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Abstract. In this paper, we investigate the behavior of the bounds of
the composition for rough singular integral operators on the weighted
space. More precisely, we obtain the quantitative weighted bounds of
the composite operator for two singular integral operators with rough
homogeneous kernels on Lp(Rd, w), p ∈ (1, ∞), which is smaller than
the product of the quantitative weighted bounds for these two rough
singular integral operators. Moreover, at the endpoint p = 1, the L logL
weighted weak type bound is also obtained, which has interests of its
own in the theory of rough singular integral even in the unweighted case.

1. Introduction

This paper will be devoted to study the quantitative weighted bound-
s for the composition of rough singular integral operators. The theory of
Calderón-Zygmund singular integral operator, which origins from the pio-
neering work of Calderón and Zygmund [4] in 1950s, has been developed
extensively in the last sixty years (see for example the recently exposition
[14],[15]).

The composition of singular integral operators arise typically in the alge-
bra of singular integral (see [6],[2],[3]) and the non-coercive boundary-value
problems for elliptic equations (see [31],[28]). In the past decades, con-
siderable attention has been paid to the composition of singular integral
operators. We refer the reader to see the work in [34, 31, 9, 30, 7, 28] and
the references therein. This paper will be devoted to study the composition
of the singular integral operator TΩ with a rough convolution type kernel.
Recall that TΩ is defined by

TΩf(x) = p. v.

∫
Rd

Ω(x− y)

|x− y|d
f(y)dy,(1.1)
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where Ω is homogeneous of degree zero, integrable and has mean value zero
on the unit sphere Sd−1. This operator was introduced by Calderón and
Zygmund [4], and then studied by many authors in the last sixty years (see
e.g. [5], [11], [32], [10], [16], [13], [33]). The composite operator TΩ1TΩ2

has been first appeared in the work of Calderón and Zygmund [6] where
the algebra of singular integrals was studied. However in this paper, we
will study other properties of the composite operator TΩ1TΩ2 . Our starting
points of this paper are as follows:

(i). Calderón and Zygmund [5] proved that TΩ is bounded on Lp(Rd) if
p ∈ (1, ∞) for rough kernel Ω. It is trivial to see that the composite
operator TΩ1TΩ2 is bounded on Lp(Rd) for p ∈ (1,∞). At the
endpoint p = 1, it was quite later that Seeger [33] showed TΩ is of
weak type (1,1) by means of some deep idea of geometric microlocal
decomposition and the Fourier transform. Nevertheless, no proper
weak type estimate of TΩ1TΩ2 was known prior to this article when
both Ω1 and Ω2 are rough kernels. In this paper, we will prove that
TΩ1TΩ2 satisfies the L logL weak type estimate.

(ii). Recently there are numerous work related to seek the optimal quan-
titative weighted bound for singular integral operator (see e.g. [8,
25, 26, 27, 12, 21, 24, 22, 1, 18, 19]). Motivated by this, our inter-
ests are focused on the behavior of the quantitative weighted bound
for TΩ1TΩ2 compared to that of single singular integral. We show
that the quantitative weighted bound of TΩ1TΩ2 is smaller than the
products of that of TΩ1 and TΩ2 , which has interests of its own.

We summary our main results as follows.

Theorem 1.1. Let Ω1, Ω2 be homogeneous of degree zero, have mean value
zero and Ω1, Ω2 ∈ L∞(Sd−1). Then for p ∈ (1, ∞) and w ∈ Ap(Rd),

‖TΩ1TΩ2f‖Lp(Rd, w) . [w]
1
p

Ap

(
[w]

1
p′
A∞

+ [σ]
1
p

A∞

)(
[σ]A∞ + [w]A∞

)
×min

{
[σ]A∞ , [w]A∞}‖f‖Lp(Rd, w),

where p′ = p/(p − 1), σ = w−1/(p−1), and the precise definitions of Ap(Rd)
weight and Ap constants are listed in Section 2.

Remark 1.2. It is unknown whether the above quantitative weighted bound
is optimal. However, from the recent result of Hytönen, Roncal, and Tapiola
[24]: if Ω ∈ L∞(Sd−1), then for p ∈ (1, ∞) and w ∈ Ap(Rd),

‖TΩf‖Lp(Rd, w) . [w]
1
p

Ap

(
[w]

1
p′
A∞

+ [σ]
1
p

A∞

)(
[σ]A∞ + [w]A∞

)
‖f‖Lp(Rd, w),

in which the quantitative weighted bound was improved later by Li, Pérez,
Rivera-Rios and Roncal [29] as follows,

(1.2) [w]
1
p

Ap

(
[w]

1
p′
A∞

+ [σ]
1
p

A∞

)
min{[σ]A∞ , [w]A∞},
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we can see that the quantitative weighted bound of TΩ1TΩ2 in Theorem 1.1
is smaller than the product of the quantitative weighted bounds of TΩ1 and
TΩ2 in (1.2). In fact, for p ∈ (1, ∞) and w ∈ Ap(Rd), by some elementary
computation,

max{[w]A∞ , [σ]A∞} ≤ [w]
1
p

Ap

(
[w]

1
p′
A∞

+ [σ]
1
p

A∞

)
,

which easily implies our desired estimate.

Theorem 1.3. Let Ω1, Ω2 be homogeneous of degree zero, have mean value
zero and Ω1, Ω2 ∈ L∞(Sd−1). Then for w ∈ A1(Rd) and λ > 0,

w({x ∈ Rd : |TΩ1TΩ2f(x)| > λ})

. [w]A1 [w]2A∞ log(e + [w]A∞)

∫
Rd

|f(x)|
λ

log
(

e +
|f(x)|
λ

)
w(x)dx.

Remark 1.4. To the best knowledge of the author, the L logL weak type
estimate in Theorem 1.3 is new even in the unweighted case. We do not know
whether this kind of L logL weak type estimate is optimal, but this estimate
has no hope to be improved to the weak type (1,1) estimate even in the case
Ω1,Ω2 ∈ C∞(Sd−1). In fact, it was shown by Phong and Stein [31] that in
general the composite operator TΩ1TΩ2 is not of weak type (1,1). More ever,
the authors of [31] gave a necessary and sufficient condition such that the
composite operator is of weak type (1,1). If Ω1,Ω2 ∈ C∞(Sd−1), then by
[14, Proposition 2.4.8], the symbols of TΩ1 and TΩ2 (thus is F [p.v.Ω1(·)/| ·
|d] and F [p.v.Ω2(·)/| · |d], where F [f ] denote the Fourier transform of f)
are C∞(Rd \ {0}). By check the necessary and sufficient condition in [31,
Theorem 1], we may show that TΩ1TΩ2 is not of weak type (1,1).

