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Abstract. In this paper, we shall establish the superconvergence property of the
Runge–Kutta discontinuous Galerkin (RKDG) method for solving a linear constant-
coefficient hyperbolic equation. The RKDG method is made of the discontinuous
Galerkin (DG) scheme with upwind-biased numerical fluxes coupled with the explicit
Runge–Kutta algorithm of arbitrary orders and stages. Superconvergence results for
the numerical flux, cell averages as well as the solution and derivative at some special
points are shown, which are based on a systematical study of the L2-norm stability
for the RKDG method and the incomplete correction techniques for the well-defined
reference functions at each time stage. The result demonstrates that the superconver-
gence property of the semi-discrete DG method is preserved, and the optimal order in
time is provided under the smoothness assumption that is independent of the number
of stages. As a byproduct of the above superconvergence study, the expected order of
the post-processed solution is obtained when a special initial solution is used. Some
numerical experiments are also given.
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1 Introduction

In this paper, we shall study the superconvergence property of the explicit Runge–Kutta discontinuous
Galerkin (RKDG) method with the upwind-biased numerical flux for solving the linear hyperbolic
equation

Ut + βUx = 0, x ∈ I = (0, 1), t ∈ (0, T ], (1.1)

equipped with the initial solution U(x, 0) = U0(x) and the periodic boundary condition. Here T > 0
is the final time. For simplicity, we assume in this paper that β is a positive constant. We remark
that there is no essential difficulty to extend the above context to multi-dimensional problems and to
variable-coefficient linear problems.

The discontinuous Galerkin (DG) method was first introduced by Reed and Hill [31], and then
developed by Cockburn et al. [15, 16, 18–20] in the framework of explicit RKDG methods for solving
time-dependent nonlinear hyperbolic conservation laws. Due to its flexibility in implementation and
good numerical performance, especially on high order accuracy for smooth solutions and high res-
olution for discontinuities, this method has attracted increased attention in recent years. For more
details, one can refer to [13, 21] and the references therein. However, in contrast to its wide applica-
tions, theoretical results are not plenty. Even when restricted to linear hyperbolic equations, many
theoretical works have mainly been carried out for the semi-discrete DG method, for example, the
stability and optimal error estimate [14, 28, 33], the superconvergence analysis [2–5, 7, 9, 10, 25, 39],
and the post-processing [17, 26, 32]. In this paper, we continue the work in [37, 38] and investigate
superconvergence properties of RKDG methods with arbitrary orders and stages, when solving the
model problem (1.1). Superconvergence orders in space, together with the optimal order in time,
will be shown for the numerical flux, the cell average, as well as the solution and derivative at some
discrete points.

To achieve the above goals, we have to address two key points. One is the L2-norm stability analysis
for the fully-discrete RKDG method. It is well known that this cannot be directly obtained under
the strong stability preserving (SSP) framework [24], since the DG method combined with forward
Euler time-marching is not stable under the standard CFL condition for piecewise linear or higher
degree polynomials. Hence we need to find another way to recover the stability performance in theory.
In [40,41], Zhang and Shu have derived the optimal error estimate for the second order and third order
RKDG methods when solving the sufficiently smooth solution of nonlinear conservation laws. The
L2-norm stability is implicitly presented in [40, 41] for the linear hyperbolic equation. Recently, Xu
et al. [38] have proposed an analysis framework of L2-norm stability for linear hyperbolic equations,
and have made a classification on the different stability performance for many RKDG methods of
time order up to twelve. Specially, it is proved theoretically that the four stage fourth order RKDG
method is actually stable under the standard CFL condition. The main technique is to rewrite
the RKDG scheme into an equivalent representation by using the temporal differences of the stage
solutions, and then carry out a matrix transferring process with the aid of computer, in order to
automatically obtain a delicate energy equation that can essentially reveal the stability mechanism
of the higher order RKDG method. Similar work has also been given by Sun and Shu [35] for the
Runge–Kutta algorithms to solve ordinary differential equations with semi-negative operators. After
that, the authors [37] have found the relationship between the multiple-steps and the single-step time-
marching, which allows us to avoid a detailed computer-aided calculation on the evolution vector.
Hence the matrix transferring process for multiple-step time-marching is not necessary to be carried
out.

Another key point is how to define the reference functions [37,40,41] and the technique of correction
functions [2, 7] at each time stage. The purpose of this paper is to verify in theory that the time
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discretization does not destroy the superconvergence performance. To this purpose, we have to
overcome two technical difficulties. One is the definition of reference functions at every time stage,
under the almost same regularity assumption as that in the semi-discrete method. This issue has been
addressed in [37], where the optimal error estimate is obtained for the fourth order RKDG method and
the additional regularity assumption solely depends on the time order, independent of the number of
stages. The basic idea is the cutting treatment on the original reference functions proposed in [40,41].
The other is the definition of the correction function without too much regularity requirement on
the exact solution. To that end, we propose in this paper an incomplete correction technique for the
above reference functions.

It is worthy mentioning that the technique of correction functions is important in the development
of superconvergence analysis for DG methods. Below we recall some important works related to
this issue, mainly restricted to the semi-discrete DG method for one dimensional problems. Cheng
and Shu [10] proved the (k + 3/2)th order supraconvergence between the numerical solution and
a particular projection of the exact solution for the linear hyperbolic equation, and then Meng et
al. [29] extended this result to the nonlinear conservation law if the flow speed keeps its sign. Here
and below k is the degree of piecewise polynomials. The word supraconvergence is used to mean the
supercloseness of the numerical solution and a special function in the finite element space, in order to
distinguish with the word superconvergence. For the linear hyperbolic equation, Yang and Shu [39]
improved the work of [10] and proved the (k + 2)th order superconvergence at the downwind-biased
Radau points with a suitable initial discretization, when the purely upwind numerical flux is used.
As a milestone in this issue, Cao et al. [7] firstly adopted the technique of correction functions for
the linear hyperbolic equation and proved the (2k + 1)th order supraconvergence of the numerical
solution towards a particular function in the finite element space. As an application of this technique,
the superconvergence results with respect to the cell average, the numerical flux, the solution at
the right Radau points, and the derivative at the left Radau points were established in a uniform
framework. After that, this correction technique has been implemented to many problems; see [2–6]
for an incomplete list of references.

In this paper we shall investigate the superconvergence property for the fully discrete RKDG
method. Although the technique of correction functions is inherited from [2, 7] for the semi-discrete
DG method, some improvements are achieved on several issues. Firstly, we make a minor modification
to the definition of correction functions, such that the superconvergence property can be correctly
reduced for the non-uniform mesh and upwind-biased parameter. Secondly, the smoothness require-
ment on the exact solution is weakened, with the help of the Bramble-Hilbert lemma, instead of the
Legendre expansion. In this paper, we only require the initial solution and its derivatives up to the
min(2k + 2, r + 1)-th order belong to L2(I), rather than L∞(I). Here r is the temporal order of
the RKDG method. Thirdly, some tedious treatments are presented to preserve the optimal order
in time under the mild regularity assumption that is independent of the number of stages of the
RKDG methods. Finally, by making a full use of the superconvergence results and the properties of
divided differences, we are able to avoid the duality arguments [17] and present a new proof of the
accuracy-enhancement of a post-processed solution when a special initial solution is taken.

The rest of the paper is organized as follows. In section 2, we give the definition of the RKDG
scheme and its equivalent representation by the temporal difference of the stage solutions. In section
3, we recall the matrix transferring process and quickly set up the propositions of the termination
index and the contribution index, which lead to different stability results. Section 4 is the main
part of paper, in which we establish the supraconvergence results for the solution and its derivative,
both (2k + 1)th order in space and rth order in time, if the initial solution is smooth enough. In
section 5, we present the superconvergence results in the discrete L2-norm, including the numerical
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flux, the cell average, as well as the solution and the derivative, respectively, at the roots and the
extrema of some Radau-type polynomials. As a byproduct, in section 6 we give a new proof for the
superconvergence result for post-processed solutions. Some numerical experiments are given in section
7, and the concluding remarks are given in section 8. Finally, the supplement of three technical issues
are given in the appendix.

There are many notations in this paper. To help the readers better understand this paper, we list
here some main important notations with short descriptions.

s, r, k the RKDG(s, r, k) method

m number of multiple-steps

α(m) evolution vector

D`(m)un temporal difference of stage solutions

ζ(m), ρ(m) the termination index, and the contribution index

m? the minimum of integers m such that ζ(m) = ρ(m)

ψr quantity to quickly judge stability performance; see (3.17)

q total number of correction manipulations in time-marching

qnt total number of correction manipulations for the initial solution

σ maximal order of derivative in reference functions

U
(`)
[σ]

(x, t), %
(`)
[σ]

(x, t) reference function at the `th stage, and the corresponding truncation error in time

Un,` reference function at each time stage, defined as U
(`)
[r]

(x, tn)

Wn,` truncated reference function at each time stage, defined as U
(`)
[min(q,r)]

(x, tn)

zn,`, zn,`c , zn,`d arbitrary series zn,` and their combinations; see (4.8)

χn,` one stage function in the finite element space

en,`, ξn,`, ηn,` stage error and its decomposition en,` = ξn,` − ηn,`; see (4.10)

Zn,`(v) functional to determine the residual of stage error; see (4.12)

Ph,P⊥h L2 projection and the projection error

Gh,G⊥h GGR projection and the projection error

Fp the pth correction operator; see (4.19)

D−1
h the antiderivative in each element; see (4.20)

Rj,k+1 the parameter-dependent Radau polynomial of degree k + 1 on Ij

rij , n
R
j roots of Rj,k+1, and the total number of roots on Ij

lij , n
L
j extrema of Rj,k+1, and the total number of extrema on Ij

Ch,C⊥h parameter-dependent local projection and the projection error

|||·|||L2(SB
h
), |||·|||L∞(SB

h
) discrete L2 (resp. L∞) norm at element boundary points

|||·|||L2(SE
h
), |||·|||L∞(SE

h
) discrete L2 (resp. L∞) norm at element midpoints

|||·|||L2(SR
h
), |||·|||L∞(SR

h
) discrete L2 (resp. L∞) norm at roots of every Rj,k+1

|||·|||L2(SL
h
), |||·|||L∞(SL

h
) discrete L2 (resp. L∞) norm at extrema of every Rj,k+1

∂`h the `th order divided difference

K2k+1,k+1
h kernel function for post-processing

2 The RKDG method

In this section, we first present for the model problem (1.1) the RKDG method in the Shu-Osher
form [34], and then write it into the equivalent representation [38] by the help of the temporal
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difference of the stage solutions.

