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Abstract. The extremum values of quantum α-fidelity under unitary orbits of quan-

tum states are explicitly derived by applying rearrangement inequalities, matrix trace

inequalities, and theory of majorization. Furthermore, the α-fidelity is successfully

verified to go through the whole closed interval, which works from the minimum

value to the maximum value.
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1 Introduction

The concept of fidelity was first proposed by A. Uhlmann using the concept of “transition

probability” [1]. Moreover, R. Jozsa came up with the definition of fidelity for mixed quantum

states in terms of Uhlmann’s “transition probability” [2]. It is undeniable that quantum state

is always affected by noise, equipment and environment in all transmission process, which in-

spired people to measure the ‘distance’ between two quantum states. Fidelity, as a mathematical

method to quantify the similarity between two states, is widely used in classical and quantum

information theory, such as teleportation, entanglement quantification, quantum phase transi-

tions etc. [3, 4, 5, 6]. In recent years, fidelity has become a critical tool of physical quantities

investigations under unitary dynamics with the development of quantum information theory [7].

For example, Zhang et al. investigated two constrained optimization problems in terms of the

maximal and minimal fidelity between two quantum states undergoing local unitary dynamics

[8, 9].

Besides fidelity, there are several other measures satisfying operational meaning, such as rel-

ative entropy, Bures distance, trace distance, and generalized fidelities. α-Fidelity, as a recently

proposed [10] measure, is rarely discussed and studied. It is a generalization of quantum fidelity

(it reduces to the quantum fidelity when α = 1/2) with many properties that can be naturally

derived from fidelity. In this paper, we will focus on quantum α-fidelity, which is motivated by

the limit formula of quantum fidelity [11].

In [8], the maximums and minimums of the quantum fidelity and the relative entropy between

two unitary orbits are explicitly derived. Furthermore, they discussed potential applications in

quantum computation and information processing. Motivated by this work, we will address the

maximum and minimum values of quantum α-fidelity for unitary orbits. Namely, for two given
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states with fixed spectras, we expect to find that how far or how close the states under unitary

evolution with respect to the ‘distance’ measures.

Based on the matrix trace inequalities (see Proposition 2.2) and the rearrangement inequality

(see Proposition 2.5), we first obtain the extremum values of the quantum α-fidelity between

unitary orbits of two quantum states (see Theorem 3.1). Moreover, we show that the values

of the quantum α-fidelity under unitary orbits fill out a closed interval between the extremum

values (see Corollary 3.2).

2 Preliminaries

Quantum α-fidelity and its related properties. Let H be a d-dimensional Hilbert space,

d < ∞. Denote the set of linear operators acting on H by L(H). Write P(H) := {X ∈ L(H) :

X ≥ 0} as the set of positive semi-definite operators and D(H) := {ρ ∈ P (H) : Trρ = 1} as

the set of density operators (or quantum states) on H. For quantum states ρ, σ ∈ D(H) and

0 < α <∞, the quantum α-fidelity between ρ and σ is defined as follows [10]:

Fα(ρ, σ) :=
(

Tr
[(
σ
−1
2α′ ρσ

−1
2α′
)α]) 1

α
, (2.1)

where 1/α + 1/α′ = 1 with α′ = α/(α− 1). It is obvious that the quantum fidelity F (ρ, σ) is a

special case of α-fidelity, i.e.

F (ρ, σ) = Tr2(

√√
σρ
√
σ) = F 1

2
(ρ, σ).

If ρ and σ commute, i.e. ρ =
∑d

i=1 p̃i|i〉〈i| and σ =
∑d

i=1 q̃i|i〉〈i|, the quantum α-fidelity will

reduce to the following classical α-fidelity:

FCα (p̃, q̃) =

(
d∑
i=1

p̃αi q̃
1−α
i

) 1
α

, (2.2)

where p̃ = {p̃1, . . . , p̃d} and q̃ = {q̃1, . . . , q̃d} are two probability distributions.

