)^{1 / q} & \leq \frac{1}{|\Gamma(\alpha-\beta)|} \int_{0}^{1}(1-s)^{\operatorname{Re}(\alpha-\beta)-1} s^{\operatorname{Re} \beta} d s\left(\int_{0}^{\infty}\left\|t^{k} \partial^{k} \mathrm{M}_{t}^{\beta} f\right\|_{X}^{q} \frac{d t}{t}\right)^{1 / q} \\
& \lesssim \frac{1}{|\Gamma(\alpha-\beta)|}\left(\int_{0}^{\infty}\left\|t^{k} \partial^{k} \mathrm{M}_{t}^{\beta} f\right\|_{X}^{q} \frac{d t}{t}\right)^{1 / q}
\end{aligned}
$$

Then the desired inequality follows from the following well known estimate on the Γ-function:

$$
\forall x, y \in \mathbb{R}, \quad|\Gamma(x+\mathrm{i} y)| \sim e^{-\frac{\pi}{2}|y|}|y|^{x-\frac{1}{2}} \quad \text { as } y \rightarrow \pm \infty
$$

(see [25, p. 151]).
Combining Lemma 14 and Lemma 15 with $k=\beta=1$, we get
Lemma 16. For any $1<p<\infty$ and $\alpha \in \mathbb{C}$ with $\operatorname{Re} \alpha>1$

$$
\left\|\left(\int_{0}^{\infty}\left\|t \partial \mathrm{M}_{t}^{\alpha} f\right\|_{X}^{q} \frac{d t}{t}\right)^{1 / q}\right\|_{L_{p}(\Omega)} \leq C e^{\pi|\operatorname{Im} \alpha|}\|f\|_{L_{p}(\Omega ; X)}, \quad \forall f \in L_{p}(\Omega ; X)
$$

where C depends on $\operatorname{Re} \alpha, p$ and the martingale cotype q constant of X.
Lemma 17. For any $\alpha \in \mathbb{C}$

$$
\begin{equation*}
\left\|\left(\int_{0}^{\infty}\left\|t \partial \mathrm{M}_{t}^{\alpha} f\right\|_{X}^{q} \frac{d t}{t}\right)^{1 / q}\right\|_{L_{q}(\Omega)} \leq C e^{\pi|\operatorname{Im} \alpha|}\|f\|_{L_{q}(\Omega ; X)}, \quad \forall f \in L_{p}(\Omega ; X) \tag{7}
\end{equation*}
$$

where C depends on $\operatorname{Re} \alpha$ and the martingale cotype q constant of X.
Proof. Combining Lemma 13 and Lemma 15 with $\beta=0$, we deduce that for a positive integer k and $\alpha \in \mathbb{C}$ with $\operatorname{Re} \alpha>0$

$$
\begin{equation*}
\left\|\left(\int_{0}^{\infty}\left\|t^{k} \partial^{k} \mathrm{M}_{t}^{\alpha} f\right\|_{X}^{q} \frac{d t}{t}\right)^{1 / q}\right\|_{L_{q}(\Omega)} \leq C e^{\pi|\operatorname{Im} \alpha|}\|f\|_{L_{q}(\Omega ; X)}, \quad \forall f \in L_{q}(\Omega ; X) \tag{8}
\end{equation*}
$$

where C depends on $k, \operatorname{Re} \alpha$ and the martingale cotype q constant of X. In particular, when $k=1$, we get (7) for any α such that $\operatorname{Re} \alpha>0$.

To deal with the general case, we will use an iteration procedure. Noting that for any $\alpha \in \mathbb{C}$

$$
\partial \mathrm{M}_{t}^{\alpha}=-\alpha t^{-1} \mathrm{M}_{t}^{\alpha}+t^{-1} \mathrm{M}_{t}^{\alpha-1}
$$

we have

$$
\begin{equation*}
t^{k} \partial^{k} \mathrm{M}_{t}^{\alpha-1}=(k+\alpha) t^{k} \partial^{k} \mathrm{M}_{t}^{\alpha}+t^{k+1} \partial^{k+1} \mathrm{M}_{t}^{\alpha} \tag{9}
\end{equation*}
$$

This shows that if (8) holds for M^{α}, so does it for $\mathrm{M}^{\alpha-1}$ instead of M^{α} (with a different constant). Therefore, by what already proved, we deduce that (8) holds for any $\alpha \in \mathbb{C}$ with $\operatorname{Re} \alpha>-1$. Repeating this argument, we obtain (8) for any $\alpha \in \mathbb{C}$. In particular for $k=1$, we have (7).