2.1 Discontinuous finite element space

Let Th = {Ij = (xj−1/2, xj+1/2)}1≤j≤J be a partition of the spatial domain I = (0, 1), where J ∈ Z+ =
{1, 2, 3, . . .} is an integer. The length of the element Ij is hj = xj+1/2 − xj−1/2 for j = 1, 2, . . . , J .
Denote h = hmax = max1≤j≤J hj and hmin = min1≤j≤J hj . In this paper we assume that the partition
is quasi-uniform, namely, the ratio hmax/hmin is upper bounded by a fixed constant as h goes to zero.

Associated with the partition Th, the discontinuous finite element space is defined as

Vh = V k
h ≡ {v ∈ L2(I) : v|Ij ∈ P k(Ij), j = 1, . . . , J}, (2.1)

where P k(Ij) is the space of polynomials in Ij of degree at most k ≥ 1. Note that the functions
in Vh are allowed to have discontinuities at element endpoints. Dropping the subscript j + 1/2 for
convenience, the jump and the weighted average are respectively denoted by

[[v]] = v+ − v−, {{v}}(θ) = θv− + (1− θ)v+, (2.2)

where v− and v+, respectively, are the left- and right-limit, and θ is a given constant.
Some inverse inequalities are used in this paper. Namely, for any v ∈ Vh there hold

‖vx‖L2(I) ≤ µh
−1 ‖v‖L2(I) , ‖v‖L2(Γh) ≤ µh

− 1
2 ‖v‖L2(I) , ‖v‖L∞(I) ≤ µh

− 1
2 ‖v‖L2(I) , (2.3)

where the inverse constant µ > 0 is independent of h and v. Here ‖·‖L2(I) and ‖·‖L∞(I) respectively

are the usual norms in L2(I) and L∞(I), and

‖vx‖L2(I) =

 ∑
1≤j≤J

∫
Ij

(vx)2dx


1
2

, ‖v‖L2(Γh) =

 ∑
1≤j≤J

1

2

[
(v−
j+ 1

2

)2 + (v+
j− 1

2

)2
]

1
2

,

with Γh being the set of all element endpoints. For more discussions, one can refer to [12,30].

2.2 Semi-discrete DG scheme

The semi-discrete DG method for (1.1) is defined as follows. Find the map u(x, t) : [0, T ]→ Vh, such
that

(ut, v) = H(u, v), ∀ v ∈ Vh, (2.4)

holds for any time t ∈ (0, T ], and a suitable initial solution is enforced at t = 0. Here

H(u, v) =
∑

1≤j≤J

[∫
Ij

βuvxdx+ β{{u}}(θ)
j+ 1

2

[[v]]j+ 1
2

]
(2.5)

is the DG spatial discretization with respect to the periodic boundary condition, and (·, ·) is the inner

product in L2(I). In this paper we demand θ > 1/2 such that β{{u}}(θ)j+1/2 forms an upwind-biased
numerical flux, since β > 0. Actually, when θ = 1 it yields the purely upwind flux.

The following important properties will be repeatedly used later in our analysis. The proofs are
straightforward and hence are omitted. Please refer to [38] for more details.

Lemma 2.1 For the DG spatial discretization H(·, ·), we have the following conclusions.
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1. There holds the approximate skew-symmetric property, namely

H(w, v) +H(v, w) = −2β
(
θ − 1

2

) ∑
1≤j≤J

[[w]]j+ 1
2
[[v]]j+ 1

2
, ∀w, v ∈ Vh,

which implies H(w,w) = −β
(
θ − 1

2

)
‖[[w]]‖2L2(Γh), for any w ∈ Vh;

2. There holds the nonpositive property, namely∑
i,j∈G

gijH(wi, wj) ≤ 0, wi ∈ Vh,

where {gij}i,j,∈G forms a symmetric positive semidefinite matrix, and G is an arbitrary index
set for the row number and column number.

3. There holds the weak boundedness in Vh × Vh, namely

|H(w, v)| ≤ C|β|h−1 ‖w‖L2(I) ‖v‖L2(I) , ∀w, v ∈ Vh,

where the bounding constant C > 0 solely depends on θ and µ.

2.3 Fully-discrete RKDG method

The explicit Runge–Kutta algorithm is widely used to solve (2.4); see, e.g., [22–24] and the references
therein. In this paper this kind of fully-discrete method is named as the RKDG(s, r, k) method, where
s and r are the stage number and time order of the Runge–Kutta algorithm, and k is the degree of
piecewise polynomials in Vh.

For any M ∈ Z+, let {tn = nτ}0≤n≤M be a uniform partition of the time interval [0, T ], where
τ is the time step. In this paper the time step is taken to be a constant just for simplicity. For
the RKDG(s, r, k) method, each time-marching from tn to tn+1 is generally given in the Shu-Osher
form [34]:

• Let un,0 = un.

• For ` = 0, 1, . . . , s−1, successively find the stage solution un,`+1 through the following variational
formula

(un,`+1, v) =
∑

0≤κ≤`

[
c`κ(un,κ, v) + τd`κH(un,κ, v)

]
, ∀v ∈ Vh, (2.6)

where the parameters c`κ and d`κ are given constants, determined by the used Runge–Kutta
algorithm; noting that d`` 6= 0 and

∑
0≤κ≤` c`κ = 1.

• Let un+1 = un,s.

The initial solution u0 ∈ Vh is given as the suitable approximation of U0. The detailed definition will
be given for different purposes; see sections 4 and 5 below.
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2.4 Equivalent representation of the RKDG method

Following [37, 38, 41], we set up an equivalent representation of the RKDG method by using the
temporal differences of the stage solutions.

Sometimes we need to investigate the numerical performance for multiple-step time-marching of
RKDG methods. To do that, we introduce for any integers n ≥ 0 and κ ≥ 0 the notations

un+κ,` = un,κs+`, ` = 0, 1, . . . , s− 1. (2.7)

Let m ∈ Z+. The m steps time-marching of an RKDG(s, r, k) method with time step τ can be looked
upon as a single step time-marching of the RKDG(ms, r, k) method with time step mτ , in which each
stage marching can be written in the form

(un,`+1, v) =
∑

0≤κ≤`

[
c`κ(m)(un,κ, v) +mτd`κ(m)H(un,κ, v)

]
, ∀v ∈ Vh, (2.8)

where ` = 0, 1, . . . ,ms − 1. Here the parameters c`κ(m) and d`κ(m) are determined by the given
parameters c`κ(1) = c`κ and d`κ(1) = d`κ.

In this paper, we always denote D0(m)un = un for simplicity of notation. For 1 ≤ ` ≤ ms, the
temporal difference of the stage solution

D`(m)un =
∑

0≤κ≤`
σ`κ(m)un,κ (2.9)

is recursively defined by the variational form

(D`(m)un, v) = mτH(D`−1(m)un, v), ∀ v ∈ Vh. (2.10)

It is easy to see that the combination coefficients satisfy σ``(m) 6= 0 and
∑

0≤κ≤` σ`κ(m) = 0. This
process can be implemented by some suitable linear combination of the variational formulas at different
time stages.

In the meanwhile, the above definitions lead to the evolution equation

α0(m)un+m =
∑

0≤i≤ms
αi(m)Di(m)un, (2.11)

which is an equivalent representation of the RKDG method. Here α0(m), α1(m), . . . , αms(m) are
constants, and α0(m) > 0 is used only for scaling such that all components are integers. It is only
needed for easier computer implementation. In the theoretical analysis, we often take α0(m) = 1.
For the convenience of notations, we would like to express (2.11) by the so-called evolution vector

α(m) = (α0(m), α1(m), . . . , αms(m)). (2.12)

In addition, we define αi(m) = 0 for i > ms.
In the next lemma, we would like to point out that it is not necessary to carry out a tedious

manipulations to write down the detailed formulation of (2.8) and/or (2.11) for multiple-step time-
marching of RKDG methods. To show that, associated with α(m) we define the generating polynomial

p(m)(z) =
∑

0≤i≤ms

αi(m)

α0(m)
zi, (2.13)

and denote the offsets by α̃i(m) = αi(m)/α0(m)− 1/i! for i ≥ 0.
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Lemma 2.2 Every evolution vector α(m) can be obtained from α(1), due to the following identity

p(m)(z) =
[
p(1)
( z
m

)]m
.

Furthermore, we have α̃i(m) = 0 for 0 ≤ i ≤ r, and α̃r+1(m) = α̃r+1(1)/mr.

This is a trivial extension of the results in [37], which is given for the fourth order RKDG method.
The proof is almost the same, so it is omitted here.

3 Stability analysis

In this section we investigate the L2-norm stability of the RKDG methods, following [37, 38]. The
main technique is to carry out a matrix transferring process to set up a sufficiently good energy
equation, showing explicitly by the termination index, the contribution index, and the sign of the
central objective.

3.1 Matrix transferring process

Squaring and integrating on both sides of the evolution equation (2.11), we can get the initial energy
equation. However, the stability mechanism of the DG spatial discretization (see Lemma 2.1) is not
well reflected.

To fully explore the positive contribution of the spatial discretization, we would like to execute
the matrix transferring process through a series of energy equations

[α0(m)]2
[ ∥∥un+m

∥∥2

L2(I)
− ‖un‖2L2(I)

]
= RHS(`) ≡ TM(`) + SP(`), (3.1)

where ` ≥ 1 is the sequence number of the matrix transferring, and

TM(`) =
∑

0≤i≤ms

∑
0≤j≤ms

a
(`)
ij (m)(Di(m)un,Dj(m)un),

SP(`) = mτ
∑

0≤i≤ms

∑
0≤j≤ms

b
(`)
ij (m)H(Di(m)un,Dj(m)un),

(3.2)

respectively represent the time discretization information and the spatial discretization information.
They are equivalently expressed by two symmetric matrices

A(`)(m) =
{
a

(`)
ij (m)

}
0≤i,j≤ms and B(`)(m) =

{
b
(`)
ij (m)

}
0≤i,j≤ms.