Previous results of quantitative weighted bounds for the composite oper-
ator is only known for the smooth singular integral operators, we refer to see
[1],[18] and [19]. It should be pointed out that the argument for the smooth
singular integral operators used in [1, 18, 19] essentially relies on the smooth
condition of the kernel. Our strategy in this paper is to establish a decom-
position of the composite operator by representing it as two operators which
may have different kinds of bilinear sparse dominations: (L(logL)β, Lr) and
(L1, Lr) type respectively (see Corollary 5.1). This decomposition is done
basing on the weak type estimates of the grand maximal operator MTΩ,r and

TΩ. In addition, we also show that the (L(logL)β, Lr) type sparse domina-
tion could be applied to the operator that is of (L(logL)β weak type to get
quantitative weighted bounds. Our main arguments (see Sections 3 and 4)
presented in this paper are stated in the abstract setting which have interest
of its own. By applying them to the composite operator TΩ1TΩ2 , we may
get our main theorems.

This paper is organized as follows. In Section 2, we give some notation
and lemmas. In Section 3, we will establish an quantitative weighted weak
type estimate for the operator which enjoys a bilinear sparse domination.
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Section 4 is devoted to give a decomposition of the composite operator.
Finally as applications of the arguments in Sections 3 and 4, the proof of
our main theorems are given in Section 5.

2. Preliminary

In this paper, we will work on Rd, d ≥ 2. C always denotes a positive
constant that is independent of the main parameters involved but whose
value may differ from line to line. We use the symbol A . B to denote
that there exists a positive constant C such that A ≤ CB. Specially, we use
A .d,p B to denote that there exists a positive constant C depending only
on d, p such that A ≤ CB. Constant with subscript such as c1, does not
change in different occurrences.

For any set E ⊂ Rd, χE denotes its characteristic function. For a cube
Q ⊂ Rd and λ ∈ (0, ∞), we use `(Q) (diamQ) to denote the side length
(diameter) of Q, and λQ to denote the cube with the same center as Q and
whose side length is λ times that of Q. For a fixed cube Q, denote by D(Q)
the set of dyadic cubes with respect to Q, that is, the cubes from D(Q)
are formed by repeating subdivision of Q and each of descendants into 2d

congruent subcubes.
For β ∈ [0, ∞), cube Q ⊂ Rd and a suitable function g, ‖g‖L(logL)β , Q is

the norm defined by

‖g‖L(logL)β , Q = inf
{
λ > 0 :

1

|Q|

∫
Q

|g(y)|
λ

logβ
(

e +
|g(y)|
λ

)
dy ≤ 1

}
.

〈|f |〉Q denotes the mean value of |f | on Q and 〈|g|〉Q,r =
(
〈|g|r〉Q

) 1
r . We

denote ‖g‖L(logL)0, Q by 〈|g|〉Q. Let Mβ be the maximal operator defined by

Mβf(x) =
[
M(|f |β)(x)

] 1
β ,

where M is the Hardy-Littlewood maximal operator, and ML(logL)β be the
maximal operator defined by

ML(logL)βg(x) = sup
Q3x
‖g‖L(logL)β , Q.

For simplicity, we denote ML(logL)1 by ML logL. It is well known that
ML(logL)β is bounded on Lp(Rn) for all p ∈ (1, ∞), and for any λ > 0,

(2.1)
∣∣{x ∈ Rd : ML(logL)βg(x) > λ}

∣∣ . ∫
Rd

|g(x)|
λ

logβ
(

e +
|g(x)|
λ

)
dx.

Let w be a nonnegative, locally integrable function on Rd. We say that
w ∈ Ap(Rd) if the Ap constant [w]Ap is finite, where

[w]Ap := sup
Q

( 1

|Q|

∫
Q
w(x)dx

)( 1

|Q|

∫
Q
w
− 1
p−1 (x)dx

)p−1
, p ∈ (1, ∞),
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the supremum is taken over all cubes in Rd, and the A1 constant is defined
by

[w]A1 := sup
x∈Rd

Mw(x)

w(x)
.

A weight u ∈ A∞(Rd) = ∪p≥1Ap(Rd). We use the following definition of the
A∞ constant of u (see e.g. [35])

[u]A∞ = sup
Q⊂Rd

1

u(Q)

∫
Q
M(uχQ)(x)dx.

As usual, by a general dyadic grid D , we mean a collection of cubes with
the following properties: (i) for any cube Q ∈ D , its side length `(Q) is
of the form 2k for some k ∈ Z; (ii) for any cubes Q1, Q2 ∈ D , Q1 ∩ Q2 ∈
{Q1, Q2, ∅}; (iii) for each k ∈ Z, the cubes of side length 2k form a partition
of Rd.

Let η ∈ (0, 1) and S = {Qj} be a family of cubes. We say that S is
η-sparse, if for each fixed Q ∈ S, there exists a measurable subset EQ ⊂ Q,
such that |EQ| ≥ η|Q| and EQ’s are pairwise disjoint. Associated with the
sparse family S and constants β ∈ [0, ∞) and r ∈ [1, ∞), we define the
bilinear sparse operator AS;L(logL)β , Lr by

AS;L(logL)β ,Lr(f, g) =
∑
Q∈S
|Q|‖f‖L(logL)β , Q〈|g|〉Q,r.

Also, we define the operator AS, Lr1 , Lr2 by

AS;Lr1 ,Lr2 (f, g) =
∑
Q∈S
|Q|〈|f |〉Q,r1〈|g|〉Q, r2 .

Let T be a sublinear operator acting on ∪p≥1L
p(Rd), β, q ∈ (0, ∞). We

say that T enjoys a (L(logL)β, Lq)-bilinear sparse domination with bound
A, if for each bounded function f with compact support, there exists a sparse
family S of cubes, such that for all g ∈ Lqloc(R

d),∣∣∣ ∫
Rd
g(x)Tf(x)dx

∣∣∣ ≤ AAS, L(logL)β , Lq(f, g).(2.2)

We will use the following lemmas in our proof.

Lemma 2.1 (see [23]). Let t ∈ (1, ∞). Then for p ∈ (1, ∞) and weight w,

‖Mf‖Lp′ (Rd, (Mtw)1−p′ ) ≤ cdpt
′ 1
p′ ‖f‖Lp′ (Rd, w1−p′ ).