Now we are ready to show Theorem 2 (i).
Proof of Theorem 圆 (i). We will prove the following more general statement: Under the assumption of assertion (i), we have for any $\alpha \in \mathbb{C}$

$$
\begin{equation*}
\left\|\left(\int_{0}^{\infty}\left\|t^{k} \partial^{k} \mathrm{M}_{t}^{\alpha} f\right\|_{X}^{q} \frac{d t}{t}\right)^{1 / q}\right\|_{L_{p}(\Omega)} \lesssim\|f\|_{L_{p}(\Omega ; X)}, \quad \forall f \in L_{p}(\Omega ; X) \tag{10}
\end{equation*}
$$

Assertion (i) corresponds to (10) for $\alpha=0$.
Fix $\alpha \in \mathbb{C}$. Choose $\theta \in(0,1), r \in(1, \infty), \alpha_{0}, \alpha_{1} \in \mathbb{C}$ such that

$$
\frac{1}{p}=\frac{1-\theta}{q}+\frac{\theta}{r}, \quad \alpha=(1-\theta) \alpha_{0}+\theta \alpha_{1}, \quad \operatorname{Re} \alpha_{1}>1 \text { and } \operatorname{Im} \alpha_{0}=\operatorname{Im} \alpha_{1}=\operatorname{Im} \alpha
$$

Then by the classical complex interpolation on vector-valued L_{p}-spaces (cf. [1]), we have

$$
L_{p}(\Omega ; X)=\left(L_{q}(\Omega ; X), L_{r}(\Omega ; X)\right)_{\theta}
$$

Thus for any $f \in L_{p}(\Omega ; X)$ with norm less than 1 there exists a continuous function F from the closed strip $\{z \in \mathbb{C}: 0 \leq \operatorname{Re} z \leq 1\}$ to $L_{q}(\Omega ; X)+L_{r}(\Omega ; X)$, which is analytic in the interior and satisfies

$$
F(\theta)=f, \quad \sup _{y \in \mathbb{R}}\|F(\mathrm{i} y)\|_{L_{q}(\Omega ; X)}<1 \text { and } \sup _{y \in \mathbb{R}}\|F(1+\mathrm{i} y)\|_{L_{r}(\Omega ; X)}<1
$$

Define

$$
\mathcal{F}_{t}(z)=e^{z^{2}-\theta^{2}} t \partial \mathrm{M}_{t}^{(1-z) \alpha_{0}+z \alpha_{1}} F(z)
$$

Viewed as a function of z on the strip $\{z \in \mathbb{C}: 0 \leq \operatorname{Re} z \leq 1\}, \mathcal{F}$ takes values in $L_{q}\left(\Omega ; L_{q}\left(\mathbb{R}_{+} ; X\right)\right)+$ $L_{r}\left(\Omega ; L_{q}\left(\mathbb{R}_{+} ; X\right)\right)$, where \mathbb{R}_{+}is equipped with the measure $\frac{d t}{t}$. By the analyticity of $\mathrm{M}^{(1-z) \alpha_{0}+z \alpha_{1}}$ in z, we see that \mathcal{F} is analytic in the interior of the strip. Moreover, by Lemma 17

$$
\left\|\left(\int_{0}^{\infty}\left\|\mathcal{F}_{t}(\mathrm{i} y)\right\|_{X}^{q} \frac{d t}{t}\right)^{1 / q}\right\|_{L_{q}(\Omega)} \leq C_{0}^{\prime} e^{-y^{2}-\theta^{2}} e^{\pi\left(|\operatorname{Im} \alpha|+\left|\operatorname{Re}\left(\alpha_{1}-\alpha_{0}\right) y\right|\right)}, \quad \forall y \in \mathbb{R}
$$

where C_{0}^{\prime} is a constant depending on $\alpha, \alpha_{0}, \alpha_{1}$ and X. Hence

$$
\sup _{y \in \mathbb{R}}\|\mathcal{F}(\mathrm{i} y)\|_{L_{q}\left(\Omega ; L_{q}\left(\left(\mathbb{R}_{+}, \frac{d t}{t}\right) ; X\right)\right)} \leq C_{0}
$$