The matrix transferring process is defined as follows. Let ` ≥ 1 be the sequence number, and

assume both A(`−1)(m) and B(`−1)(m) have been known. If the central objective a
(`−1)
`−1,`−1(m) 6= 0, we

define the termination index
ζ(m) = `− 1, (3.3)

and stop the process. Otherwise, we make the following manipulation such that the time discretization
information, corresponding to the (`− 1)th row and column of A(`−1)(m), is completely transformed
into the space discretization information. Owing to the symmetry property of matrices, below we
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only present the manipulations in the lower triangular matrices. Assuming i ≥ j, the formulations
are given in the form

a
(`)
ij (m) =


0, j = `− 1,

a
(`−1)
ij (m)− 2a

(`−1)
i+1,j−1(m), i = ` and j = `,

a
(`−1)
ij (m)− a(`−1)

i+1,j−1(m), `+ 1 ≤ i ≤ ms− 1 and j = `,

a
(`−1)
ij (m), otherwise,

(3.4a)

b
(`)
ij (m) =

{
2a

(`−1)
i+1,j (m), `− 1 ≤ i ≤ ms− 1 and j = `− 1,

b
(`−1)
ij (m), otherwise,

(3.4b)

where the relationship (2.10) is used. See [38] for more discussions.
Recalling the initial energy equation, we define two matrices A(0)(m) and B(0)(m) with the entries

a
(0)
ij (m) =

{
0, i = j = 0,
αi(m)αj(m), otherwise,

b
(0)
ij (m) = 0, (3.5)

in addition. Since a
(0)
00 (m) ≡ 0, the transform is done at least once. This implies ζ(m) ≥ 1.

A careful observation on (3.4a) reveals that the kernel information in TM(ζ(m)) can be explicitly
expressed by the evolution vector α(m). The related formulations are collected in the following
lemma; see [37, Propositions 3.1 and 3.2] for more details.

Lemma 3.1 For 0 ≤ j ≤ ζ(m), we have

a
(j)
ij (m) =

∑
0≤κ≤j

(−1)καi+κ(m)αj−κ(m), j < i ≤ ms. (3.6)

Also we have a
(0)
00 (m) = 0 and

a
(j)
jj (m) =

∑
−j≤κ≤j

(−1)καj+κ(m)αj−κ(m), 1 ≤ j ≤ ζ(m). (3.7)

Furthermore, we have a
(ζ(m))
ij (m) = 0 provided min(i, j) < ζ(m).

The results given in [37] can be extended from the fourth order RKDG methods into arbitrary
order RKDG methods, along the same line.

Proposition 3.1 For m ∈ Z+, we have ζ(m) ≡ ζ ≥ br/2c + 1 and a
(ζ)
ζζ (m)a

(ζ)
ζζ (1) > 0. Here br/2c

denotes the maximal integer not greater than r/2.

Proof: This can be proved by the generating polynomial. If p(m)(z)p(m)(−z) =
∑

0≤i≤ms g2i(m)z2i,
then it follows from (3.7) that

a
(j)
jj (m) = (−1)j [α0(m)]2g2j(m), 1 ≤ j ≤ ζ(m). (3.8)

For 1 ≤ j ≤ br/2c, using (3.7) again we have

a
(j)
jj (m)

[α0(m)]2
=

(−1)j

(2j)!

∑
−j≤κ≤j

(−1)j+κ(2j)!

[2j − (j + κ)]!(j + κ)!
=

(−1)j

(2j)!
(1− 1)2j = 0,

9
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since Lemma 2.2 clearly states αj±κ(m) = 1/(j ± κ)! for 0 ≤ j ± κ ≤ r. Owing to the definition of

the termination index ζ(m), the central objective a
(ζ(m))
ζ(m)ζ(m)(m) is the first nonzero diagonal entry in

the matrix transferring process. Hence ζ(m) ≥ br/2c+ 1, and

p(m)(z)p(m)(−z) = 1 +
(−1)ζ(m)

[α0(m)]2
a

(ζ(m))
ζ(m)ζ(m)(m)z2ζ(m) + · · · . (3.9)

On the other hand, using Lemma 2.2 and (3.9) with m = 1, we have

p(m)(z)p(m)(−z) =
[
p(1)
( z
m

)
p(1)
(
− z

m

)]m
=
[
1 +

(−1)ζ(1)

[α0(1)]2
a

(ζ(1))
ζ(1)ζ(1)(1)

( z
m

)2ζ(1)
+ · · ·

]m
= 1 +

(−1)ζ(1)

[α0(1)]2

(
m

1

)
1

m2ζ(1)
a

(ζ(1))
ζ(1)ζ(1)(1)z2ζ(1) + · · · .

(3.10)

Comparing with the order and coefficient of (3.9) and (3.10), we have ζ(m) = ζ(1) = ζ and

a
(ζ)
ζζ (m) =

1

m2ζ−1

[α0(m)]2

[α0(1)]2
a

(ζ)
ζζ (1). (3.11)

That is to say, a
(ζ)
ζζ (m) and a

(ζ)
ζζ (1) have the same signs. This completes the proof of this proposition.

By (3.4b) and (3.6) in Lemma 3.1, each entry in the ζ(m)th order leading principal symmetric
submatrix of B(ζ(m))(m) can be explicitly expressed by

b
(ζ(m))
ij (m) = 2a

(j)
i+1,j(m) = 2

∑
0≤κ≤j

(−1)καi+1+κ(m)αj−κ(m), (3.12)

where 0 ≤ j ≤ i ≤ ζ(m)− 1.
The contribution index of the spatial DG discretization is defined by

ρ(m) = min{κ : κ ∈ BI(m) ∪ {ζ(m)}}, (3.13)

where
BI(m) =

{
κ : 0 ≤ κ ≤ ζ(m)− 1 and det

{
b
(ζ(m))
ij (m)

}
0≤i,j≤κ

≤ 0
}
.

This index implies that the ρ(m)th order leading principal submatrix of B(ζ(m))(m) is symmetric
positive definite. If BI(m) = ∅, then ρ(m) = ζ(m).

Proposition 3.2 There holds ρ(m) ≥ b(r + 1)/2c.

Proof: Let 0 ≤ i, j ≤ b(r − 1)/2c. Since i+ j + 1 ≤ r, each element in the right-hand side of (3.12)
is clearly determined by Lemma 2.2. By the same manipulation as that in [37], we can obtain

b
(ζ(m))
ij (m) = 2[α0(m)]2

1

i!j!(i+ j + 1)
. (3.14)

Please refer to [37] for more details. The b(r+1)/2cth order leading principal submatrix of B(ζ(m))(m)
is symmetric positive definite, since it is congruent to a Hilbert matrix with a diagonal transform
matrix made up of

√
2α0(m)/i!. This completes the proof of this proposition.
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Proposition 3.3 There exists an integer m? ≥ 1 such that ρ(m) = ζ(m) for m ≥ m?.

Proof: Along the same line as that for (3.14) we have

b
(ζ(m))
ij (m) = 2[α0(m)]2

[
1

i!j!(i+ j + 1)
+ b̃

(ζ(m))
ij (m)

]
, (3.15)

for 0 ≤ j ≤ i ≤ ζ(m)− 1, where

b̃
(ζ(m))
ij (m) =

∑
0≤κ≤j

(−1)κ
[

1

(i+ 1 + κ)!
α̃j−κ(m) + α̃i+1+κ(m)

1

(j − κ)!
+ α̃i+1+κ(m)α̃j−κ(m)

]
.

We can announce that b̃
(ζ(m))
ij (m) goes to zero as m increases, because the offset satisfies

|α̃`(m)| ≤ Cm−r, 0 ≤ ` ≤ 2ζ(m)− 1, (3.16)

where the bounding constant C > 0 is independent of m. The detailed proof of (3.16) will be given
in the appendix.

As a result, the ζ(m)th order leading principal submatrix of B(ζ(m))(m) can be looked upon as
a perturbation of a symmetric positive definite matrix, which is also congruent to a ζ(m)-th order
Hilbert matrix. Hence this lemma is proved.

For many popular RKDG methods, we do not need to make the above discussion in order to find
out the above important information for each m. The stability performance can be quickly judged
by the following quantity

ψr =

{
α̃r+2(1)− α̃r+1(1) if r is even,

α̃r+1(1), if r is odd,
(3.17)

when it is not equal to zero.

Remark 3.1 Note that α̃r+1(1) 6= 0 for the rth order RKDG methods. Hence ψr 6= 0 always holds
for odd r. However, it may happen that ψr = 0 for even r. If so, the matrix transferring process for
m = 1 is needed. In the following we will not pay more attention to this case.

Proposition 3.4 Assume ψr 6= 0. There holds ζ = b(r + 2)/2c and (−1)ζψr · a(ζ)
ζζ (1) > 0.

Proof: By means of ez =
∑

i≥0
1
i!z

i, it follows from Lemma 2.2 that

p(1)(z) = ez + α̃r+1(1)zr+1 + α̃r+2(1)zr+2 + · · · ,

which also implies

p(1)(z)p(1)(−z) = 1 + [e−z + (−1)r+1ez]α̃r+1(1)zr+1 + [e−z + (−1)r+2ez]α̃r+2(1)zr+2 + · · ·
= 1 + α̃r+1(1)[(−1)r+1 + 1]zr+1 + [α̃r+1(1)− α̃r+2(1)][(−1)r+1 − 1]zr+2 + · · · .

Comparing this identity with (3.9), we are able to prove this proposition.
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Proposition 3.5 Let m? ∈ Z+ be the integer stated in Proposition 3.3, and assume ψr 6= 0. Then
for odd r we have m? = 1, and for even r we have

m? = min

{
m ∈ Z+ :

[(r/2)!]2

(r + 1)!r!
+

1

mr
α̃r+1(1)(−1)

r
2 > 0

}
. (3.18)

Proof: It follows from Propositions 3.2 and 3.4 that

b(r + 1)/2c ≤ ρ(m) ≤ ζ(m) = ζ = b(r + 2)/2c.

For odd r, this conclusion implies m? = 1 since b(r+1)/2c = b(r+2)/2c. For even r, this also implies
that ρ(m) ≥ ζ − 1.

Hence, to achieve ρ(m) = ζ = r/2+1 for even r, we only need to ensure det{b(ζ)ij (m)}0≤i,j≤ζ−1 > 0.

Note that i+ j+ 1 > r happens only when i = j = ζ− 1. Therefore, in (3.15) there holds b̃
(ζ)
ij (m) = 0

almost everywhere, except

b̃
(ζ)
ζ−1,ζ−1(m) = (−1)ζ−1α̃2ζ−1(m) =

1

mr
α̃r+1(1)(−1)

r
2 .

Note that Lemma 2.2 is used at the last step. By the formulation for the determinants of Hilbert
matrices [11], we have

det{b(ζ)ij }0≤i,j≤ζ = [2α2
0(m)]ζ

[1!2! · · · (ζ − 2)!]2

1!2! · · · (2ζ − 3)!

{
[(r/2)!]2

(r + 1)!r!
+

1

mr
α̃r+1(1)(−1)

r
2

}
.

For more details to get this equality, please refer to [37]. We have now completed the proof of this
proposition.