We have the following well-known properties of quantum α-fidelity which will be used in this

paper elsewhere.

Proposition 2.1. [10, 12, 13] Let ρ ∈ D(H) and σ ∈ D(H), we have

1. 0 ≤ Fα(ρ, σ) ≤ 1 for 0 < α < 1 and Fα(ρ, σ) ≥ 1 for α > 1.

2. Monotonicity of quantum α-fidelity with respect to the parameter α. Fα1(ρ, σ) ≤ Fα2(ρ, σ)

for 1 ≤ α1 < α2 <∞.

3. Jointly concavity. Let ρ =
∑

x pxρx and σ =
∑

x pxσx, then Fα(ρ, σ) ≥
∑

x pxFα(ρx, σx)

for 0 < α < 1.

4. Date processing inequality. Let Φ be a completely positive and trace preserving map (or

quantum channel) on D(H). Then Fα(Φ(ρ),Φ(σ)) ≤ Fα(ρ, σ) for α > 1.
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5. Unitary invariance. Fα(ρ, σ) = Fα(UρU∗, UσU∗) for any unitary U ∈ L(H).

6. Let τ ∈ D(H2). Then Fα(ρ⊗ τ, σ ⊗ τ) = Fα(ρ, σ).

7. Let ρ1, σ1 ∈ D(H1), ρ2, σ2 ∈ D(H2). Then

Fα(ρ1 ⊗ ρ2, σ1 ⊗ σ2) = Fα(ρ1, σ1) · Fα(ρ2, σ2),

Fα(ρ1 ⊕ ρ2, σ1 ⊕ σ2) = Fα(ρ1, σ1) + Fα(ρ2, σ2).

Proposition 2.2. Matrix trace inequalities.

1. Golden-Thompson (GT) inequality [14, 15]. For two Hermitian operators A,B ∈
L(H), we have

Tr[exp(A+B)] ≤ Tr[exp(A) exp(B)].

Furthermore, the equality holds if and only if A and B commute.

2. Araki-Lieb-Thirring (ALT) trace inequality [16]. For A,B ∈ P (H) and q > 0, we

have

Tr

[(
B

r
2ArB

r
2

) q
r

]
≤ Tr

[(
B

1
2AB

1
2

)q]
, if r ∈ (0, 1],

and

Tr

[(
B

r
2ArB

r
2

) q
r

]
≥ Tr

[(
B

1
2AB

1
2

)q]
, if r ≥ 1.

Proposition 2.3. Submultiplicativity of norm [17]. For any linear operators A ∈ L(H3, H4),

B ∈ L(H2, H3), and C ∈ L(H1, H2), and any choice of p ∈ [1,∞], we have

‖ABC‖p ≤ ‖A‖∞‖B‖p‖C‖∞.

It follows that

‖AB‖p ≤ ‖A‖p‖B‖p, (2.3)

for all choice of p ∈ [1,∞] and operators A and B for which the product AB exists. Here ‖ · ‖p
and ‖ · ‖∞ denote the Schatten p norm and operator norm, respectively.

Majorization and Schur convexity/concavity. Our main reference is [20]. Let Rd denotes

the set of all real d-dimensional vectors. We say that p̃ = (p̃1, p̃2, . . . , p̃d) is majorized by

q̃ = (q̃1, q̃2, . . . , q̃d) if for all k = 1, . . . , d,

k∑
i=1

p̃↓i ≤
k∑
i=1

q̃↓i ,
d∑
i=1

p̃↓i =
d∑
i=1

q̃↓i ,

where p̃↓ is a rearrangement of p̃ in decreasing order, i.e. p̃↓ = {p̃↓1 . . . p̃
↓
d : p̃↓1 ≥ . . . ≥ p̃↓d}. We

denote p̃ ≺ q̃ if p̃ is majorized by q̃.
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A d× d matrix D = (Dij)
d
i,j=1 is called doubly stochastic if

Dij ≥ 0 and

d∑
i=1

Dij =

d∑
j=1

Dij = 1.