Similarly, Lemma 16 implies

$$
\sup _{y \in \mathbb{R}}\|\mathcal{F}(1+\mathrm{i} y)\|_{L_{r}\left(\Omega ; L_{q}\left(\left(\mathbb{R}_{+}, \frac{d t}{t}\right) ; X\right)\right)} \leq C_{1}
$$

We then deduce that $\mathcal{F}(\theta)$ belongs to the complex interpolation space

$$
\left(L_{q}\left(\Omega ; L_{q}\left(\mathbb{R}_{+} ; X\right)\right), L_{r}\left(\Omega ; L_{q}\left(\mathbb{R}_{+} ; X\right)\right)\right)_{\theta}
$$

with norm majorized by $C_{0}^{1-\theta} C_{1}^{\theta}$. However, the latter space coincides with $L_{p}\left(\Omega ; L_{q}\left(\mathbb{R}_{+} ; X\right)\right)$ isometrically. Since

$$
\mathcal{F}_{t}(\theta)=t \partial \mathrm{M}_{t}^{\alpha} F(\theta)=t \partial \mathrm{M}_{t}^{\alpha} f
$$

we get (10) for $k=1$. Then using (9) and an induction argument, we derive (10) for any k. Thus the theorem is completely proved.

4. Proofs of Theorem 5 and Theorem 6

The main part of Theorem 5 is already contained in Lemma 9 Armed with that lemma, we can easily show Theorem 5. Let us first recall the following well known characterization of the analyticity of power bounded operators (cf. [2, Theorem 2.3] and [17, Theorem 4.5.4]). Let \mathbb{D} denote the open unit disc of the complex plane and \mathbb{T} the boundary of \mathbb{D}.

Lemma 18. Let T be a power bounded linear operator on a Banach space Y. Then T is analytic iff the semigroup $\left\{e^{t(T-1)}\right\}_{t>0}$ is analytic and $\sigma(T) \subset \mathbb{D} \cup\{1\}$.

Proof of Theorem 5. Note that $\left\{e^{t(T-1)}\right\}_{t>0}$ is a symmetric diffusion semigroup on $(\Omega, \mathcal{A}, \mu)$. Thus, by Lemma 11 its extension to $Y=L_{p}(\Omega ; X)$ is analytic. Then Theorem 5 immediately follows from Lemmas 9 and 18 .

The difficult part (Lemma 9) of the above proof concerns the quantitative dependence on the geometry of X of the angle γ of the Stolz domain which contains the spectrum of the operator T. If we only need to show the analyticity of T on Y, the proof can be largely shortened by virtue of the following simple fact which, together with Lemma 10 ensures that $\sigma(T) \subset \mathbb{D} \cup\{1\}$.

Remark 19. Let P be a contractive linear projection on a uniformly convex Banach space Y. Then $\|\lambda-P\|<2$ for any $\lambda \in \mathbb{T} \backslash\{-1\}$.

This remark is a weaker form of Lemma 9 Let $\lambda \in \mathbb{T}$ such that $\|\lambda-P\|=2$. Choose a sequence $\left\{y_{k}\right\}$ of unit vectors in Y such that $\left\|y_{k}-P y_{k}\right\| \rightarrow 2$ as $k \rightarrow \infty$. Then the uniform convexity of Y implies $\left\|\lambda y_{k}+P y_{k}\right\| \rightarrow 0$. However,

$$
|\lambda+1|\left\|P y_{k}\right\|=\left\|P(\lambda+P) y_{k}\right\| \leq\left\|(\lambda+P) y_{k}\right\| \text { and }\left\|P y_{k}\right\| \geq\left\|\lambda y_{k}-P y_{k}\right\|-1 \rightarrow 1
$$

It thus follows that $|\lambda+1|=0$, that is, $\lambda=-1$.
Now we turn to the proof of Theorem 6. We first deduce assertion (ii) from assertion (i) by duality as in the continuous case. Under the assumption of Theorem 6 and Pisier's renorming theorem [19, we can assume that X is uniformly convex.