Lemma 2.2 (see [29] or [27]). Let p ∈ (1, ∞) and v be a weight. Let S be
the operator defined by

S(h) = v
− 1
pM(hv

1
p )

and R be the operator defined by

R(h) =
∞∑
k=0

1

2k
Skh

‖S‖k
Lp(Rd, v)→Lp(Rd, v)

.(2.3)
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Then for any h ∈ Lp(Rd, v),

(i) 0 ≤ h ≤ R(h),
(ii) ‖R(h)‖Lp(Rd, v) ≤ 2‖h‖Lp(Rd, v),

(iii) R(h)v
1
p ∈ A1(Rd) with [R(h)v

1
p ]A1 ≤ cdp

′. Furthermore, when v =
Mrw for some r ∈ [1, ∞), we also have that [Rh]A∞ ≤ cdp′.

Lemma 2.3 (see [22]). Let w ∈ A∞(Rd). Then for any cube Q and δ ∈
(1, 1 + 1

211+d[w]A∞
],( 1

|Q|

∫
Q
wδ(x)dx

) 1
δ ≤ 2

|Q|

∫
Q
w(x)dx.

3. Endpoint estimates for sparse operators

The main purpose of this section is to establish a weighted weak type
endpoint estimate for the operator which enjoys (L(log)β, Lq)-bilinear sparse
domination. We begin with some lemmas.

Lemma 3.1. Let β ∈ [0, ∞), r ∈ [1, ∞) and w be a weight. Then for any

t ∈ (1, ∞) and p ∈ (1, r′) such that tp
′/r−1
p′−1 > 1,

AS,L(logL)β ,Lr(f, g) . p′1+β
(p′
r

)′(
t
p′/r − 1

p′ − 1

)′ 1
p′ ‖f‖Lp(Rd,Mtw)‖g‖Lp′ (Rd,w1−p′ ).

Proof. Let p ∈ (1, r′), f ∈ C∞0 (Rd) with ‖f‖Lp(Rd,Mtw) = 1 and Rf be the

function defined by (2.3). Recall that

‖f‖L(logL)β , Q .
(

1 +
( β

s− 1

)β)( 1

|Q|

∫
Q
|f(y)|sdy

) 1
s
.

Applying Lemma 2.2 with v = Mtw and Lemma 2.3, we then get that∑
Q∈S
‖f‖L(logL)β , Q〈|g|〉Q, r|Q| . s′β

∑
Q∈S
〈|g|〉Q, r〈|f |〉Q, s|Q|

. s′β
∑
Q∈S
〈|g|〉Q, r〈|Rf |〉Q, s|Q|

. p′β
∑
Q∈S
〈|g|〉Q, r

∫
Q
Rf(y)dy,

if we choose s = 1 + 1
211+d[Rf ]A∞

. As in the proof of Lemma 4.1 in [23], we

see that ∑
Q∈S
〈|g|〉Q, r

∫
Q
Rf(x)dx .

∑
Q∈S

inf
y∈Q

Mrg(y)

∫
Q
Rf(x)dx

. [Rh]A∞

∫
Rd
Mrg(x)Rf(x)dx

. p′
∫
Rd
Mrg(x)Rf(x)dx.
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Hölder’s inequality, along with Lemma 2.1, tells us that∫
Rd
Mrg(x)Rf(x)dx .

[ ∫
Rd

[
Mrg(x)

]p′
(Mtw(x))1−p′dx

] 1
p′ ‖Rf‖Lp(Rd,Mtw)

=
[ ∫

Rd

[
M(|g|r)(x)

] p′
r

(
M
t
p′/r−1

p′−1

(w
p′−1
p′/r−1 )(x)

)1−p′/r
dx
] 1
p′

.
[(p′
r

)′(
t
p′/r − 1

p′ − 1

)′ r
p′
] 1
r ‖g‖Lp′ (Rd, w1−p′ ).

Combining the estimates above leads to that∑
Q∈S
‖f‖L(logL)β 〈|g|〉Q, r|Q| . p′1+β

(p′
r

)′(
t
p′/r − 1

p′ − 1

)′ 1
p′ ‖g‖Lp′ (Rd, w1−p′ ).

This, via homogeneity, implies our required estimate and completes the proof
of Lemma 3.1. �

Let U be an operator on ∪p≥1L
p(Rd). We say that U is sublinear, if for

all functions f1, f2 and x ∈ Rd,

|U(f1 + f2)(x)| ≤ |U(f1)(x)|+ |U(f2)(x)|,

and for all λ ∈ R and function f ,

|λUf(x)| = |U(λf)(x)|.

Theorem 3.2. Let α, β ∈ N ∪ {0}, t, r ∈ [1, ∞), p1 ∈ (1, r′) such that

t
p′1/r−1
p′1−1

> 1. Let U be a sublinear operator which enjoys a (L(logL)β, Lr)-

sparse domination with bound D. Then for any weight u and bounded func-
tion f with compact support,

u({x ∈ Rd : |Uf(x)| > 1})(3.1)

.
(

1 +
{
Dp′1+β

1

(p′1
r

)′(
t
p′1/r − 1

p′1 − 1

)′ 1
p′1

}p1
)

×
∫
Rd
|f(y)| logβ(e + |f(y)|)Mtu(y)dy.

Proof. Let f be a bounded function with compact support, and S be the
sparse family such that for g ∈ Lrloc(Rd),∣∣∣ ∫

Rd
Uf(x)g(x)dx

∣∣∣ ≤ DAS;L(logL)β , Lr(f, g).

By the one-third trick (see [21, Lemma 2.5]), there exist dyadic grids D1, . . . , D3d

and sparse families S1, . . . , S3d , such that for j = 1, . . . , 3d, Sj ⊂ Dj , and

AS;L(logL)β , Lr(f, g) .
3d∑
j=1

ASj ;L(logL)β , Lr(f, g).
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Now let MDj ,L(logL)β be the maximal operator defined by

MDj ,L(logL)βh(x) = sup
Q3x,Q∈Dj

‖h‖L(logL)β , Q.(3.2)

For each j = 1, . . . , 3d, decompose the set {x ∈ Rd : MDj ,L(logL)βf(x) > 1}
as

{x ∈ Rd : MDj ,L(logL)βf(x) > 1} = ∪kQjk,
with Qjk the maximal cubes in Dj such that ‖f‖L(logL)β , Qjk

> 1. We have

that

1 < ‖f‖L(logL)β , Qjk
. 2d.