It is obviously that Dp̃ ≺ p̃, p̃ ∈ Rd if D is a d-dimensional doubly stochastic matrix [20].

A function φ is called Schur convex (resp. Schur concave) if it preserves the majorization

order, i.e. p̃ ≺ q̃ implies φ(p̃) ≤ φ(q̃) (resp. if the majorization order is reversed). We need the

following useful criterion:

Proposition 2.4. [20] Let D = {p̃ = (p̃1, p̃2, . . . , p̃d) ∈ Rd : p̃1 ≥ p̃2 . . . ≥ p̃d} be a subset of Rd.
A function φ : D → R of the form φ(q̃) =

∑d
i=1 νig(q̃i) is Schur convex (resp. concave), if g is

increasing (resp. decreasing) convex. Where ν = (ν1, . . . , νd) ∈ D and νi ≥ 0, i = 1, . . . , d.

For a given state ρ ∈ D(H), let λ(ρ) = (λ1, . . . , λd) be the eigenvalues of ρ. Let λ↓(ρ) (resp.

λ↑(ρ)) be a rearrangement of λ(ρ) in decreasing order (resp. increasing order). Moreover, for

two given states ρ, σ with eigenvalues λ(ρ) = (λ1, . . . , λd) and λ(σ) = (µ1, . . . , µd), we define

〈λ(ρ), λ(σ)〉 :=
d∑
i=1

λiµi.

Further, we have the following result:

Proposition 2.5. [18, 19] For two given states ρ, σ ∈ D(H), we have

〈λ↓(ρ), λ↑(σ)〉 ≤ Tr[ρσ] ≤ 〈λ↓(ρ), λ↓(σ)〉.

3 Quantum α-fidelity between unitary orbits

In this section, we will discuss the quantum α-fidelity between unitary orbits from two given

states ρ and σ.

Definition. [8, 21] Let U(H) be a set of d×d unitary matrices on H. For ρ ∈ D(H), its unitary

orbit is defined as

Uρ = {UρU∗ : U ∈ U(H)}. (3.4)

Our purpose is to study the maximum and minimum values of quantum α-fidelity between

the two unitary orbits Uρ and Uσ. For any two unitary operators V and W , since we have

maxFα(V ρV ∗,WσW ∗) = maxFα(ρ, UσU∗) and minFα(V ρV ∗,WσW ∗) = minFα(ρ, UσU∗),

where unitary operator U satisfies U = V ∗W , it suffices to analyze the following optimums:

max
U∈U(H)

Fα(ρ, Uσ) and min
U∈U(H)

Fα(ρ, Uσ).



5

Theorem 3.1. Let ρ, σ ∈ D(H), the quantum α-fidelity between the unitary orbits Uρ and Uσ

satisfies the following relations,

max
U∈U(H)

Fα(ρ, Uσ) =

F
C
α (λ↓(ρ), λ↓(σ)), for each α ∈ (0, 1),

FCα (λ↓(ρ), λ↑(σ)), for each α ∈ (1,∞),
(3.5)

and

min
U∈U(H)

Fα(ρ, Uσ) =

F
C
α (λ↓(ρ), λ↑(σ)), for each α ∈ (0, 1),

FCα (λ↓(ρ), λ↓(σ)), for each α ∈ (1,∞).
(3.6)

Proof. Without loss of generality, we assume operators ρ > 0 and σ > 0 (if σ ≥ 0, we consider

σ + εI > 0 and limε→0 σ + εI = σ ).

Since the eigenvectors of two positive matrices on a Hilbert space Hd can be related by a

unitary matrix, it suffices to suppose that ρ and σ have the following spectral decompositions:

ρ =
d∑
i=1

λ↓i (ρ)|i〉〈i| and σ =
d∑
i=1

λ↓i (σ)W0|i〉〈i|W ∗0 ,

where λi(ρ)>0, λi(σ)>0, i = 1, . . . , d and W0 is a unitary operator.