Remark 3.2 There holds α̃r+1(1) = −1/(r + 1)! for the RKDG(r, r, k) method. Proposition 3.5
shows m? = 1 for r 6≡ 0 (mod 4), and m? = 2 for r ≡ 0 (mod 4).

3.2 Stability conclusions

In this subsection we would like to point out three kinds of stability performance for those RKDG
methods satisfying ψr 6= 0.

Following the line of analysis in [37,38], we can have the following extending conclusions. Propo-
sitions 3.3 and 3.1 imply ρ(m) = ζ(m) = ζ for m ≥ m?. Using the relationship (2.10) among the
temporal differences of stage solutions, as well as the weak boundedness of the DG discretization (see
Lemma 2.1), we can conclude for any 0 ≤ i ≤ j ≤ ms that

‖Dj(m)un‖L2(I) ≤ C(m)λj−i ‖Di(m)un‖L2(I) , (3.19)

where the bounding constant C(m) > 0 is independent of n, h, τ and u. This, together with the
Cauchy-Schwarz inequality, yields

TM(ζ) ≤
[
a

(ζ)
ζζ (m) +Qm(λ)

]
‖Dζ(m)un‖2L2(I) ,

where λ = |β|τh−1 is the CFL number. Here and below Qm(λ) represents a generic polynomial
satisfying Qm(0) = 0.
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Because the ζth order leading principal submatrix of B(ζ)(m) is symmetric positive definite, its
smallest eigenvalue, denoted by ε(m), is positive. By the previous two conclusions in Lemma 2.1, and
the second inverse inequality in (2.3), we get

SP(ζ) ≤ −1

2
mτβε(m)

(
θ − 1

2

) ∑
0≤`≤ms−1

‖[[D`(m)un]]‖2L2(Γh) + ε−1(m)Qm(λ) ‖Dζ(m)un‖2L2(I) ,

where the Cauchy-Schwarz inequality and Young’s inequality are also used. Here the first term on
the right-hand side of SP(ζ) explicitly shows the stability mechanism of the DG discretization.

Summing up the above conclusions, we have

[α0(m)]2
[ ∥∥un+m

∥∥2

L2(I)
− ‖un‖2L2(I)

]
≤
[
a

(ζ)
ζζ (m) +Qm(λ)

]
‖Dζ(m)un‖2L2(I) , (3.20)

for any m ≥ m?. For more details, please refer to [37,38].

Theorem 3.1 If (−1)br/2c+1ψr < 0, the RKDG(s, r, k) method has the strong (boundedness) stability.
That is, there exists an integer m? ∈ Z+, such that

‖un‖L2(I) ≤
∥∥u0
∥∥
L2(I)

, n ≥ m?,

provided the CFL number λ = |β|τh−1 is smaller than a certain constant. Moreover, if m? = 1 is
admitted, the monotonicity stability is achieved, namely,∥∥un+1

∥∥
L2(I)

≤ ‖un‖L2(I) , n ≥ 0.

Proof: Since (−1)br/2c+1ψr < 0, Proposition 3.4 implies a
(ζ)
ζζ (m) < 0. It follows from (3.20) that∥∥un+m

∥∥2

L2(I)
≤ ‖un‖2L2(I)

provided λ ≤ λmax(m). If m? = 1, this obviously implies the monotonicity stability. If m? > 1,
we take m = m?,m? + 1, . . . , 2m? − 1, and get the strong (boundedness) stability. We have now
completed the proof of this theorem.

Theorem 3.2 If (−1)br/2c+1ψr > 0, the RKDG(s, r, k) method has the weak(γ) stability with

γ = 2b(r + 2)/2c.

That is, there exists a bounding constant C > 0 depending on the final time T and independent of u,
such that

‖un‖L2(I) ≤ C
∥∥u0
∥∥
L2(I)

, n ≥ 0,

provided that the time step satisfies a strong restriction τ = O(hγ/(γ−1)).

Proof: Since (−1)br/2c+1ψr > 0, Proposition 3.4 implies a
(ζ)
ζζ (m?) > 0. It follows from (3.20) that

[α0(m?)]
2
[ ∥∥un+m?

∥∥2

L2(I)
− ‖un‖2L2(I)

]
≤ C(m?)λ

2ζ ‖un‖2L2(I) ,
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where the bounding constant C(m?) > 0 is independent of n, h and τ . An application of Gronwall’s
inequality gives us this theorem for n ≡ 0 (mod m?). Using (3.19) and the triangle inequality, we
can easily see that ∥∥un+κ

∥∥
L2(I)

≤ C(m?) ‖un‖L2(I) , 0 ≤ κ ≤ m? − 1,

where the bounding constant C(m?) > 0 is also independent of n, h, τ and u. We can then complete
the proof of this theorem by collecting the above conclusions.

In practice, the study on the stability under a suitable CFL condition is extremely important.
For the piecewise polynomials of lower degree, we have the following theorem.

Theorem 3.3 For the RKDG(s, r, k) method, some improved stability holds for the piecewise poly-
nomials of lower degree.

1. There holds the monotonicity stability provided k ≤ br/2c − 1;

2. There holds the strong (boundedness) stability provided k ≤ br/2c. If m? = 1 is admitted, the
strong (boundedness) stability is improved to be the monotonicity stability.

Proof: Recalling the result in [38, Theorem 5.1] that the RKDG(ms, r, k) method has the mono-
tonicity stability for k ≤ ρ(m) − 1, where the jump’s square on element endpoints (the stability
mechanism of the semi-discrete DG method) plays an important role. As a corollary of Propositions
3.1 through 3.3, we can complete the proof of this theorem.

Theorem 3.3 implies that the RKDG(s, r, k) method always has the L2-norm stability under a
suitable CFL condition, if r ≥ 2k + 1. It is good for the superconvergence study below.

To conclude this section, the L2-norm stability results for the RKDG(s, r, k) method [23] are listed
in Table 3.1, where s = r or s = r + 1. They are given by Theorems 3.1 through 3.3.

Table 3.1: Stability results for the RKDG(r, r, k) and RKDG(r + 1, r, k) methods

r (mod 4) 1 2 3 0

stability for k ≥ 0 weak(r + 1) weak(r + 2) monotonicity strong, m? = 2

strong for k ≤ br/2c br/2c ∞ ∞
monotonicity for k ≤ br/2c br/2c ∞ br/2c − 1

4 Supraconvergence analysis

In this section we devote to establishing the supraconvergence property of the RKDG method, starting
from the stability result in the previous section. The main tools are the reference functions and the
technique of correction functions at different time stages.

For the convenience of notations, in what follows we would like to use the notation C to denote
those generic constants independent of n, h, τ, u, and U .

4.1 Elemental analysis process

Following [37] we set up an elemental analysis process on the error estimate for the fully-discrete
RKDG method.
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4.1.1 A general stability

The stability results in Theorems 3.1 through 3.3 can be extended to the nonhomogeneous problem.
For simplicity of notations, the numerical solution is still denoted by u. Similarly as (2.6), at each
time-marching there holds

(un,`+1, v) =
∑

0≤κ≤`

{
c`κ(un,κ, v) + τd`κ

[
H(un,κ, v) + (fn,κ, v)

]}
, ∀v ∈ Vh, (4.1)

for ` = 0, 1, . . . , s− 1. Here fn,` is the given source term.
Along the same line as the discussion for the homogeneous problem, we can easily obtain the

following lemma. To shorten the length of this paper, the proof is omitted.

Lemma 4.1 Under the temporal-spatial condition as stated in Theorems 3.1 through 3.3, there holds

‖un‖2L2(I) ≤ C

∥∥u0
∥∥2

L2(I)
+ τ

∑
0≤κ<n

∑
0≤`<s

∥∥∥fκ,`∥∥∥2

L2(I)

 , (4.2)

where the bounding constant C > 0 is independent of n, h, τ, f , and u.

4.1.2 The reference functions

We now extend the idea in [37] and define a series of reference functions. Below the arguments x and
t may be dropped if it does not cause confusion.

Given an integer σ satisfying 0 ≤ σ ≤ r, and let U
(0)
[σ] = U be the exact solution of (1.1). The

others are inductively defined. Let us assume for the sake of argument that the previous reference

functions U
(κ)
[σ] , for 0 ≤ κ ≤ `, have been defined well and expanded in the form

U
(κ)
[σ] =

∑
0≤i≤min(σ,κ)

γ
(κ)
i[σ]τ

i∂itU, (4.3)

where the parameter γ
(κ)
i[σ] has been known. Paralleled to the stage marching of the RKDG(s, r, k)

method, we define an auxiliary reference function

Ũ
(`+1)
[σ] =

∑
0≤κ≤`

[
c`κU

(κ)
[σ] − τd`κβ∂xU

(κ)
[σ]

]
=

∑
0≤i≤min(σ+1,`+1)

γ
(`+1)
i[σ] τ i∂itU, (4.4)

where the expansion results from the simple substitution of (4.3). The detailed formulations to

compute the parameter γ
(`+1)
i[σ] are omitted here; please refer to [37] for more details. By cutting off

the term involving the (σ+1)th order time derivative – if it exists – we define the subsequent reference
function

U
(`+1)
[σ] =

∑
0≤i≤min(σ,`+1)

γ
(`+1)
i[σ] τ i∂itU. (4.5)

Letting ` go through the set {0, 1, . . . , s− 2}, we can define all reference functions.

Proposition 4.1 For 0 ≤ ` ≤ s− 1, there hold γ
(`)
0[σ] = 1 and γ

(`)
i[σ] = γ

(`)
i[r] if 0 ≤ i ≤ min(σ, `).
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For the convenience of notations, we denote U
(s)
[σ] (x, t) = U(x, t + τ) in this paper. Since U0 ∈

Hr+1(I), the exact solution U(x, t) = U0(x − βt) is smooth enough such that the above reference
functions are all continuous in space, due to the Sobolev embedding theorem [1]. After some manip-
ulations that all Taylor expansions in time are only done up to the (σ + 1)-th time derivatives, it is
easy to see that

U
(`+1)
[σ] =

∑
0≤κ≤`

[
c`κU

(κ)
[σ] − τd`κβ∂xU

(κ)
[σ]

]
+ τ%

(`)
[σ], 0 ≤ ` ≤ s− 1, (4.6)

where %
(`)
[σ] are the truncation errors in time, bounded by∥∥∥%(`)

[σ]

∥∥∥
L∞(Hi(I))

≤ C
∥∥∂σ+1

t U
∥∥
L∞(Hi(I))

τσ ≤ C ‖U0‖Hi+σ+1(I) τ
σ, i ≥ 0. (4.7)

Here L∞(H i(I)) denotes the space-time Sobolev space in which the H i(I)-norm at any time t ∈ [0, T ]

is uniformly bounded. Actually, there holds %
(`)
[σ] = 0 for ` ≤ min(σ − 1, s− 2).