Let

f j1 (y) = f(y)χRd\∪kQjk(y), f j2 (y) =
∑
k

f(y)χQjk(y),

and

f j3 (y) =
∑
k

‖f‖L(logL)β , Qjk
χQjk(y).

It is obvious that ‖f j1‖L1(Rd) . ‖f‖L1(Rd), ‖f
j
1‖L∞(Rd) . 1 and ‖f j3‖L∞(Rd) .

1.
Let u be a weight and p1 ∈ (1, ∞). It then follows from Lemma 3.1 that

AS;L(logL)β , Lr(f
j
1 , g)(3.3)

. p′1+β
1

(p′1
r

)′(
t
p′1/r − 1

p′1 − 1

)′ 1
p′1 ‖f j1‖Lp1 (Rd,Mtu)‖g‖Lp′1 (Rd, u1−p′ )

.

Let E = ∪3d
j=1 ∪k 4dQjk and ũ(y) = u(y)χRd\E(y). It is obvious that

u(E) .
∑
j,k

inf
z∈Qjk

Mu(z)|Qjk| .
∫
Rd
|f(y)| logβ(e + |f(y)|)Mu(y)dy.(3.4)

Moreover, by the fact that

inf
y∈Qjk

Mtũ(y) ≈ sup
z∈Qjk

Mtũ(z),

we obtain that for γ ∈ [0, ∞),

‖f j3‖L1(Rd,Mtũ) .
∑
k

inf
z∈Qjk

Mtũ(z)|Qjk|‖f‖L(logL)β , Qjk
(3.5)

.
∫
Rd
|f(y)| logβ(e + |f(y)|)Mtu(y)dy.

Let

S∗j = {I ∈ Sj : I ∩ (Rd\E) 6= ∅}.

Note that if supp g ⊂ Rd\E, then

ASj ,L(logL)β1 , Lr(f
j
2 , g) = AS∗j ,L(logL)β1 , Lr(f

j
2 , g).
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As in the argument in [17, pp. 160-161], we can verify that for each fixed
I ∈ S∗j ,

‖f j2‖L(logL)β , I . ‖f
j
3‖L(logL)β , I .

Again by Lemma 3.1, we have that for g ∈ L1(Rd) with supp g ⊂ Rd\E,

ASj ,L(logL)β , Lr(f
j
2 , g) . ASj ,L(logL)β , Lr(f

j
3 , g)(3.6)

. p′1+β
1

(p′1
r

)′(
t
p′1/r − 1

p′1 − 1

)′ 1
p′1 ‖f j3‖

1
p1

L1(Rd,Mtu)
‖g‖

Lp
′
1 (Rd\E, u1−p′ )

.

Inequalities (3.3) and (3.6) tell us that

sup
‖g‖

L
p′1 (Rd\E,ũ1−p′1 )

≤1

∣∣∣ ∫
Rd
Uf(x)g(x)dx

∣∣∣
. D sup

‖g‖
L
p′1 (Rd\E,ũ1−p′1 )

≤1

3d∑
j=1

(
ASj , L(logL)β ,Lr(f

j
1 , g) +ASj , L(logL)β ,Lr(f

j
2 , g)

)
. Dp′1+β

1

(p′1
r

)′(
t
p′1/r − 1

p′1 − 1

)′ 1
p′1

(
‖f j1‖

1
p1

L1(Rd,Mtu)
+ ‖f j3‖

1
p1

L1(Rd,Mtu)

)
.

Thus together with inequalities (3.4) and (3.5), we know that

u({x ∈ Rd : |Uf(x)| > 1}) ≤ u(E) + ‖Uf‖p1

Lp1 (Rd\E, ũ)

.
(

1 +
{
Dp′1+β

1

(p′1
r

)′(
t
p′1/r − 1

p′1 − 1

)′ 1
p′1

}p1
)∫

Rd
|f(y)| logβ(e + |f(y)|)Mtu(y)dy.

This completes the proof of Theorem 3.2. �

Corollary 3.3. Let α, β ∈ N∪ {0} and U be a sublinear operator. Suppose
that for any r ∈ (1, 3/2], U satisfies bilinear (L(logL)β, Lr)-sparse domi-
nation with bound r′α. Then for any w ∈ A1(Rd) and bounded function f
with compact support,

w({x ∈ Rd : |Uf(x)| > λ})

. [w]αA∞ log1+β(e + [w]A∞)[w]A1

∫
Rd

|f(x)|
λ

logβ
(

e +
|f(x)|
λ

)
w(x)dx.

Proof. Let w ∈ A1(Rd). Choose t = 1 + 1
211+d[w]A∞

, r = (1 + t)/2 and

p1 = 1 + 1
log(e+[w]A∞ ) . We apply Theorem 3.2 and deduce that t

p′1/r−1
p′1−1

> 1

and

(
t
p′1/r − 1

p′1 − 1

)′
=

t(p′1/r − 1)

t(p′1/r − 1)− p′1 + 1
=

t

t− 1

p′1
r − 1
p′1

1+t − 1
= t′

2p′1
1+t − 1

p′1
1+t − 1

≤ 5t′.
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Note that r′ = t+1
t−1 ≤ 212+d[w]A∞ and p′1 . log(e + [w]A∞). Therefore,{

r′αp′1+β
1

(p′1
r

)′(
t
p′1/r − 1

p′1 − 1

)′ 1
p′1

}p1

.
(
r′αp′1+β

1

)p1t′p1−1

. [w]αA∞ log1+β(e + [w]A∞).

On the other hand, we know from Lemma 2.3 that Mtw(y) . [w]A1w(y).
This, via inequality (3.1) (with u = w) yields

w({x ∈ Rd : |Uf(x)| > 1})

. [w]A1 [w]αA∞ log1+β(e + [w]A∞)

∫
Rd
|f(y)| logβ(e + |f(y)|)w(y)dy,

which completes the proof of Corollary 3.3. �

4. decomposition of the composite operator

We begin with an endpoint estimate for composition of sublinear and
linear operators.

Theorem 4.1. Let U1 be a sublinear operator and U2 be a linear operator
on ∪p≥1L

p(Rd). Suppose that the following conditions hold

(i) U1 is bounded on L2(Rd) with bound 1;
(ii) there exists a positive constant β1, such that for any λ > 0,

|{x ∈ Rd : |U1f(x)| > λ}| ≤
∫
Rd

|f(x)|
λ

logβ1

(
e +
|f(x)|
λ

)
dx;(4.1)

(iii) for some q ∈ (1, 3
2 ], U2 enjoys a bilinear (L(logL)β2 , Lq)-sparse

domination with bound 1.