Proof of Theorem 6 (ii). Using the spectral resolution of the identity of T on $L_{2}(\Omega)$, we obtain

$$
\|f-\mathrm{F}(f)\|_{L_{2}(\Omega)}^{2}=\sum_{n=1}^{\infty} n\left\|T^{n-1}\left(1-T^{2}\right) f\right\|_{L_{2}(\Omega)}^{2}, \quad f \in L_{2}(\Omega)
$$

Polarizing this identity, we deduce, for $f \in L_{1}(\Omega) \cap L_{\infty}(\Omega) \otimes X$ and $g \in L_{1}(\Omega) \cap L_{\infty}(\Omega) \otimes X^{*}$, that

$$
\begin{aligned}
\left|\int_{\Omega}\langle f-\mathrm{F}(f), g-\mathrm{F}(g)\rangle d \mu\right| \leq & \left\|\left(\sum_{n=1}^{\infty} n^{q^{\prime}-1}\left\|T^{n-1}\left(1-T^{2}\right) g\right\|_{X^{*}}^{q^{\prime}}\right)^{1 / q^{\prime}}\right\|_{L_{p^{\prime}}(\Omega)} \\
\cdot & \left\|\left(\sum_{n=1}^{\infty} n^{q-1}\left\|T^{n-1}\left(1-T^{2}\right) f\right\|_{X}^{q}\right)^{1 / q}\right\|_{L_{p}(\Omega)} \\
\leq & 4\left\|\left(\sum_{n=1}^{\infty} n^{q^{\prime}-1}\left\|T^{n-1}(1-T) g\right\|_{X^{*}}^{q^{\prime}}\right)^{1 / q^{\prime}}\right\|_{L_{p^{\prime}}(\Omega)} \\
\cdot & \left\|\left(\sum_{n=1}^{\infty} n^{q-1}\left\|T^{n-1}(1-T) f\right\|_{X}^{q}\right)^{1 / q}\right\|_{L_{p}(\Omega)}
\end{aligned}
$$

Thus under the assumption of (ii) and admitting (i), we obtain

$$
\|f-\mathrm{F}(f)\|_{L_{p}(\Omega ; X)} \lesssim\left\|\left(\sum_{n=1}^{\infty} n^{q-1}\left\|T^{n-1}(1-T) f\right\|_{X}^{q}\right)^{1 / q}\right\|_{L_{p}(\Omega)}
$$

Thus assertion (ii) is proved.

We will need some preparations on the H^{∞} functional calculus for the proof of Theorem 6 (i). Our reference for the latter subject is [3]. Let A be a sectorial operator on a Banach space Y with angle γ and $\omega>\gamma$. Define $H_{0}^{\infty}\left(\Sigma_{\omega}\right)$ to be the space of all bounded analytic functions φ on the sector Σ_{ω} for which there exist two positive constants s and C such that

$$
|\varphi(z)| \leq C \min \left\{|z|^{s},|z|^{-s}\right\}, \quad \forall z \in \Sigma_{\omega}
$$

For any $\varphi \in H_{0}^{\infty}\left(\Sigma_{\omega}\right)$, we define

$$
\varphi(A)=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma_{\theta}} \varphi(z)(z-A)^{-1} d z
$$

where $\theta \in(\gamma, \omega)$ and Γ_{θ} is the boundary $\partial \Sigma_{\theta}$ oriented counterclockwise. Then $\varphi(A)$ is a bounded operator on Y.

The following result is a variant of [16, Theorem 5]. The proof there works equally for the present setting without change. This was pointed to us by Christian Le Merdy (see [13, page 719]).
Lemma 20. Let $1<q<\infty$ and $\varphi, \psi \in H_{0}^{\infty}\left(\Sigma_{\omega}\right)$ with

$$
\int_{0}^{\infty} \psi(t) \frac{d t}{t} \neq 0
$$

Then there exists a positive constant C, depending only on φ, ψ and q, such that

$$
\left(\int_{0}^{\infty}\|\varphi(t A) y\|^{q} \frac{d t}{t}\right)^{1 / q} \leq C\left(\int_{0}^{\infty}\|\psi(t A) y\|^{q} \frac{d t}{t}\right)^{1 / q}, \quad \forall y \in Y
$$