(I). For Equation (3.5), let A = 1−α
α U lnσU∗ and B = ln ρ, then there are two unitary matrices

U1 and U2 such that [22],

exp

(
A

2

)
exp (B) exp

(
A

2

)
= exp(U1AU

∗
1 + U2BU

∗
2 ),

which induces

Uσ
1−α
2α U∗ρUσ

1−α
2α U∗ = exp

(
U2 ln ρU∗2 +

1− α
α

U1U lnσU∗U∗1

)
.

Hence, for 0 < α < 1, we have

Fα(ρ, UσU∗) =
(

Tr
[(
Uσ

1−α
2α U∗ρUσ

1−α
2α U∗

)α]) 1
α

= (Tr [exp(αU2 ln ρU∗2 + (1− α)U1U lnσU∗U∗1 ])
1
α

denote Ũ = U∗2U1U

=
(

Tr
[
exp(α ln ρ+ (1− α)Ũ lnσŨ∗

]) 1
α

by GT inequality

≤
(

Tr
[
ραŨσ(1−α)Ũ∗

]) 1
α

by ALT inequality, by letting r = q = α,A = ρ,B = Ũσ
(1−α)
α Ũ∗

≤ Fα(ρ, ŨσŨ∗).

Since the compactness of unitary group U(H) and the continuity of the map U → Fα(ρ, UσU)

on the unitary group equipped with the operator norm (see the proof of Theorem 3.2. We have
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shown that the map is continuous respect to the L1 norm. However, all norms are equivalent in

finite dimensional vector spaces), there is a unitary U0 such that the maximum can be obtained.

Then by the above inequality, we have

max
U∈U(H)

Fα(ρ, UσU∗) = Fα(ρ, U0σU
∗
0 ) = Fα(ρ, Ũ0σŨ

∗
0 ).

Thus,

Tr
[
exp(α ln ρ+ (1− α)Ũ0 lnσŨ∗0

]
= Tr

[
ραŨ0σ

(1−α)Ũ∗0

]
.

By the condition of equality of the GT inequality, we have [ρα, Ũ0σ
(1−α)Ũ∗0 ] = 0. It is clear

that Ũ0 must be equal to W ∗0 since [ρα,W ∗0 σ
1−αW0] = 0. Therefore, we have shown that if

[ρ,W ∗0 σW0] = 0 and 0 < α < 1, then

max
U∈U(H)

Fα(ρ, UσU∗) = Fα(ρ,W ∗0 σW0).

Therefore, for 0 < α < 1, we have

max
U∈U(H)

Fα(ρ, UσU∗) = Fα(ρ,W ∗0 σW0)

by [ρα,W ∗0 σ
1−αW0] = 0

= FCα (λ↓(ρ), λ↓(σ)).

Now, for 1 < α <∞, note that {(λ↑1(σ))1−α, . . . , (λ↑d(σ))1−α} is a decreasing sequence. Using

the ALT inequality (by letting r = q = α,A = ρ,B = Uσ
(1−α)
α U∗), we have

Fα(ρ, UσU∗) ≤
(
Tr
[
ραUσ1−αU∗

]) 1
α

by Proposition 2.5

≤

(
d∑
i=1

λ↓i (ρ
α)λ↓i (Uσ

1−αU∗)

) 1
α

=

(
d∑
i=1

(λ↓i (ρ))α(λ↑i (σ))1−α

) 1
α

.

Hence for 1 < α <∞,
max

U∈U(H)
Fα(ρ, Uσ) ≤ FCα (λ↓(ρ), λ↑(σ)).

Obviously, the above upper bound will be saturated when we take UW0|i〉 = |d− i+ 1〉.

(II). Now we move forward to study Equation (3.6). For 0 < α < 1, with Proposition 2.5, we

have

〈λ↓(ρα), λ↑(Uσ1−αU∗)〉 ≤ Tr[ραUσ1−αU∗].