Then we get that: for any λ > 0,

|{x ∈ Rd : |U1U2f(x)| > λ}| .
∫
Rd

|f(x)|
λ

log1+β1+β2

(
e +
|f(x)|
λ

)
dx.(4.2)

Proof. Let f be a bounded function and S be a sparse family of cubes such
that for any function g,∣∣∣ ∫

Rn
g(x)U2f(x)dx

∣∣∣ ≤ AS, L(logL)β2 , Lq(f, g).

By the sparseness of S, we get that∣∣∣ ∫
Rd
g(x)U2f(x)dx

∣∣∣ . ∫
Rn
ML(logL)β2f(y)Mqf(y)dy

. ‖f‖L2(Rn)‖Mqf‖L2(Rn).

Therefore, U2 is bounded on L2(Rn) with bound Cq. On the other hand, we
know from Theorem 3.2 that for any λ > 0,

|{x ∈ Rd : |U2f(x)| > λ}| ≤
∫
Rd

|f(x)|
λ

logβ2

(
e +
|f(x)|
λ

)
dx.(4.3)
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Since U1 is a sublinear operator and U2 is a linear operator, λ−1|U1U2f | =
|U2U2(λ−1f)|. Therefore it suffices to consider inequality (4.2) for λ = 1.
Let f be a bounded function with compact support, and S be the sparse
family such that (2.2) holds true. Then there exist dyadic grids D1, . . . , D3d

and sparse families S1, . . . , S3d , such that for j = 1, . . . , 3d, Sj ⊂ Dj , and

AS;L(logL)β2 , Lq(f, g) .
3d∑
j=1

ASj ;L(logL)β2 , Lq(f, g).

Now let MDj ,L(logL)β2 be the maximal operator defined by (3.2). For each

j = 1, . . . , 3d, decompose the set {x ∈ Rd : MDj ,L(logL)β2f(x) > 1} as

{x ∈ Rd : MDj ,L(logL)β2f(x) > 1} = ∪kQjk,

with Qjk the maximal cubes in Dj such that ‖f‖L(logL)β2 , Qjk
> 1. We have

that

1 < ‖f‖L(logL)β2 , Qjk
. 2d.

Let E = ∪3d
j=1 ∪k 16dQjk, f

j
1 , f

j
2 , f j3 and S∗j (j = 1, . . . , 3d) be the same as

we have done in the proof of Theorem 3.2. Write

|U1U2f(x)| ≤ |U1(χEU2f
)
(x)|+ |U1(χRd\EU2f

)
(x)| =: I1f(x) + I2f(x).

Recall that U1 satisfies the estimate (4.1), and by the fact (2.1)

|E| .
∫
Rd

|f(x)|
λ

logβ2

(
e +
|f(x)|
λ

)
dx.

It then follows that

|{x ∈ Rd : |I1f(x)| > 1/2}| ≤
∫
E
|U2f(x)| logβ1

(
e + |U2f(x)|

)
dx

=

∫ ∞
0

∣∣{x ∈ E : |U2f(x)| > s}
∣∣d(s logβ1(e + s))

. |E|+
∫ ∞

e2β1

|{x ∈ E : |U2f(x)| > 2s}|d(s logβ1(e + s))

. |E|+
∫ ∞

e2β1

|{x ∈ E : |U2(fχ{|f |>s})(x)| > s}|d(s logβ1(e + s))

+

∫ ∞
e2β1

|{x ∈ E : |U2(fχ{|f |≤s})(x)| > s}|d(s logβ1(e + s)).
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We deduce from (4.3) for U2 that∫ ∞
e2β1

|{x ∈ E : |U2(fχ{|f |>s})(x)| > s}|d(s logβ1(e + s))

.
∫ ∞

e2β1

∫
|f(x)|>s

|f(x)|
s

logβ2
(
e +
|f(x)|
s

)
dxd(s logβ1(e + s))

.
∫
Rd
|f(x)| logβ2(e + |f(x)|)

∫ |f(x)|

e

1

s
d(s logβ1(e + s))dx

.
∫
Rd
|f(x)| logβ1+β2+1(e + |f(x)|)dx,

Trivial computations leads to that

d(s logβ1(e + s)) .
1

s2
logβ1(e + s)ds,

and when s ∈ [e2β1 , ∞),

−d(
1

s
logβ1(e + s)) =

[
− 1

s2
logβ1(e + s)− β1

s(e + s)
logβ1−1(e + s)

]
ds

≥ 1

2s2
logβ1(e + s)ds

It follows from the L2(Rd) boundedness of U2 that∫ ∞
e2β1

|{x ∈ E : |U2(fχ{|f |≤s})(x)| > s}|d(s logβ1(e + s))

.
∫ ∞

e2β1

1

s2

∫
|f(x)|≤s

|f(x)|2dxd(s logβ1(e + s))

=

∫
Rn
|f(x)|2

∫
max{|f(x)|, e2β1}

1

s2
logβ1(e + s)ds

.
∫
Rd
|f(x)| logβ1(e + |f(x)|)dx.

Therefore, we conclude the estimate of I1 as follows

|{x ∈ Rd : |I1f(x)| > 1/2}| .
∫
Rd
|f(x)| logβ1+β2+1(e + |f(x)|)dx.

We turn our attention to term I2f . By the L2(Rd) boundedness of U1, we
know that

|{x ∈ Rd : |I2f(x)| > 1/2}| .
∫
Rd\E

|U2f(x)|2dx

.
(

sup
‖g‖

L2(Rd\E)≤1

∣∣∣ ∫
Rd\E

g(x)U2f(x)dx
∣∣∣)2

.
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For g ∈ L2(Rd\E), we can write∣∣∣ ∫
Rd\E

g(x)U2f(x)dx
∣∣∣ ≤ 3d∑

j=1

ASj , L(logL)β2 , Lq(f
j
1 , g)

+

3d∑
j=1

ASj , L(logL)β2 , Lq(f
j
2 , g).

Recall that if supp g ⊂ Rd\E, then

ASj ,L(logL)β2 , Lq(f
j
2 , g) = AS∗j ,L(logL)β2 , Lq(f

j
2 , g) . ASj ,L(logL)β2 , Lq(f

j
3 , g).