4.1.3 The error decomposition and error estimate

The following compact notations will be used for convenience. Let zn,` form a series of solutions at
every time stage, and denote

zn,`c =
1

τ

[
zn,`+1 −

∑
0≤κ≤`

c`κz
n,κ
]
, zn,`d =

∑
0≤κ≤`

d`κz
n,κ, (4.8)

for any ` = 0, 1, . . . , s− 1, and n under consideration. Also we denote zn,s = zn+1,0.
Denote by en,` = un,` − Un,` the stage error, where

Un,` ≡ Un,`[r] = U
(`)
[r] (x, tn), 0 ≤ ` ≤ s− 1, (4.9)

is the reference function at each time stage.
Let χn,` ∈ Vh be arbitrary series of functions defined at time stages. They will be determined for

different purposes. As the standard analysis in the finite element method, we define

ξn,` = un,` − χn,` ∈ Vh, and ηn,` = Un,` − χn,`, (4.10)

which implies the error decomposition en,` = ξn,` − ηn,`.
Letting t = tn in (4.6), we can get a group of variational forms similar as in the RKDG method.

Subtracting them from each other and using the error decomposition, we can achieve the following
error equation

(ξn,`+1, v) =
∑

0≤κ≤`

{
c`κ(ξn,κ, v) + τd`κ

[
H(ξn,κ, v) + (Fn,κ, v)

]}
, ∀v ∈ Vh, (4.11)

for ` = 0, 1, . . . , s−1. Here (Fn,`, v) is the residual functional at every time stage, which is recursively
defined by

d``(F
n,`, v) = (ηn,`c , v)−H(ηn,`d , v)− (%n,`[r] , v)︸ ︷︷ ︸

Zn,`(v)

−
∑

0≤κ≤`−1

d`κ(Fn,κ, v), (4.12)

where %n,`[r] = %
(`)
[r] (x, t

n), and the summation in (4.12) is equal to zero if ` = 0.

By employing Lemma 4.1 on (4.11), we have the starting point of our estimate. The proof is easy,
so is omitted here.
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Lemma 4.2 Assume that the RKDG(s, r, k) method has the L2-norm stability under suitable temporal-
spatial condition, as stated in Theorems 3.1 through 3.3. Then we have

‖ξn‖2L2(I) ≤ C
{∥∥ξ0

∥∥2

L2(I)
+ τ

∑
0≤κ<n

∑
0≤`<s

∥∥∥Zκ,`∥∥∥2 }
, (4.13)

where
∥∥Zκ,`∥∥ = sup06=v∈Vh Z

κ,`(v)/ ‖v‖L2(I), and the bounding constant C > 0 is independent of
n, h, τ, u and U .

4.2 The supraconvergence property

In this subsection we carefully take χn,` to arrive at the expected order of ‖ξn‖L2(I) and ‖ξnx‖L2(I), in
the framework of Lemma 4.2.

4.2.1 Two projections

In this paper we employ the L2 projection and the generalized Gauss-Radau (GGR) projection [8],
respectively denoted by Ph = Pkh and Gh = Gk

h. The first one is locally defined, and the second one
is globally defined except when θ = 1.

If there is no confusion, the superscript k is dropped. For any w ∈ L2(I), the projection Phw ∈ Vh
satisfies ∫

Ij

(P⊥hw)vdx = 0, ∀v ∈ P k(Ij), j = 1, 2, . . . , J, (4.14)

where P⊥hw = w − Phw is the projection error. It is easy to get that [12]∥∥∥P⊥hw∥∥∥
L2(I)

+ h
∥∥∥P⊥hw∥∥∥

H1(I)
≤ ChR ‖w‖HR(I) , 1 ≤ R ≤ k + 1. (4.15)

For any w ∈ H1(Th), the projection Ghw ∈ Vh is defined by∫
Ij

(G⊥hw)vdx = 0, ∀v ∈ P k−1(Ij), {{G⊥hw}}
(θ)

j+ 1
2

= 0, j = 1, 2 . . . , J, (4.16)

where G⊥hw = w−Ghw is the projection error. Here H1(Th) denotes the space including all piecewise
H1-functions. The main advantage of the GGR projection is the exact collocation of the numerical
flux on element boundary points. As a result, we have

H(G⊥hw, v) = 0, v ∈ Vh. (4.17)

Moreover, it is proved in [8] that∥∥∥G⊥hw∥∥∥
L2(I)

+ h
∥∥∥G⊥hw∥∥∥

H1(I)
≤ ChR ‖w‖HR(I) , 1 ≤ R ≤ k + 1. (4.18)

4.2.2 The technique of correction functions

Given any integer p ≥ 0, the pth correction function [2] for any function w ∈ H1(Th) is defined by

Fpw = (−GhD−1
h )p(Ph −Gh)w ∈ Vh. (4.19)
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Here D−1
h is the antiderivative in each element, defined by

D−1
h z(x) =

∫ x

xj−1/2

z(x′)dx′, x ∈ Ij . (4.20)

Below we present some elemental properties about (4.19), similar as those in [2].

Lemma 4.3 Let 0 ≤ p ≤ k. There exists a constant C > 0 independent of h and w, such that

‖Fpw‖L2(I) ≤ Ch
p ‖(Ph −Gh)w‖L2(I) , w ∈ H1(Th). (4.21)

As a corollary, Fp is a linear and continuous operator from H1(Th) to Vh.

Proof: We only need to prove (4.21) for p ≥ 1, since it is trivial for p = 0.
Using the triangle inequality, the approximation property (4.18) of the GGR projection, and the

first inverse inequality in (2.3), we have for any function z ∈ V k+1
h that

‖Ghz‖L2(I) ≤ ‖z‖L2(I) +
∥∥∥G⊥h z∥∥∥

L2(I)
≤ ‖z‖L2(I) + Ch ‖z‖H1(Th) ≤ C ‖z‖L2(I) .

This, together with the fact that D−1
h Fp−1w ∈ V k+1

h , yields

‖Fpw‖L2(I) =
∥∥−GhD−1

h Fp−1w
∥∥
L2(I)

≤ C
∥∥D−1

h Fp−1w
∥∥
L2(I)

≤ Ch ‖Fp−1w‖L2(I) ,

where the Holder’s inequality is used element by element at the last step. As a result, we can complete
the proof of this lemma by induction.

Lemma 4.4 Let 1 ≤ p ≤ k and w ∈ H1(Th). There holds

1. the exact collocation of the numerical flux, namely, {{Fpw}}(θ)j+1/2 = 0 for j = 1, 2, . . . , J ;

2. the recurrence relationship, namely, (Fpw, vx) = (Fp−1w, v) for any v ∈ Vh;

As a corollary of the above results, we have H(Fpw, v) = β(Fp−1w, v) for any v ∈ Vh.

Proof: By the definition of antiderivative operator, it is trivial to see (D−1
h Fp−1w)+

j+1/2 = 0. Then
an integration by parts yields∫

Ij

Fp−1wdx =

∫
Ij

(−GhD−1
h )Fp−2wdx = −

∫
Ij

D−1
h Fp−2wdx =

∫
Ij

(x− xj+ 1
2
)Fp−2wdx.

Successively using this identity we have

(D−1
h Fp−1w)−

j+ 1
2

=

∫
Ij

Fp−1wdx = · · · = 1

(p− 1)!

∫
Ij

(x− xj+ 1
2
)p−1F0wdx = 0,

where the definitions of the two projections are used at the last step since p− 1 ≤ k − 1.
Now we prove two elemental results by using the above statements (D−1

h Fp−1w)±j+1/2 = 0. The
definition of the GGR projection implies

{{Fpw}}(θ)j+ 1
2

= {{−GhD−1
h Fp−1w}}(θ)j+ 1

2

= {{−D−1
h Fp−1w}}(θ)j+ 1

2

= 0, (4.22)

and reduces for any v ∈ Vh that

(Fpw, vx) = ((−GhD−1
h )Fp−1w, vx) = −(D−1

h Fp−1w, vx) = (Fp−1w, v), (4.23)

where an integration by parts in each element is used. Now we have completed the proof of this
lemma.
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Lemma 4.5 Let 1 ≤ p ≤ k and w ∈ H1(Th). There holds (Fp−1w, v) = 0 for any v ∈ V k−p
h .

Proof: Repeatedly applying (4.23), we have (Fp−1w, v) = (Fkw, ∂k−p+1
x v) = 0 for any v ∈ V k

h . This
completes the proof of this lemma.

Remark 4.1 The antiderivative operator in this paper is slightly different from that in [2, 7]. The
multiplier (hj/2)−1 is dropped in (4.20). This minor modification is very important to correctly yield
Lemma 4.4 no matter whether the mesh is uniform or not.

4.2.3 The supraconvergence of the solution

Let q be an integer satisfying 0 ≤ q ≤ k, to denote the total number of correction manipulations. At
each time stage, in (4.10) we take

χn,` = GhU
n,` −

∑
1≤p≤q

Fp(−∂x)pWn,` ∈ Vh, (4.24)

where both Un,` = U
(`)
[r] (x, tn) and Wn,` = U

(`)
[min(q,r)](x, t

n) are the reference functions. The detailed

definition in subsection 4.1.2 clearly shows that Wn,` is truncated from Un,`. If q = 0, the summation
in (4.24) is understood to be zero and there is no correction manipulation. It is worthy mentioning
that the introduction of Wn,` is very important to help us obtain the superconvergence results under
a weak smoothness assumption of the exact solution.

Lemma 4.6 Assume τ/h is upper bounded by a constant. With the choice (4.24), we have∥∥∥Zn,`∥∥∥ ≤ C ‖U0‖Hmax(k+q+2,r+1)(I) (hk+q+1 + τ r), (4.25)

for ` = 0, 1, . . . , s− 1, where the bounding constant C > 0 is independent of n, `, h, τ, u and U .

Proof: Substituting (4.24) and (4.10) into the definition of Zn,`(v), we have Zn,`(v) =
∑

0≤p≤q Z
n,`
p (v),

where

Zn,`0 (v) =
(
G⊥hUn,`c , v

)
−H

(
G⊥hU

n,`
d , v

)
−
(
%n,`[r] , v

)
,

Zn,`p (v) =
(
Fp(−∂x)pWn,`

c , v
)
−H

(
Fp(−∂x)pWn,`

d , v
)
, 1 ≤ p ≤ q.