Proof of Theorem 6 (i). We will follow the pattern set up in the proof of Theorem 2, The main difficulty is to prove the following discrete analogue of Lemma 13

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{q-1}\left\|T^{n}(T-1) f\right\|_{L_{q}(\Omega ; X)}^{q} \lesssim\|f\|_{L_{q}(\Omega ; X)}^{q}, \quad \forall f \in L_{q}(\Omega ; X) \tag{11}
\end{equation*}
$$

Contrary to Lemma 13, the proof of the above inequality is much more involved. We will adapt the proof of [14, Proposition 3.2] which is based on the H^{∞} functional calculus.

By Theorem 55 T is analytic as an operator on $Y=L_{q}(\Omega ; X)$ and we have (21). Let $A=1-T$. Then A is a sectorial operator on Y with angle γ. Fix $\theta \in(\gamma, \pi / 2)$. Let L_{θ} be the boundary of $1-B_{\theta}$ oriented counterclockwise (see figure 2).

Figure 2.
Let $\varphi_{n}(z)=n^{1 / q^{\prime}} z(1-z)^{n}$. Then by the Dunford functional calculus

$$
\frac{1}{2 \pi \mathrm{i}} \int_{L_{\theta}} \varphi_{n}(z)(z-A)^{-1} d z=\varphi_{n}(A) \text { and } \frac{1}{2 \pi \mathrm{i}} \int_{L_{\theta}} \varphi_{n}(z)(z+A)^{-1} d z=0
$$

Thus

$$
n^{1 / q^{\prime}} T^{n}(1-T)=\varphi_{n}(A)=\frac{1}{\pi \mathrm{i}} \int_{L_{\theta}} \varphi_{n}(z) A(z-A)^{-1}(z+A)^{-1} d z
$$

Fix f in the unit ball of Y. Then

$$
\sum_{n=1}^{\infty} n^{q-1}\left\|T^{n}(T-1) f\right\|_{Y}^{q} \lesssim \int_{L_{\theta}} \sum_{n=1}^{\infty}\left|\varphi_{n}(z)\right|^{q}\left\|A(z-A)^{-1}(z+A)^{-1} f\right\|_{Y}^{q}|d z|
$$

Note that for any $z \in L_{\theta}$, an elementary calculation shows that

$$
\sum_{n=1}^{\infty}\left|\varphi_{n}(z)\right|^{q} \leq \sup _{\lambda \in B_{\theta}} \sum_{n=1}^{\infty} n^{q-1}|\lambda|^{n q}|1-\lambda|^{q} \lesssim \sup _{\lambda \in B_{\theta}} \frac{|1-\lambda|^{q}}{(1-|\lambda|)^{q}} \lesssim 1
$$

where the relevant constants depend only on q and θ. On the other hand, by the H^{∞} functional calculus, $A^{1 / q}(z+A)^{-1}$ is a bounded operator on Y. Then we deduce

$$
\sum_{n=1}^{\infty} n^{q-1}\left\|T^{n}(T-1) f\right\|_{Y}^{q} \lesssim \int_{L_{\theta}}\left\|A^{1 / q^{\prime}}(z-A)^{-1} f\right\|_{Y}^{q}|d z|
$$

The contour L_{θ} is the juxtaposition of a part $L_{\theta, 1}$ of Γ_{θ} (recalling that Γ_{θ} is the boundary of the sector Σ_{θ}) and the curve $L_{\theta, 2}$ going from $\cos (\theta) e^{-\mathrm{i} \theta}$ to $\cos (\theta) e^{\mathrm{i} \theta}$ counterclockwise along the circle of center 1 and radius $\sin \theta$. Accordingly,

$$
\int_{L_{\theta}}\left\|A^{1 / q^{\prime}}(z-A)^{-1} f\right\|_{Y}^{q}|d z|=\int_{L_{\theta, 1}}\left\|A^{1 / q^{\prime}}(z-A)^{-1} f\right\|_{Y}^{q}|d z|+\int_{L_{\theta, 2}}\left\|A^{1 / q^{\prime}}(z-A)^{-1} f\right\|_{Y}^{q}|d z|
$$