On the other hand, the sparseness of Sj states that

ASj ,L(logL)β2 , Lq(f
j
3 , g) .

∫
Rd
ML(logL)β2f

j
3 (x)Mqg(x)dx

. ‖ML(logL)β2f
j
3‖L2(Rd)‖Mqg‖L2(Rd)

. ‖f j3‖L2(Rd)‖g‖L2(Rd).

Since ‖f j1‖L1(Rd) ≤ ‖f‖L1(Rd), and

‖f j3‖L1(Rd) .
∫
Rd
|f(y)| logβ2(e + |f(y)|)dy,

we finally obtain that

|{x ∈ Rd : |I2f(x)| > 1/2}| .
( 3d∑
j=1

(‖f j1‖L2(Rd) + ‖f j3‖L2(Rd))
)2

.
( 3d∑
j=1

(‖f j1‖
1
2

L1(Rd)
+ ‖f j3‖

1
2

L2(Rd)
)
)2

.
∫
Rd
|f(y)| logβ2(e + |f(y)|)dy.

Combining estimates for I and II completes the proof of Theorem 4.1. �

For a linear operator T , we define the corresponding grand maximal op-
erator MT,r by

MT, rf(x) = sup
Q3x
|Q|−

1
r ‖T (fχRd\3Q)χQ‖Lr(Rd),

where the supremum is taken over all cubes Q ⊂ Rd containing x. MT, r

was introduced by Lerner [25] and is useful in establishing bilinear sparse
domination of rough operator TΩ. Let T1, T2 be two linear operators. We
define the grand maximal operator M ∗

T1T2,r
by

M ∗
T1T2, rf(x) = sup

Q3x

( 1

|Q|

∫
Q
|T1

(
χRd\3QT2(fχRd\9Q)

)
(ξ)|rdξ

) 1
r
.
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Lemma 4.2. Let s ∈ [0, ∞) and A ∈ (1, ∞), S be a sublinear operator
which satisfies that for any λ > 0,

∣∣{x ∈ Rd : |Sf(x)| > λ}
∣∣ . ∫

Rd

A|f(x)|
λ

logs
(

e +
A|f(x)|

λ

)
dx.

Then for any % ∈ (0, 1) and cube Q ⊂ Rd,( 1

|Q|

∫
Q
|S(fχQ)(x)|%dx

) 1
%
. A‖f‖L(logL)s, Q.

Proof. Lemma 4.2 was proved essentially in [20, p. 643]. We present the
proof here mainly to make clear the bound. By homogeneity, we may assume
that ‖f‖L(logL)s, Q = 1, which means that∫

Q
|f(x)| logs(e + |f(x)|)dx ≤ |Q|.

A trivial computation leads to that∫
Q
|S(fχQ)(x)|%dx =

∫ A

0
|{x ∈ Q : |S(fχQ)(x)| > t}|t%−1dt

+

∫ ∞
A
|{x ∈ Rd : |S(fχQ)(x)| > t}|t%−1dt

. |Q|A% +

∫ ∞
A

∫
Q

A|f(x)|
t

logs
(

e +
A|f(x)|

t

)
dxt%−1dt

. |Q|A%.

This gives the desired conclusion and completes the proof of Lemma 4.2. �

Lemma 4.3. Let T1, T2 be two linear operators. Suppose that for some
α, β ∈ [0, ∞) and r ∈ (1, 2],

(4.4) |{x ∈ Rd : MT1, rT2f(x) > t}| .
∫
Rd

rα|f(x)|
t

logβ
(

e +
rα|f(x)|

t

)
dx.

Then

|{x ∈ Rd : M ∗
T1T2, rf(x) > t}| .

∫
Rd

rα|f(x)|
t

logβ
(

e +
rα|f(x)|

t

)
dx.

Proof. Let τ ∈ (0, 1), x ∈ Rd and Q ⊂ Rd be a cube containing x. We know
by (4.4) and Lemma 4.2 that( 1

|Q|

∫
Q

[
MT1, rT2(fχ9Q)(ξ)

]τ
dξ
) 1
τ
. rαML(logL)βf(x).
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A straightforward computation leads to that[ 1

|Q|

∫
Q
|T1

(
χRd\3QT2(fχRd\9Q)

)
(ξ)|rdξ

] 1
r ≤ inf

ξ∈Q
MT1, r

(
T2(fχRd\9Q)

)
(ξ)

.
( 1

|Q|

∫
Q

[
MT1, rT2f(ξ)

]τ
dξ
) 1
τ

+
( 1

|Q|

∫
Q

[
MT1, r

(
T2(fχ9Q)

)
(ξ)
]τ
dξ
) 1
τ

.MτMT1, rT2f(x) + rαML(logL)βf(x).

On the other hand, we have∣∣{x ∈ Rd : MτMT1, rT2f(x) > λ}
∣∣

. λ−1 sup
t≥2−1/τλ

t|{x ∈ Rd : MT1, rT2f(x) > t}|

.
∫
Rd

rα|f(x)|
λ

logβ
(

e +
rα|f(x)|

λ

)
dx,

where the first inequality follows from inequality (11) in [20]. This, along
with (2.1) gives us the desired conclusion. �

Theorem 4.4. Let T1, T2 be two linear operators, r ∈ (1, 3/2], β1, β2, γ ∈
[0, ∞). Suppose that the following conditions hold

(i) T1, is bounded on Lr
′
(Rd) with bound A;

(ii) for each λ > 0,

|{x ∈ Rd : |T1T2f(x)| > λ}| .
∫
Rd

A0|f(x)|
λ

logβ1

(
e +

A0|f(x)|
λ

)
dx;

(iii) for each λ > 0,

|{x ∈ Rd : MT1, r′T2f(x) > λ}| .
∫
Rd

A1|f(x)|
λ

logβ1

(
e +

A1|f(x)|
λ

)
dx,

and

|{x ∈ Rd : MT2, r′f(x) > λ}| .
∫
Rd

A2|f(x)|
λ

logβ2

(
e +

A2|f(x)|
λ

)
dx.