Again by the ALT inequality, we attain

Fα(ρ, UσU∗) ≥
(
Tr[ραUσ1−αU∗]

) 1
α .
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Thus, we obtain

min
U∈U(H)

Fα(ρ, UσU∗) ≥ min
U∈U(H)

〈λ↓(ρα), λ↑(Uσ1−αU∗)〉

=

(
d∑
i=1

(λ↓i (ρ))α(λ↑i (σ))1−α

) 1
α

.

The above lower bound will be reached by letting UW0|i〉 = |d− i+ 1〉.
For 1 < α <∞, firstly, we assume that Ū0 is an unitary matrix such that

Fα(ρ, Ū0σŪ
∗
0 ) = min

U
Fα(ρ, UσU∗),

then

Fα(ρ, Ū0σŪ
∗
0 ) ≤ Fα(ρ,W ∗0 σW0).

We recall that W ∗0 σW0 =
∑d

i=1 λ
↓
i (σ)|i〉〈i|. Hence it is clear that

Fα(ρ, U0σU
∗
0 ) ≤ Fα(ρ,W ∗0 σW0)

=

(
d∑
i=1

(λ↓i (ρ))α(λ↓i (σ))1−α

) 1
α

= FCα (λ↓(ρ), λ↓(σ)).

(3.7)

On the other hand, by letting νi = p̃αi and g(q̃i) = q̃1−α
i in Proposition 2.4, it is easy to see

that the function φ : D → R defined by

φ(q̃) =
d∑
i=1

p̃αi q̃
1−α
i

is Schur concave (α > 1). Thus for probability distributions p̃, q̃, q̃′ ∈ D , we have

FCα (p̃, q̃) ≥ FCα (p̃, q̃′), if q̃ ≺ q̃′. (3.8)

Moreover, we define a completely positive and trace preserving map (quantum channel) on

D(H) as follows:

Φ(K) :=

d∑
i=1

〈i|K|i〉|i〉〈i|, K ∈ D(H).

Note that Φ(ρ) = ρ and [ρ,Φ(K)] = 0. Thus, the data processing inequality yields

Fα(ρ, Ū0σŪ
∗
0 ) ≥ Fα(ρ,Φ(Ū0σŪ

∗
0 ))

by [ρ,Φ(Ū0σŪ
∗
0 )] = 0

= FCα (λ↓(ρ), Dū0λ
↓(σ))

by Proposition 2.5

≥ FCα (λ↓(ρ), (Dū0λ
↓(σ))↓)



8

where Dū0 is a d× d doubly stochastic matrix with (Dū0)ij = |〈i|Ū0W0|j〉|2. It is obviously that

Dū0λ
↓(σ) ≺ λ↓(σ). Thus applying Equation 3.8, we can get

FCα (λ↓(ρ), (Dū0λ
↓(σ))↓) ≥ FCα (λ↓(ρ), λ↓(σ)). (3.9)

Combing Equations 3.7 and 3.9, we give rise to

min
U∈U(H)

Fα(ρ, UσU∗) = FCα (λ↓(ρ), λ↓(σ)).

Thus minU∈U(H) Fα(ρ, UσU∗) is achieved precisely when U = W ∗0 .

Remark. Theorem 3.1 gives an explicit formula to attain the maximum and minimum values of

the quantum α-fidelity of the unitary orbits of quantum states by the eigenvalues of quantum

states.

A quantum system usually undergoes unitary evolution with {Ut = exp(itH) : t ∈ R}
by some Hamiltonian H. Actually, a unitary matrix Ut is path-connected with Id via a path

Ut = exp(tL) with skew-Hermitian matrix L [23]. Clearly, the unitary matrix Ut is continuous in

t, thus, it is not difficult to state that Fα(ρ, UtσU
∗
t ) is also continuous in t (see proof of Theorem

3.2). Indeed, since the extremum values of Fα(ρ, UtσU
∗
t ) do exist (see Theorem 3.1), it is natural

to get the following closed intervals.