Note that the term Zn,`p (v) does not exist if q = 0. Owing to (4.17), it follows from F0 = G⊥h − P⊥h
and the definitions of the two projections that

Zn,`0 (v) =
(
F0U

n,`
c , v

)
−
(
%n,`[r] , v

)
.

Applying the last conclusion in Lemma 4.4 for the second term in Zn,`p (v), we get

Zn,`p (v) =
(
Fp(−∂x)pWn,`

c , v
)
− β

(
Fp−1(−∂x)pWn,`

d , v
)

=
(
Fp(−∂x)pWn,`

c , v
)
−
(
Fp−1(−∂x)p−1Wn,`

c , v
)

+
(
Fp−1(−∂x)p−1%n,`[min(q,r)], v

)
,

for 1 ≤ p ≤ q, where the equality (4.6) with σ = min(q, r) is used.
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Denote V n,`
c = Un,`c −Wn,`

c . Summing up the above identities we have

Zn,`(v) =
(
Fq(−∂x)qWn,`

c , v
)

+
(
F0V

n,`
c , v

)
+

∑
0≤p≤q−1

(
Fp(−∂x)p%n,`[min(q,r)], v

)
−
(
%n,`[r] , v

)
,

which implies ∥∥∥Zn,`∥∥∥ ≤ ∥∥∥Fq(−∂x)qWn,`
c

∥∥∥
L2(I)

+
∥∥∥F0V

n,`
c

∥∥∥
L2(I)

+
∑

0≤p≤q−1

∥∥∥Fp(−∂x)p%n,`[min(q,r)]

∥∥∥
L2(I)

+
∥∥∥%n,`[r]

∥∥∥
L2(I)

.
(4.26)

Below we are going to separately estimate each term on the right-hand side.

Recalling that γ
(`)
0[σ] = 1 and

∑
0≤κ≤` c`κ = 1 hold for ` = 0, 1, . . . , s− 1. As a result, Wn,`

c can be
split into two kinds of terms, say,

Wn,`
c,1 =

∑
1≤i≤min(q,r)

γ̃
(`)
i τ i−1∂itU

n, and Wn,`
c,2 =

Un+1 − Un

τ
,

where γ̃
(`)
i are some known constants. Note that the term Wn,`

c,2 emerges only for ` = s−1. Successively
applying Lemma 4.3 and the approximation property of the two projections, we get∥∥∥Fq(−∂x)qWn,`

c,1

∥∥∥
L2(I)

≤ Chq
∑

1≤i≤min(q,r)

τ i−1
∥∥(Ph −Gh)(−∂x)q∂itU

n
∥∥
L2(I)

≤ Chq
∑

1≤i≤min(q,r)

τ i−1hk+2−i ∥∥(−∂x)q∂itU
n
∥∥
Hk+2−i(I)

≤ Chk+q+1 ‖U0‖Hk+q+2(I) ,

(4.27)

since U(x, t) = U0(x− βt) and τ/h is bounded. Similarly, we have∥∥∥Fq(−∂x)qWn,`
c,2

∥∥∥
L2(I)

≤ Chqτ−1

∫ tn+1

tn
‖(Ph −Gh)(−∂x)q∂tU(x, t)‖L2(I) dt

≤ Chk+q+1 ‖U0‖Hk+q+2(I) .

(4.28)

Note that V n,`
c comes from the cutting-off manipulation of reference functions. If q ≥ r, it is trivial

to see that V n,`
c = 0 and hence

∥∥∥F0V
n,`

c

∥∥∥
L2(I)

= 0. Even if q < r, noticing Proposition 4.1, along the

same line as for (4.27) we can get∥∥∥F0V
n,`

c

∥∥∥
L2(I)

≤ C
∑

q+1≤i≤r
τ i−1

∥∥(Ph −Gh)∂itU
n
∥∥
L2(I)

≤ C
∑

q+1≤i≤r
τ i−1hmax(k+q+2−i,1)

∥∥∂itUn∥∥Hmax(k+q+2−i,1)(I)

≤ Chk+q+1 ‖U0‖Hmax(k+q+2,r+1)(I) .

(4.29)

For 0 ≤ p ≤ q − 1, we can similarly get∥∥∥Fp(−∂x)p%n,`[min(q,r)]

∥∥∥
L2(I)

≤ Chphk+1−p
∥∥∥(−∂x)p%n,`[min(q,r)]

∥∥∥
Hk+1−p(I)

≤ Chphk+1−pτmin(q,r) ‖U0‖Hk+min(q,r)+2(I) ≤ Ch
k+1(hq + τ r) ‖U0‖Hk+q+2(I) ,

(4.30)
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where (4.7) is used at the second step. Also (4.7) implies∥∥∥%n,`[r]

∥∥∥
L2(I)

≤ Cτ r ‖U0‖Hr+1(I) . (4.31)

Summing up the above inequalities, we have completed the proof of this lemma.

Theorem 4.1 Suppose the time step is taken to ensure the L2-norm stability of the RKDG(s, r, k)
method, as stated in Theorems 3.1 through 3.3. For any integer q satisfying 0 ≤ q ≤ k, let

u0 = GhU0 −
∑

1≤p≤qnt

Fp(−∂x)pU0 (4.32)

be the initial solution of the RKDG method, where qnt is an integer satisfying q − 1 ≤ qnt ≤ k. Then
we have

‖ξn‖L2(I) ≤ C ‖U0‖Hmax(k+q+2,r+1)(I) (hk+q+1 + τ r), (4.33)

where the bounding constant C > 0 is independent of n, h, τ, u and U .

Proof: As a corollary of Lemmas 4.2 and 4.6, we have completed the proof of this theorem since∥∥ξ0
∥∥
L2(I)

≤
∑
q≤p≤k

‖Fp(−∂x)pU0‖L2(I) ≤
∑
q≤p≤k

Chphk+1+q−p ‖U0‖Hp+k+1+q−p(I)

≤ Chk+1+q ‖U0‖Hk+1+q(I) .

(4.34)

At the second step, we have used Lemma 4.3 and the approximation properties of the two projections.

Remark 4.2 Taking q = k in (4.33), the highest supraconvergence order 2k + 1 in space is achieved
for the solution. It will be verified by the numerical experiments.

4.2.4 Supraconvergence with respect to the derivative

Directly applying the first inverse inequality in (2.3), we can easily obtain from Theorem 4.1 that

‖ξnx‖L2(I) ≤ C ‖U0‖Hmax(k+q+2,r+1)(I) (hk+q + h−1τ r).

It seems that one order of accuracy is lost in both space and time. However, the numerical results do
not show this phenomenon. In the following lemma we give a theoretical support.

Theorem 4.2 Suppose the time step is taken to ensure the L2-norm stability of the RKDG(s, r, k)
method, as stated in Theorems 3.1 through 3.3. For any integer q satisfying 0 ≤ q ≤ k, let (4.32) be
the initial solution of RKDG method with q ≤ qnt ≤ k. Then we have

‖ξnx‖L2(I) ≤ C ‖U0‖Hmax(k+q+3,r+2)(I) (hk+q+1 + τ r), (4.35)

where the bounding constant C > 0 is independent of n, h, τ, u and U .
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Proof: Let Π = −βUx. Obviously, it satisfies the auxiliary problem

Πt + βΠx = 0, x ∈ I = (0, 1), t ∈ (0, T ], (4.36)

which is equipped with the periodic boundary condition and the initial solution Π(x, 0) = Π0(x).
For any function w ∈ Vh, there exists a unique function w̃ ∈ Vh such that (w̃, v) = H(w, v) holds

for any v ∈ Vh. Define
w̃ = Hhw.

It is easy to see that Hh is a linear map from Vh to itself.
Let ũn,` = Hhun,`. It follows from (2.6) that un,`+1 =

∑
0≤κ≤`[c`κu

n,κ + τd`κũ
n,κ]. Making a

left-multiplication of Hh yields

(ũn,`+1, v) =
∑

0≤κ≤`

[
c`κ(ũn,κ, v) + τd`κH(ũn,κ, v)

]
, ` = 0, 1, . . . , s− 1, (4.37)

for any n under consideration. This can be viewed as the RKDG(s, r, k) method to solve (4.36), with
the initial solution ũ0 = Hhu0. Along the same line as that for Theorem 4.1, we have∥∥∥ξ̃n∥∥∥

L2(I)
≤ C

∥∥∥ξ̃0
∥∥∥
L2(I)

+ C ‖Π0‖Hmax(k+q+2,r+1)(I) (hk+q+1 + τ r). (4.38)

The main difference comes from the initial solution. Here

ξ̃n,` = ũn,` −GhΠn,`
[r] +

∑
1≤p≤q

Fp(−∂x)pΠn,`
[min(q,r)] ∈ Vh, (4.39)

is analogously defined as for ξn,`, and the including reference functions are defined along the same
way as that in subsection 4.1.2.

Due to the initial setting ũ0 = Hhu0, a tedious manipulation yields∥∥∥ξ̃0
∥∥∥
L2(I)

≤ Chk+1+q ‖U0‖Hk+q+2(I) . (4.40)

The detailed process will be given in the appendix.
To finish the proof of this theorem, we need to set up the relationship between ξnx and ξ̃n. By the

definition of ξn,`, we know that

D1(1)ξn = D1(1)un −Gh

(
D1(1)Un[r]

)
+
∑

1≤p≤q
Fp(−∂x)p

(
D1(1)Un[min(q,r)]

)
. (4.41)

By (2.10) there holds D1(1)un = τHhun = τ ũn. By the definition of the reference functions (see
subsection 4.1.2) we have D1(1)Un[r] = −τβUnx and D1(1)Un[min(q,r)] = −τβUnx for q ≥ 1. A comparison

with (4.41) and (4.39) yields for q ≥ 1 that

τ−1D1(1)ξn = ξ̃n. (4.42)

In fact, this conclusion also holds for q = 0, because both summations in (4.41) and (4.39) vanish at
this status. Substituting the identity (4.42) into the error equation (4.11) with ` = 0, we have

H(ξn, v) = (ξ̃n, v)− d−1
00 Z

n,0(v), ∀v ∈ Vh. (4.43)

It follows from [36, Lemma 2.3] that

‖ξnx‖L2(I) ≤ C
∥∥∥ξ̃n∥∥∥

L2(I)
+ C

∥∥Zn,0∥∥ . (4.44)

Together with (4.38), (4.40) and Lemma 4.6, this completes the proof of this theorem.
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Remark 4.3 Taking q = k in (4.35), the highest supraconvergence order 2k + 1 in space is achieved
for the derivative of solutions. It will be verified by the numerical experiments.

5 Superconvergence analysis at discrete points

In this section we devote to establishing the superconvergence results on some discrete points, based
on the supraconvergence analysis in section 4.