Then for a bounded function f with compact support, there exists a 1
2

1
9d

-
sparse family of cubes S = {Q}, and functions H1 and H2, such that for
each function g,∣∣∣ ∫

Rn
H1(x)g(x)dx

∣∣∣ . (A0 +A1)AS;L(logL)β1 , Lr(f, g),

∣∣∣ ∫
Rn
H2(x)g(x)dx

∣∣∣ . AA2AS;L(logL)β2 , Lr(f, g),

and for a. e. x ∈ Rn,

T1T2f(x) = H1(x) +H2(x).
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Proof. We will employ the argument in [25], together with some ideas in
[19]. For a fixed cube Q0, define the local analogy of MT2, r′ and M ∗

T1T2, r′

by

MT2; r′;Q0f(x) = sup
Q3x,Q⊂Q0

|Q|−
1
r′ ‖χQT2(fχ3Q0\3Q)‖Lr′ (Rd),

and

M ∗
T1T2, r′;Q0

f(x) = sup
Q3x,Q⊂Q0

( 1

|Q|

∫
Q
|T1

(
χRd\3QT2(fχ9Q0\9Q)

)
(ξ)|r′dξ

) 1
r′

respectively. Let E = ∪3
j=1Ej with

E1 =
{
x ∈ Q0 : |T1T2(fχ9Q0)(x)| > DA0‖f‖L(logL)β1 , 9Q0

}
,

E2 = {x ∈ Q0 : MT2, r′;Q0f(x) > DA2‖f‖L(logL)β2 , 9Q0
},

E3 =
{
x ∈ Q0 : M ∗

T1T2, r′;Q0
f(x) > DA1‖f‖L(logL)β1 ,9Q0

}
,

with D a positive constant. Our hypothesis, vie Lemma 4.3 tells us that

|E| ≤ 1

2d+2
|Q0|,

if we choose D large enough. Now on the cube Q0, we apply the Calderón-
Zygmund decomposition to χE at level 1

2d+1 , and obtain pairwise disjoint
cubes {Pj} ⊂ D(Q0), such that

1

2d+1
|Pj | ≤ |Pj ∩ E| ≤

1

2
|Pj |

and |E\ ∪j Pj | = 0. Observe that
∑

j |Pj | ≤
1
2 |Q0|. Let

G1(x) = T1T2(fχ9Q0)(x)χQ0\∪lPl(x)

+
∑
l

T1

(
χRn\3PlT2(fχ9Q0\9Pl)

)
(x)χPl(x).

The facts that Pl∩Ec 6= ∅ and |E\∪jPj | = 0 imply that for any g ∈ Lr(Rd),∣∣∣ ∫
Rd
G1(x)g(x)dx

∣∣∣ . ∫
Rd
|T1T2(fχ9Q0)(x)g(x)|χQ0\∪lPl(x)dx(4.5)

+
∑
l

inf
ξ∈Pl
|Pl|

1
r′M ∗

T1T2;Q0,r′f(ξ)
(∫

Pl

|g(x)|rdx
) 1
r

. (A0 +A1)‖f‖L(logL)β1 , 9Q0
〈|g|〉r,Q0 |Q0|.

Also, we define function G2 by

G2(x) =
∑
l

T1

(
χ3PlT2

(
fχ9Q0\9Pl)

)
(x)χPl(x).
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For each function g, we have by Hölder’s inequality that∣∣∣ ∫
Rd
G2(x)g(x)dx

∣∣∣(4.6)

≤ A
∑
l

(∫
3Pl

∣∣T2

(
fχ9Q0\9Pl

)
(x)
∣∣r′dx) 1

r′
(∫

Pl

|g(y)|dy
) 1
r

. A
∑
l

|Pl|
1
r′ inf
ξ∈Pl

MT2, r′;Q0f(ξ)
(∫

Pl

|g(y)|dy
) 1
r

. AA2‖f‖L(logL)β2 ; 9Q0
〈|g|〉r,Q0 |Q0|.

It is obvious that

T1T2(fχ9Q0)(x)χQ0(x) = G1(x) +G2(x) +
∑
l

T1T2(χ9Pl)(x)χPl(x).

As in [19], we now repeat the argument above with T1T2(fχ9Q0)(x)χQ0

replaced by each T1T2(χ9Pl)(x)χPl(x), and so on. Let {Qj10 } = {Pj}, and

for fixed j1, . . . , jm−1, {Qj1...jm−1jm
0 }jm be the cubes obtained at the m-th

stage of the decomposition process to the cube Q
j1...jm−1

0 . For each fixed

j1 . . . , jm, define the functions Hj1...jm
Q0,1

f and Hj1...jm
Q0,2

f by

Hj1...jm
Q0,1

f(x) = T1

(
χRn\3Qj1...jm0

T2(fχ
9Q

j1...jm−1
0 \9Qj1...jm0

)
)
(x)χ

Q
j1...jm
0

(x),

and

Hj1...jm
Q0,2

f(x) = T1

(
χ

3Q
j1...jm
0

T2(fχ
9Q

j1...jm−1
0 \9Qj1...jm0

)
))

(x)χ
Q
j1...jm
0

(x),

respectively. Set F = {Q0} ∪∞m=1 ∪j1,...,jm{Q
j1...jm
0 }. Then F ⊂ D(Q0) is a

1
2 -sparse family. Let

HQ0, 1(x) = T1T2(fχ9Q0)χ
Q0\∪j1Q

j1
0

(x)

+

∞∑
m=1

∑
j1,...,jm

T1T2(fχ
9Q

j1...jm
0

)χ
Q
j1...jm
0 \∪jm+1

Q
j1...jm+1
0

(x)

+

∞∑
m=1

∑
j1,...,jm

Hj1...jm
Q0,1

f(x)χ
Q
j1...jm
0

(x).

Also, we define the function HQ0, 2 by

HQ0, 2(x) =
∞∑
m=1

∑
j1...jm

Hj1...jm
Q0,2

f(x)χ
Q
j1...jm
0

(x).

Then for a. e. x ∈ Q0,

T1T2(fχ9Q0)(x) = HQ0, 1(x) +HQ0, 2(x).
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Moreover, as in the inequalities (4.5) and (4.6), the process of producing

{Qj1...jm0 } leads to that
(4.7)∣∣∣ ∫

Rd
HQ0, 1f(x)χQ0(x)dx

∣∣∣ . (A0 +A1)
∑
Q∈F
‖f‖L(logL)β1 , 9Q〈|g|〉r,Q|Q|,

and for the function g,

(4.8)
∣∣∣ ∫

Rd
g(x)HQ0, 2(x)dx

∣∣∣ . AA2

∑
Q∈F
|Q|‖f‖L(logL)β2 , 9Q〈|g|〉r,Q.