Theorem 3.2. For ρ, σ ∈ D(H), the set {Fα(ρ, UσU∗), U ∈ U(H)} is identical to the interval

[FCα (λ↓(ρ), λ↑(σ)), FCα (λ↓(ρ), λ↓(σ))], for each α ∈ (0, 1), (3.10)

or

[FCα (λ↓(ρ), λ↓(σ)), FCα (λ↓(ρ), λ↑(σ))], for each α ∈ (1,∞). (3.11)

Proof. Due to Theorem 3.1, the extremum values of Fα(ρ, UσU∗), U ∈ U(H) exist. By Stone’s

theorem on one-parameter unitary groups [24], one can find some skew operators L0 and L1

such that the minimum is reached for the unitary U = eL0 and the maximum is reached for the

unitary U = eL1 . Define the following function of t:

t→ Fα(ρ, e(1−t)L0+tL1σe−(1−t)L0−tL1).

If this function is continuous in t in the interval [0, 1], then by using the intermediate value

theorem we can prove our theorem.

Now let At =
√
ρUtσ

1−α
α U∗t

√
ρ, where t → Ut is a path in the unitary matrix group. Thus,

we have

Tr(Aαt ) = Fαα (ρ, UtσU
∗
t ).

Due to the above argument, it is sufficient to prove that the function t→ Tr(Aαt ) is continuous

in t for any α ∈ (0,∞). Without loss of generality, we assume that all the operators are taken

on the support of operators.
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Firstly, by Stone’s theorem, Ut = etL is continuous in t with respect to the Schatten 1 norm,

i.e, for any ε > 0, there exists a δ > 0 such that ‖Ut+δ − Ut‖1 ≤ ε/2. (In fact, due to Stone’s

theorem, Ut is continuous with respect to the strong operator norm. However, we only consider

the finite dimensional space and all norms are equivalent in finite dimensional vector spaces.)

Applying Proposition 2.3 with p = 1, we can get

‖At+δ −At‖1 = ‖√ρ[(Ut+δ − Ut)σ
1−α
α U∗t+δ + Utσ

1−α
α (U∗t+δ − U∗t )]

√
ρ‖1

≤ ‖√ρ‖2∞(‖Ut+δ − Ut‖1 · ‖σ
1−α
α U∗t+δ‖∞ + ‖Utσ

1−α
α ‖∞ · ‖U∗t+δ − U∗t ‖1)

≤ ‖√ρ‖2∞ · ‖σ
1−α
α ‖∞(‖Ut+δ − Ut‖1 + ‖U∗t+δ − U∗t ‖1)

≤ ε.

Furthermore, for a non-negative operator A, when α ∈ (0, 1), we have

Aα =
sin(απ)

π

∫ ∞
0

xα(
1

x
− 1

x+A
)dx.

Combining the operator identity A−1 −B−1 = A−1(B −A)B−1, we derive

‖Aαt+δ −Aαt ‖1 =

∥∥∥∥sin(απ)

π

∫ ∞
0

xα(
1

x+At
− 1

x+At+δ
)dx

∥∥∥∥
1

=

∥∥∥∥sin(απ)

π

∫ ∞
0

xα
1

x+At
(At+δ −At)

1

x+At+δ
dx

∥∥∥∥
1

≤ 1

π

∫ ∞
0

xα
∥∥∥∥ 1

x+At

∥∥∥∥
∞
· ‖At+δ −At‖1 ·

∥∥∥∥ 1

x+At+δ

∥∥∥∥
∞

dx.

For the positive operator At ∈ B(H), let λ↓d(At) denotes At’s minimal eigenvalue, then we have∥∥∥∥ 1

x+At

∥∥∥∥
∞

=
1

x+ λ↓d(At)
, for x ≥ 0.