Since $L_{\theta, 2} \cap \sigma(A)=\emptyset$, the function $z \mapsto\left\|A^{1 / q^{\prime}}(z-A)^{-1}\right\|$ is bounded on $L_{\theta, 2}$. Thus the second integral in the right hand side above is majorized by a constant independent of f (recalling that $\|f\|_{Y} \leq 1$). For the first one, we have

$$
\begin{aligned}
\int_{L_{\theta, 1}}\left\|A^{1 / q^{\prime}}(z-A)^{-1} f\right\|_{Y}^{q}|d z| & \leq \sum_{\varepsilon= \pm 1} \int_{0}^{\infty}\left\|A^{1 / q^{\prime}}\left(t e^{\varepsilon \mathrm{i} \theta}-A\right)^{-1} f\right\|_{Y}^{q} d t \\
& =\sum_{\varepsilon= \pm 1} \int_{0}^{\infty}\left\|(t A)^{1 / q^{\prime}}\left(e^{\varepsilon \mathrm{i} \theta}-t A\right)^{-1} f\right\|_{Y}^{q} \frac{d t}{t} \\
& =\sum_{\varepsilon= \pm 1} \int_{0}^{\infty}\left\|\varphi_{\varepsilon}(t A) f\right\|_{Y}^{q} \frac{d t}{t}
\end{aligned}
$$

where

$$
\varphi_{\varepsilon}(z)=\frac{z^{1 / q^{\prime}}}{e^{\varepsilon \mathrm{i} \theta}-z}, \quad \varepsilon= \pm 1
$$

Note that $\varphi_{\varepsilon} \in H_{0}^{\infty}\left(\Sigma_{\omega}\right)$ for $\omega \in(\theta, \pi / 2)$. On the other hand, the function ψ defined by $\psi(z)=$ $z e^{-z}$ belongs to $H_{0}^{\infty}\left(\Sigma_{\omega}\right)$ too. Thus applying Lemma 20 we get

$$
\int_{0}^{\infty}\left\|\varphi_{\varepsilon}(t A) f\right\|_{Y}^{q} \frac{d t}{t} \lesssim \int_{0}^{\infty}\|\psi(t A) f\|_{Y}^{q} \frac{d t}{t}=\int_{0}^{\infty}\left\|t \partial T_{t} f\right\|_{Y}^{q} \frac{d t}{t}
$$

where $\left\{T_{t}\right\}_{t>0}=\left\{e^{-t A}\right\}_{t>0}$ is the semigroup already used at the beginning of the proof of Theorem 5 Thus by Lemma 13 ,

$$
\int_{0}^{\infty}\|\psi(t A) f\|_{Y}^{q} \frac{d t}{t} \lesssim\|f\|_{Y} \lesssim 1
$$

Combining all preceding inequalities, we finally get

$$
\sum_{n=1}^{\infty} n^{q-1}\left\|T^{n}(T-1) f\right\|_{L_{q}(\Omega ; X)}^{q} \lesssim 1
$$

for any f in the unit ball of Y. This yields (11) by homogeneity.
Armed with (11), we can finish the proof of Theorem 6 (i) by Stein's complex interpolation machinery as in the continuous case. To that end, first recall that Lemma 14 is deduced by approximation from its discrete analogue in [15]. Thus, although not explicitly stated there, the discrete analogue of Lemma 14 is indeed obtained during the proof of [15, Theorem 2.3]. Then the interpolation arguments in the previous section can be modified to the present discrete setting. We
refer the reader to [23] for the necessary ingredients. However, note that the presentation of 23] is quite brief, it is developed in detail in [9]. We leave the details to the reader. Thus the proof of Theorem 6 is complete.