5.1 Notations and conclusions

Let Li(x̂) be the standard Legendre polynomial of degree i on the reference element [−1, 1], and thus

Lj,i(x) = Li(x̂) = Li (2(x− xj)/hj) , i ≥ 0,

is the Legendre polynomial of degree i in Ij , which is scaled from Li(x̂).
Associated with the mesh and the upwind-biased parameter, we are able to seek a group of

parameters {ϑj}1≤j≤J by the following system of linear equations

θhk+1
j ϑj + (−1)k(1− θ)hk+1

j+1ϑj+1 = θhk+1
j − (−1)k(1− θ)hk+1

j+1 , (5.1)

where j = 1, 2, . . . , J . The existence and uniqueness can be verified since the determinant is not equal
to zero, due to θ 6= 1/2. Similar system has been discussed in [8]. Then the parameter-dependent
Radau polynomial of degree k + 1 is defined element by element, namely,

Rj,k+1(x) = Lj,k+1(x)− ϑjLj,k(x), x ∈ Ij . (5.2)

Its roots in Ij are denoted by rij for 1 ≤ i ≤ nR
j , and its extrema in Ij are denoted by lij for 1 ≤ i ≤ nL

j .

Almost the same as that in [2, Lemma 3.1], we have nR
j = k + 1 if |ϑj | < 1, and nR

j = k otherwise.

By Rolle’s theorem, we know nL
j ≥ nR

j − 1.

Remark 5.1 When the purely upwind flux (θ = 1) is used, there always holds ϑj = 1 and hence
Rj,k+1(x) is the right Radau polynomial in each element. When the upwind-biased flux (θ 6= 1) is
used together with the uniform mesh, we have

ϑj ≡
θ − (−1)k(1− θ)
θ + (−1)k(1− θ)

> 0.

However, it may happen ϑj ≤ 0 for the upwind-biased flux coupled with the non-uniform mesh. To
show that, we give a numerical example in Table 5.1, where the non-uniform mesh is obtained by
random perturbations of a uniform mesh with J elements.

Table 5.1: The proportion of ϑj ≤ 0 for the upwind-biased flux coupled with the non-uniform meshes:
k = 2 and θ = 0.75.

J = 1000 J = 2000 J = 4000 J = 8000 J = 16000

10% perturbation 9.318% 9.022% 9.199% 9.085% 9.139%

20% perturbation 25.513% 25.477% 25.449% 25.510% 25.471%
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Four types of discrete point sets are considered in this section. The first two sets are for the
element boundary points and the element midpoints, respectively denoted by

SB
h = Γh = {xj+ 1

2
, 1 ≤ j ≤ J}, SE

h = {xj , 1 ≤ j ≤ J}, (5.3)

where xj = (xj−1/2 + xj+1/2)/2 is the central point in Ij . The other two sets are for the roots and
extrema of the parameter-dependent Radau polynomials (5.2), namely,

SR
h = {rij : 1 ≤ j ≤ J, and 1 ≤ i ≤ nR

j }, SL
h = {lij : 1 ≤ j ≤ J, and 1 ≤ i ≤ nL

j }. (5.4)

Below the following notations are used. For any given function z, define discrete norms

|||{{z}}(θ)|||L2(SB
h ) =

 1

J

∑
1≤j≤J

|{{z}}(θ)
j+ 1

2

|2
 1

2

, |||z̄|||L2(SE
h ) =

 1

J

∑
1≤j≤J

|z̄j |2
 1

2

,

where z̄j is the cell average of z in Ij . Similarly, we define the discrete norm

|||z|||L2(SR
h ) =

 1

J

∑
1≤j≤J

 1

nR
j

∑
1≤i≤nR

j

|z(rij)|2




1
2

.

Similarly for |||z|||L2(SL
h ). Now we are ready to present the superconvergence property in the next

theorem.

Theorem 5.1 Assume that the RKDG(s, r, k) method has the L2-norm stability under suitable temporal-
spatial condition, as stated in Theorems 3.1 through 3.3. Let en = un(x)− U(x, tn) be the numerical
error at each time level.

1. Let (4.32) be the initial solution with k − 1 ≤ qnt ≤ k, then the numerical fluxes and the cell
averages are superconvergent, namely,

|||{{en}}(θ)|||L2(SB
h ) + |||ēn|||L2(SE

h ) ≤ C ‖U0‖Hmax(2k+2,r+1)(I) (h2k+1 + τ r).

2. Let (4.32) be the initial solution with 0 ≤ qnt ≤ k, then the solution is superconvergent at the
roots of the parameter-dependent Radau polynomial, namely,

|||en|||L2(SR
h ) ≤ C ‖U0‖Hmax(k+3,r+1)(I) (hk+2 + τ r),

and the derivative is superconvergent at the extrema of the parameter-dependent Radau polyno-
mial, namely,

|||enx|||L2(SL
h ) ≤ C ‖U0‖Hmax(k+3,r+2)(I) (hk+1 + τ r).

Note that the above bounding constant C > 0 is independent of n, h, τ, u and U .

In the next subsections we are going to prove this theorem based on the previous supraconvergence
results. Before that, we give here two remarks to conclude this subsection.

Remark 5.2 Theorem 5.1 indicates that the fully-discrete RKDG scheme preserves the superconver-
gence properties of the semi-discrete DG method. In order to not destroy the superconvergence order
in space, we have to use Runge–Kutta time-marching of enough high order. Numerical experiments
in section 7 will verify this statement.

Remark 5.3 Theorem 5.1 shows the superconvergence orders in the discrete L2-norm. However,
numerical experiments indicate the same order in the discrete L∞-norm. How to fill in this gap is
left for the future work.
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5.2 Superconvergence results on the average and the numerical flux

Now we take q = k in (4.24), and get

{{en}}(θ) = {{ξn}}(θ) − {{G⊥hUn}}(θ) −
∑

1≤p≤k
{{Fp(−∂x)pUn}}(θ) = {{ξn}}(θ),

due to the definition of the GGR projection (4.16) and the first property in Lemma 4.4. Applying
the second inverse inequality in (2.3) and Theorem 4.1 we have

|||{{en}}(θ)|||L2(SB
h ) ≤ C ‖ξ

n‖L2(I) ≤ C ‖U0‖Hmax(2k+2,r+1)(I) (h2k+1 + τ r). (5.5)

Analogously we have

ēn = ξ̄n −G⊥hUn −
∑

1≤p≤k
Fp(−∂x)pUn = ξ̄n −Fk(−∂x)kUn,

due to (4.16) with v = 1 and Lemma 4.5. Applying the triangle inequality and the Holder’s inequality,
we obtain

|||ēn|||L2(SE
h ) ≤ C ‖ξ

n‖L2(I) + C
∥∥∥Fk(−∂x)kUn

∥∥∥
L2(I)

≤ C ‖U0‖Hmax(2k+2,r+1)(I) (h2k+1 + τ r). (5.6)

At the last step, Theorem 4.1 is used for ‖ξn‖L2(I), and Lemma 4.3 and the approximation properties of

the two projections are used for
∥∥Fk(−∂x)kUn

∥∥
L2(I)

. We have now proved the first superconvergence

results stated in Theorem 5.1.

5.3 Superconvergence results on the solution and derivative

To do that, we define a local projection with respect to the parameter-dependent Radau polynomials.
This work is almost the same as that in [2], with a minor modification.

Let w ∈ H1(Th) be any given function. The projection Chw ∈ Vh is defined element by element.
It depends on whether ϑj is equal to zero or not. If ϑj 6= 0, it satisfies [2]∫

Ij

(C⊥hw)vdx = 0, ∀v ∈ Pk−1(Ij), and θj(C⊥hw)−
j+ 1

2

+ (1− θj)(C⊥hw)+
j− 1

2

= 0, (5.7)

where θj = (ϑj + 1)/2 for even k, and θj = (ϑ−1
j + 1)/2 for odd k. If ϑj = 0, it is just defined by the

standard L2-projection Phw in this element. Here C⊥hw = w − Chw is the projection error.
The projection Chw is well-defined. By the standard scaling argument, together with the Sobolev

embedding theorem and the Bramble-Hilbert lemma, we can easily prove that∥∥∥C⊥hw∥∥∥
L2(I)

+ h
∥∥∥C⊥hw∥∥∥

H1(I)
≤ ChR ‖w‖HR(I) , 1 ≤ R ≤ k + 1, (5.8)

no matter whether ϑj = 0 or not.

Lemma 5.1 There exists a bounding constant C > 0 independent of j, hj and w, such that∣∣∣C⊥hw(rij)
∣∣∣+ hj

∣∣∣(C⊥hw)x(lij)
∣∣∣ ≤ Chk+ 3

2
j ‖w‖Hk+2(Ij)

. (5.9)
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Proof: Along the same line as that for (5.8), we can prove this lemma by verifying C⊥hw(rij) = 0
and (C⊥hw)x(lij) = 0 for any w ∈ P k+1(Ij). Since C⊥hw = 0 holds for any w ∈ P k(Ij), we only need
to show

ChLj,k+1 = ϑjLj,k. (5.10)

If ϑj = 0, it is obviously true since Ch = Ph. If ϑj 6= 0, it has been clearly proved in [2]. This
completes the proof of this lemma.

Lemma 5.2 There exists a bounding constant C > 0 independent of h and w, such that

‖Ghw − Chw‖L2(I) ≤ Ch
k+2 ‖w‖Hk+2(I) . (5.11)

Proof: The proof is postponed into the appendix.

Lemma 5.3 There exists a bounding constant C > 0 independent of h and w, such that

|||G⊥hw|||L2(SR
h ) + h|||(G⊥hw)x|||L2(SL

h ) ≤ Ch
k+2 ‖w‖Hk+2(I) . (5.12)

Proof: Since the mesh is quasi-uniform, we have J−1 = O(h). Due to the third inverse inequity in
(2.3), there is a bounding constant C > 0 independent of h and w, such that

|||w|||L2(SR
h ) ≤ C

 1

J

∑
1≤j≤J

‖w‖2L∞(Ij)

 1
2

≤ C ‖w‖L2(I) , w ∈ Vh. (5.13)

This implies |||Chw −Ghw|||L2(SR
h ) ≤ C ‖Chw −Ghw‖L2(I). An application of the triangle inequity

reduces

|||G⊥hw|||L2(SR
h ) ≤ |||w − Chw|||L2(SR

h ) + |||Chw −Ghw|||L2(SR
h ) ≤ Ch

k+2 ‖w‖Hk+2(I) ,

where Lemmas 5.1 and 5.2 are used for each term at the last step. The remaining part can be proved
similarly, the details are omitted here.