Therefore

‖Aαt+δ −Aαt ‖1 ≤
1

π
‖At+δ −At‖1

∫ ∞
0

xα

(
1

x+ min{λ↓d(At), λ
↓
d(At+δ)}

)2

dx

≤ 1

π
ε

∫ ∞
0

xα

(
1

x+ min{λ↓d(At), λ
↓
d(At+δ)}

)2

dx

denote a = min{λ↓d(At), λ
↓
d(At+δ)} and y = x+ a

≤ 1

π
ε

∫ ∞
a

1

y2−αdy := bε,

where b = 1/π
∫∞
a 1/y2−αdy. We note that for α ∈ (0, 1), the integral

∫∞
a 1/y2−αdy <∞.

Finally, we have

|Tr(Aαt+δ)− Tr(Aαt )| ≤ ‖Aαt+δ −Aαt ‖1 ≤ bε.

Thus the function t→ Tr(Aαt ) is continuous in t for α ∈ (0, 1).
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Moreover, for α ∈ (0, 1),

|Tr(A2α
t+δ)− Tr(A2α

t )| ≤ ‖A2α
t+δ −A2α

t ‖1

= ‖Aαt+δAαt+δ −Aαt Aαt ‖1

≤ ‖Aαt+δ(Aαt+δ −Aαt )‖1 + ‖(Aαt+δ −Aαt )Aαt ‖1

≤ (‖Aαt+δ‖∞ + ‖Aαt ‖∞)‖Aαt+δ −Aαt ‖1

≤ cε,

where c = b(‖Aαt+δ‖∞ + ‖Aαt ‖∞) < ∞. Thus Tr(A2α
t ) is continuous in t for α ∈ (0, 1), in other

words, Tr(Aαt ) is continuous in t for α ∈ (0, 2). By iterating the above steps, we may prove that

Tr(Aαt ) is continuous in t when α ∈ (0, 2n), n ∈ N. Therefore, Tr(Aαt ) is continuous in t for each

α > 0, which completes our proof.

Remark. Our results can be applied to roughly estimating the values of some computing complex

α-fidelities. They are also widely used in quantum information and quantum computation, such

as, optimal quantum control [8].

For α ∈ (0, 1) ∪ (1,∞), we note that the sandwiched quantum α-Rényi relative entropy is

defined as follows [12]

Sα(ρ‖σ) =

α
′ logFα(ρ, σ), supp(ρ) ⊆ supp(σ),

∞, otherwise.
(3.12)

For two probability distributions p̃ = {p̃1, . . . , p̃d} and q̃ = {q̃1, . . . , q̃d}, the classical α-Rényi

relative entropy is given by [25]

Sα(p̃‖q̃) = α′ logFCα (p̃, q̃). (3.13)

Immediately, we have the following corollary.

Corollary 3.3. For two states ρ, σ ∈ D(H), where σ is full-ranked, and all α ∈ (0, 1) ∪ (1,∞),

we have

max
U∈U(H)

Sα(ρ‖Uσ) = SCα (λ↓(ρ)‖λ↑(σ)), (3.14)

and

min
U∈U(H)

Sα(ρ‖Uσ) = SCα (λ↓(ρ)‖λ↓(σ)). (3.15)

Moreover, the set {Sα(ρ‖Uσ) : U ∈ U(H)} is identical to the interval[
SCα (λ↓(ρ)‖λ↓(σ)), SCα (λ↓(ρ)‖λ↑(σ))

]
.
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4 Conclusion

In this paper, we studied the quantum α-fidelity between unitary orbits of two quantum

states. We constructed explicit formulas for the corresponding extremal values. Interestingly,

the extremal values are obtained when the two states ρ and σ satisfy certain commuting relation.

Namely, [ρ, UσU∗] = 0 for some unitary U. We also found that the values of the α-fidelity fill out

a closed interval between the minimum and the maximum values. As a corollary, the extremum

values of the quantum sandwiched α-Rényi relative entropy between two unitary orbits are

described by the corresponding classical ones.

As well as the quantum fidelity, the quantum α-fidelity is also a ‘distance’ measure of two

states. In this paper, our motivation is to study the asymptotic behavior of the evolution of

quantum states by using such distance measures. We hope our work could shed some light on

related studies.
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