We can now conclude the proof of Theorem 4.4. In fact, as in [25], we
decompose Rd by cubes {Rl}, such that suppf ⊂ 3Rl for each l, and Rl’s
have disjoint interiors. Then for a. e. x ∈ Rd,

T1T2f(x) =
∑
l

HRl, 1f(x) +
∑
l

HRl, 2f(x) := H1f(x) +H2f(x).

Our desired conclusion follows from inequalities (4.7) and (4.8) directly. �

5. Proof of Theorems

Applying Theorem 4.1 to the rough singular integral operators TΩ1 and
TΩ2 , we get the following result.

Corollary 5.1. Let Ω1, Ω2 be homogeneous of degree zero, have mean value
zero and Ω1, Ω2 ∈ L∞(Sd−1). Let r ∈ (1, 3/2]. Then for each bounded
function f with compact support, there exists a 1

2
1
9d

-sparse family of cubes
S = {Q}, and functions J1 and J2, such that for each function g,∣∣∣ ∫

Rd
J1(x)g(x)dx

∣∣∣ . r′AS;L logL,Lr(f, g),∣∣∣ ∫
Rd
J2(x)g(x)dx

∣∣∣ . r′2AS;L1, Lr(f, g),

and for a. e. x ∈ Rd,

TΩ1TΩ2f(x) = J1(x) + J2(x).

Proof. Let r ∈ (1, 3/2]. Lerner [25] proved that if Ω ∈ L∞(Sd−1), then

‖MTΩ, r′f‖L1,∞(Rd) . r
′‖Ω‖L∞(Sd−1)‖f‖L1(Rd).(5.1)

On the other hand, since TΩ is bounded on Lr
′
(Rd) with bound max{r, r′},

we deduce that

MTΩ, r′f(x) ≤Mr′TΩf(x) + max{r, r′}Mr′f(x).

Therefore, MTΩ, r′ is bounded on L2r(Rd) with bound Cr′. This, via estimate
(5.1), leads to that

‖MTΩ, r′f‖L2(Rd) . r
′‖f‖L2(Rd).(5.2)
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We now conclude the proof of Corollary 5.1. Let I be the identity op-
erator. It is obvious that MI, r′TΩ2f(x) = 0. Applying (5.1) and Theorem
4.4 with T1 = I, T2 = TΩ2 , we know that TΩ2 satisfies a (L1, Lr)-bilinear
sparse domination with bound r′. Thus by Theorem 4.1 with the fact TΩ1

is of weak type (1,1) (see e.g. [33]), we have that for any λ > 0,

|{x ∈ Rd : |TΩ1TΩ2f(x)| > λ}| .
∫
Rd

|f(x)|
λ

log
(

e +
|f(x)|
λ

)
dx.

Furthermore, it follows from Theorem 4.1, (5.1) and (5.2) that for any λ > 0,

|{x ∈ Rd : MTΩ1
, r′TΩ2f(x) > λ}| .

∫
Rd

r′|f(x)|
λ

log
(

e +
r′|f(x)|

λ

)
dx.

Recall that TΩ1 is bounded on Lr(Rd) with bound Cr′. Another application
of Theorem 4.4 yields desired conclusion. �

Proof of Theorem 1.1. For p ∈ (1, ∞) and w ∈ Ap(Rd), let τw =

211+d[w]A∞ and τσ = 211+d[σ]A∞ , ε1 = p−1
2pτσ+1 , and ε2 = p′−1

2p′τw+1 . It was

proved in [18] that

AS;L1+ε1 , L1+ε2 (f, g) . [w]
1/p
Ap

([σ]
1/p
A∞

+ [w]
1/p′

A∞
)‖f‖Lp(Rd, w)‖g‖Lp′ (Rd,σ).(5.3)

Note that

AS;L logL,L1+ε2 (f, g) .
1

ε1
AS;L1+ε1 , L1+ε2 (f, g).

Invoking Corollary 5.1 and inequality (5.3), we deduce that for bounded
functions f and g,∣∣∣ ∫

Rd
g(x)TΩ1TΩ2f(x)dx

∣∣∣ . [w]
1/p
Ap

([σ]
1/p
A∞

+ [w]
1/p′

A∞
)[w]A∞

×
(
[w]A∞ + [σ]A∞

)
‖f‖Lp(Rd, w)‖g‖Lp′ (Rd,σ).

Recall that w ∈ Ap(Rn) implies that σ ∈ Ap′(Rn) and [σ]
1/p′

Ap′
= [w]

1/p
Ap

.

Applying Corollary 5.1 to TΩ2TΩ1 , we obtain that∣∣∣ ∫
Rd
f(x)TΩ2TΩ1g(x)dx

∣∣∣ . [σ]
1/p′

Ap′
([σ]

1/p
A∞

+ [w]
1/p′

A∞
)[σ]A∞

×
(
[w]A∞ + [σ]A∞

)
‖f‖Lp(Rd, w)‖g‖Lp′ (Rd,σ)

. [w]
1/p
Ap

([σ]
1/p
A∞

+ [w]
1/p′

A∞
)[σ]A∞

×
(
[w]A∞ + [σ]A∞

)
‖f‖Lp(Rd, w)‖g‖Lp′ (Rd,σ).

Combining the last two inequalities yields desired conclusion. �
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Proof of Theorem 1.3. Let w ∈ A1(Rd). We obtain from Corollary 5.1
and Corollary 3.3 that

w
(
{x ∈ Rd : |TΩ1TΩ2f(x)| > λ}

)
≤ w

(
{x ∈ Rd : |J1(x)| > λ/2}

)
+ u
(
{x ∈ Rd : |J2(x)| > λ/2}

)
. [w]A∞ log2(e + [w]A∞)[w]A1

∫
Rd

|f(x)|
λ

log
(

e +
|f(x)|
λ

)
u(x)dx

+[w]2A∞ log(e + [w]A∞)[w]A1

∫
Rn

|f(x)|
λ

w(x)dx

. [w]2A∞ log(e + [w]A∞)[w]A1

∫
Rd

|f(x)|
λ

log
(

e +
|f(x)|
λ

)
w(x)dx,

with J1 and J2 the functions defined in Corollary 5.1. This completes the
proof of Theorem 1.3. �

Added in Proof. After this paper was prepared, we learned that Li et
al. [29] established the weighted bounds for linear operators satisfying the
assumptions in Corollary 3.3 with β = 0, which coincides the conclusion in
Corollary 3.3 for β = 0. The argument in [29] is different from the argument
in the proof of Corollary 3.3 and is of independent interest.

The authors would like to thank Dr. Kangwei Li for his helpful comments
and suggestions.
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