5. Open problems

We conclude this article by some open problems. The first one concerns Theorem 6. Note that in that theorem the contraction T is assumed to be the square of another symmetric Markovian operator. Compared with the continuous case, this assumption is natural since every operator in a symmetric diffusion semigroup is automatically the square of a symmetric Markovian operator. However, a less restrictive assumption would be that T is a selfadjoint contraction on $L_{2}(\Omega)$ and its spectrum does not contain -1 . Under this assumption, T is analytic. If in addition T is a contraction on $L_{p}(\Omega)$ for every $1 \leq p \leq \infty$, then T is also analytic on $L_{p}(\Omega)$ for every $1<p<\infty$.
Problem 21. Let T be a positive contraction on $L_{p}(\Omega)$ for every $1 \leq p \leq \infty$ with $T 1=1$. Assume that T is selfadjoint on $L_{2}(\Omega)$ and its spectrum does not contain -1 .
(i) Let X be a uniformly convex Banach space. Is the extension of T to $L_{p}(\Omega ; X)$ analytic for every $1<p<\infty$ (or equivalently, for one $1<p<\infty$)?
(ii) Let X be a Banach space of martingale cotype q and $1<p<\infty$. Does one have

$$
\left\|\left(\sum_{n=1}^{\infty} n^{q-1}\left\|\left(T^{n}-T^{n-1}\right) f\right\|_{X}^{q}\right)^{1 / q}\right\|_{L_{p}(\Omega)} \lesssim\|f\|_{L_{p}(\Omega ; X)}, \quad \forall f \in L_{p}(\Omega ; X) ?
$$

An affirmative answer to part (i) would imply the same for part (ii). In the spirit of 21, one can ask a similar question as part (i) for K-convex X. In fact, we do not know whether Theorem 5 holds for K-convex targets (see [12] for related results). This is the discrete analogue of Problem 11 (i) of [26] for symmetric diffusion semigroups.

Problem 22. Does Theorem 5 remain true if X is assumed K-convex?
Remark 23. The answers to Problem 21(i) and Problem 22 are both positive if X is a complex interpolation space between a Hilbert space and a Banach space. This is the case if X is a K-convex Banach lattice thanks to [22]. More generally, let $\left(X_{0}, X_{1}\right)$ be a compatible pair of Banach spaces, and let $X=\left(X_{0}, X_{1}\right)_{\theta}$ with $0<\theta<1$. Assume that T is a contraction on both X_{0} and X_{1}, and T is analytic on X_{1}. Then T is analytic on X too.

Indeed, since the semigroup $\left\{e^{(T-1) t}\right\}_{t>0}$ is analytic on X_{1}, by Stein's complex interpolation, it is analytic on X too. Thus by Lemma 18, it remains to show that as an operator on X, the spectrum of T intersects \mathbb{T} at most at the point 1 . The latter is equivalent to $\lim _{n \rightarrow \infty} \| T^{n}(T-1)$: $X \rightarrow X \|=0$, thanks to Katznelson and Tzafriri's theorem [11. Using the analyticity of T on X_{1} and interpolation, we get

$$
\left\|T^{n}(T-1): X \rightarrow X\right\| \lesssim \frac{1}{n^{\theta}}
$$

So we are done.
Hytönen (7) studied another variant of Stein's inequality (1) in the vector-valued setting. Like [15], his main theorem deals with the Poisson semigroup subordinated to a symmetric diffusion semigroup for a general UMD space X, except when X is a complex interpolation space between a Hilbert space and another UMD space. In the same spirit of this article, one may ask whether the main result of [7] remains true for any symmetric diffusion semigroup and any UMD space X. It is easier to formulate this problem in the discrete case as follows. Let T be as in Theorem 6 .
Problem 24. Let T be as in Theorem 6, X be a UMD space and $1<p<\infty$. Does one have

$$
\mathbb{E}\left\|\sum_{n=1}^{\infty} \varepsilon_{n} \sqrt{n}\left(T^{n}-T^{n-1}\right) f\right\|_{L_{p}(\Omega ; X)} \approx\|f-\mathrm{F}(f)\|_{L_{p}(\Omega ; X)}, \quad \forall f \in L_{p}(\Omega ; X) ?
$$

Here $\left\{\varepsilon_{n}\right\}$ is a sequence of symmetric random variables taking values ± 1 on a probability space and \mathbb{E} is the corresponding expectation.

Acknowledgements. This work is partially supported by NSFC grants No. 11301401 and the French project ISITE-BFC (ANR-15-IDEX-03) and IUF.

References

[1] J. Bergh, and J. Löfström. Interpolation spaces. Springer-Verlag, Berlin, 1976.
[2] S. Blunck Maximal regularity of discrete and continuous time evolution equations. Studia Math. 146 (2001), 157-176.
[3] M. Cowling, I. Doust, A. McIntosh, and A. Yagi. Banach space operators with a bounded H^{∞} functional calculus. J. Aust. Math. Soc. 60 (1996), 51-89.
[4] N. Dunford, and J.T. Schwartz. Linear Operators. I. General Theory. Applied Mathematics, Vol. 7. Interscience Publishers, Inc., New York, 1958.
[5] G. Hong, and T. Ma. Vector valued q-variation for ergodic averages and analytic semigroups. J. Math. Anal. Appl. 437 (2016) 1084-1100.
[6] G. Hong, and T. Ma. Vector valued q-variation for differential operators and semigroups I. Math. Z. 286 (2017) 89-120.
[7] T.P. Hytönen. Littlewood-Paley-Stein theory for semigroups in UMD spaces. Rev. Mat. Iberoamericana 23 (2007), 973-1009.
[8] T.P. Hytönen, and A. Naor. Heat flow and quantitative differentiation. J. Euro. Math. Soc. To appear.
[9] M. Junge, and Q. Xu. Noncommutative maximal ergodic inequalities. J. Amer. Math. Soc. 20 (2007), 385-439.
[10] T. Kato. A characterization of holomorphic semigroups. Proc. Amer. Math. Soc. 25 (1970), 495-498.
[11] Y. Katznelson, and L. Tzafriri. On power bounded operators. J. Funct. Anal. 68 (1986), 13-328.
[12] F. Lancien, and C. Le Merdy. The Ritt property of subordinated operators in the group case J. Math. Anal. Appli. 462 (2018),191-209.
[13] C. Le Merdy. The Weiss conjecture for bounded analytic semigroups. J. London Math. Soc. 67 (2003) 715-738.
[14] C. Le Merdy, and Q. Xu. Maximal theorems and square functions for analytic operators on L_{p}-spaces. J. London Math. Soc. 86 (2012), 343-365.
[15] T. Martínez, J. L. Torrea, and Q. Xu. Vector-valued Littlewood-Paley-Stein theory for semigroups. Adv. Math. 203 (2006), 430-475.
[16] A. McIntosh, and A. Yagi. Operators of type ω without a bounded H^{∞} functional calculus. Miniconference on Operators in Analysis, Proceedings of the Centre for Mathematics and its Applications 24 (Australian National University, Canberra, 1989) 159-172.
[17] O. Nevanlinna. Convergence of iterations for linear equations. Birkäuser, Basel,1993.
[18] A. Pazy. Semigroups of linear operators and applications to partial differential equations. Springer-Verlag New York, 1983.
[19] G. Pisier. Martingales with values in uniformly convex spaces, Israel J. Math., 20 (1975), 326-350.
[20] G. Pisier. Probabilistic methods in the geometry of Banach spaces. Springer Lect. Notes in Math. 1206 (1986), 167-241.
[21] G. Pisier. Holomorphic semigroups and the geometry of Banach spaces. Ann. Math. 115 (1982), 375-392.
[22] G. Pisier. Some applications of the complex interpolation method to Banach lattices. J. Analyse Math. 35, (1979), 264-281.
[23] E.M. Stein. On the maximal ergodic theorem. Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1894-1897.
[24] E.M. Stein. Topics in harmonic analysis related to the Littlewood-Paley theory. Ann. Math. Studies, Princeton, University Press, 1970.
[25] E.C. Titchmarsh. The theory of functions. Oxford University Press, 1939.
[26] Q. Xu. Littlewood-Paley theory for functions with values in uniformly convex spaces. J. Reine Angew. Math. 504 (1998), 195-226.

Institute for Advanced Study in Mathematics, Harbin Institute of Technology, Harbin 150001, China; and Laboratoire de Mathématiques, Université de Bourgogne Franche-Comté, 25030 Besançon Cedex, France; and Institut Universitaire de France

E-mail address: qxu@univ-fcomte.fr

[^0]: 2000 Mathematics Subject Classification: Primary: 46B20, 42B25. Secondary: 47B06, 47A35.
 Key words: Analytic semigroups, analytic contractions, Littewood-Paley-Stein inequalities, uniformly convex Banach spaces, martingale type and cotype.