Now we turn to prove the second conclusion in Theorem 5.1. Taking q = 1 in (4.24), we have

|||en|||L2(SR
h ) ≤ |||ξ

n|||L2(SR
h ) + |||G⊥hUn|||L2(SR

h ) + |||F1(−∂x)Un|||L2(SR
h ).

Using the inequality (5.13), together with Theorem 4.1 and Lemma 4.3, we obtain

|||ξn|||L2(SR
h ) ≤ C ‖ξ

n‖L2(I) ≤ C(hk+2 + τ r) ‖U0‖Hmax(k+3,r+1)(I) ,

|||F1(−∂x)Un|||L2(SR
h ) ≤ C ‖F1(−∂x)Un‖L2(I) ≤ Ch

k+2 ‖U0‖Hk+2(I) ,

where the approximation property of the two projections are also used. It follows from Lemma 5.3
that

|||G⊥hUn|||L2(SR
h ) ≤ Ch

k+2 ‖Un‖Hk+2(I) ≤ Ch
k+2 ‖U0‖Hk+2(I) .

Collecting up the above conclusions, we prove the estimate for |||en|||L2(SR
h ) in Theorem 5.1.

Along the similar line as before, we can bound |||enx|||L2(SL
h ) by using Theorem 4.2 with q = 0. We

have now completed the proof of Theorem 5.1.
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Remark 5.4 Under the stronger smoothness assumption on the exact solution, there holds∣∣∣C⊥hw(rij)
∣∣∣+ hj

∣∣∣(C⊥hw)x(lij)
∣∣∣ ≤ Chk+2

j ‖w‖Wk+2,∞(Ij)
,

and so on; see [2] for more details. These are beneficial for obtaining the superconvergence order in the
discrete L∞-norm for the semi-discrete DG method. However, it is difficult to get the expected order
for the RKDG method. If the third inverse inequality in (2.3) is used, an unsatisfying boundedness
like h−1/2τ r will emerge. We plan to address this difficulty in future work.

6 Byproduct: accuracy-enhancement of the post-processed solution

In this section, we consider the smoothness-increasing accuracy-conserving (SIAC) filter to obtain
superconvergence of a post-processed solution. Following [17], the filter on a uniform mesh is imple-
mented by the convolution of the numerical solution with the kernel function

K2k+1,k+1
h (x) =

1

h

∑
−k≤`≤k

c2k+1,k+1
` ϕ(k+1)

(x
h
− `
)
, (6.1)

where ϕ(k+1) is the B-spline function of order k + 1. The coefficients c2k+1,k+1
` are taken to ensure

that the kernel function reproduces polynomials of degree 2k by convolution.

Theorem 6.1 Assume that the RKDG(s, r, k) method has the L2-norm stability under suitable temporal-
spatial condition, as stated in Theorems 3.1 through 3.3. Furthermore, the mesh is uniform and
Mτ = T . Let (4.32) be the initial solution with k − 1 ≤ qnt ≤ k, then∥∥∥UM −K2k+1,k+1

h ? uM
∥∥∥
L2(I)

≤ C ‖U0‖Hmax(2k+2,r+1)(I) (h2k+1 + τ r), (6.2)

where the bounding constant C > 0 is independent of h, τ, u and U . Here ? denotes the convolution.

Proof: For the obtained numerical solution uM , the post-processed solution satisfies the well-known
conclusion [17]∥∥∥UM −K2k+1,k+1

h ? uM
∥∥∥
L2(I)

≤ Ch2k+1
∥∥UM∥∥

H2k+1(I)
+ C

∑
0≤`≤k+1

∥∥∥∂`heM∥∥∥
H−(k+1)(I)

, (6.3)

where the bounding constant C > 0 solely depends on k. Here the negative norm is defined as

‖w‖H−(k+1)(I) = sup
Φ∈C∞0 (I)

(Φ, w)

‖Φ‖Hk+1(I)

, (6.4)

and ∂`he
M is the `th order divided difference of the numerical error.

In the following analysis, the divided differences will play important roles. To be more clear, we
would like to quickly introduce its definition and recall some essential properties [27] about it. Let w
be any piecewise smooth function on Th. The divided difference is recursively defined by

∂`hw(x) = h−1
[
∂`−1
h w(x+ h/2)− ∂`−1

h w(x− h/2)
]
,

for ` ≥ 1, where ∂0
hw(x) = w(x). By Holder’s inequality, one can see that∥∥∥∂`hw∥∥∥

L2(I)
≤
∥∥∥∂`xw∥∥∥

L2(I)
. (6.5)
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If w and v are periodic, there holds

(∂`hw, v) = (−1)`(w, ∂`hv), ` ≥ 0. (6.6)

Furthermore, it is easy to see that ∂`h commutes with many operators, like Gh, ∂x, and Fp. Finally,
it is worthy pointing out that the above manipulations in this section should be understood on the
correspondingly shifted meshes.

According to (6.3), it is sufficient to prove this theorem by showing for any Φ ∈ C∞0 (I) that

(∂`he
M ,Φ) ≤ C ‖U0‖Hmax(2k+2,r+1)(I) (h2k+1 + τ r) ‖Φ‖Hk+1(I) , 0 ≤ ` ≤ k + 1. (6.7)

For simplicity of notations, the superscript M is dropped below. This purpose can be implemented
with the help of the previous superconvergence results. Recalling the definitions (4.10) and (4.24)
with q = k, we have the decomposition (∂`he,Φ) = (∂`hξ,Φ) − (∂`hη,Φ). By (6.6) and (6.5) we have
(∂`hξ,Φ) = (−1)`(ξ, ∂`hΦ) ≤ ‖ξ‖L2(I) ‖Φ‖Hk+1(I). Hence

(∂`hξ,Φ) ≤ C(h2k+1 + τ r) ‖U0‖Hmax(2k+2,r+1)(I) ‖Φ‖Hk+1(I) , (6.8)

due to Theorem 4.1. By the definition of the correction function, we get the decomposition

(∂`hη,Φ) = (∂`hG⊥hU,Φ) +
∑

1≤p≤k−1

(
∂`hFp(−∂x)pU,Φ

)
+
(
∂`hFk(−∂x)kU,Φ

)
.

Below we are going to separately estimate the three terms on the right-hand side.
The GGR projection implies (∂`hG⊥hU,Φ) = (G⊥h ∂`hU,Φ) = (G⊥h ∂`hU,Φ − Pk−1

h Φ), where Pk−1
h is

the local L2-projection onto V k−1
h . The approximation properties of the two projections lead to

(∂`hG⊥hU,Φ) ≤ Ch2k+1
∥∥∥∂`hU∥∥∥

Hk+1(I)
‖Φ‖Hk(I) ≤ Ch

2k+1 ‖U‖H2k+2(I) ‖Φ‖Hk(I) . (6.9)

Below we assume k ≥ 2 such that the second term exists; otherwise, it vanishes. Depending on `, we
split the summation index into two sets. There is no harm in assuming 1 ≤ p ≤ min(`, k − 1). By
using (6.6), the commutative property, and Lemma 4.5, we have

(∂`hFp(−∂x)pU,Φ) = (−1)p(∂`−ph Fp(−∂x)pU, ∂phΦ) = (−1)p(Fp(−∂x)p∂`−ph U, ∂phΦ)

= (−1)p(Fp(−∂x)p∂`−ph U, ∂phΦ− Pk−1−p
h ∂phΦ).

Then Lemma 4.3, the approximation property of the two projections, and (6.5) lead to

(∂`hFp(−∂x)pU,Φ) ≤ Chp · hk+1
∥∥∥∂`−ph U

∥∥∥
Hk+1+p(I)

· hk−p
∥∥∂phΦ

∥∥
Hk−p(I)

≤ Ch2k+1 ‖U‖H2k+2(I) ‖Φ‖Hk(I) .

Along the same line we can get the same boundedness for ` < p ≤ k − 1. Hence∑
1≤p≤k−1

(
∂`hFp(−∂x)pU,Φ

)
≤ Ch2k+1 ‖U‖H2k+2(I) ‖Φ‖Hk(I) . (6.10)

Similarly, the third term can be bounded in the form

(∂`hFk(−∂x)kU,Φ) = (−1)`(Fk(−∂x)kU, ∂`hΦ)

≤ Ch2k+1 ‖U‖H2k+1(I)

∥∥∥∂`hΦ
∥∥∥
L2(I)

≤ Ch2k+1 ‖U‖H2k+1(I) ‖Φ‖Hk+1(I) .
(6.11)

Collecting up the above estimates and noticing that U = U0(x − βT ), we can obtain (6.7) and
then prove this theorem.
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Remark 6.1 Theorem 6.1 requires a special setting on the initial solution, which is inherited from
the supraconvergence study. In practice, the L2-projection setting (not included in this theorem) still
works well to obtain the accuracy enhancement; see the numerical experiment below.

Remark 6.2 Theorem 6.1 provides a small relaxation on the regularity assumption of the exact
solution. In this paper we only demand U0 ∈ H2k+2(I) ∩Hr+1(I), which is slightly weaker than the
usual assumption U0 ∈ H2k+3(I) for the semi-discrete method [17].

7 Numerical experiments

In this section, we provide some numerical verification. To this end, we carry out the RKDG(r, r, 2)
method with the upwind-biased parameter θ = 0.75, to solve the model problem (1.1) with β = 1 and
T = 1. The non-uniform meshes, obtained by a random perturbation of the equidistance nodes by
at most 10%, are used except for the post-processed solutions. The time step is τ = 0.2hmin, where
hmin is the minimum of all element lengths.

With different degree k, and/or the different upwind-biased parameter θ, the numerical experi-
ments are very similar. Limited by the length of this paper, we only present the data for the case
mentioned here.

Example 7.1 We take U0 = sin(2πx), which is infinitely differentiable.

In Table 7.1, we list the superconvergence results on the solution and derivative at the roots and
extrema of the parameter-dependent Radau polynomials. The error and convergence order in the
discrete L2-norms, |||e|||L2(SR

h ) and |||ex|||L2(SL
h ), are shown. As a comparison, the error and convergence

order in the discrete L∞-norms, |||e|||L∞(SR
h ) and |||ex|||L∞(SL

h ), are also given. The initial solution u0 is

taken to be (4.32) with qnt = 1 and qnt = 0, respectively. The min(k + 2, r)-th order is observed for
the solution, and the min(k + 1, r)-th order is observed for the derivative. This verifies the second
conclusion in Theorem 5.1.

In Table 7.2, we present the superconvergence results on the average and the numerical flux.
Similarly, the discrete L2 norms and the discrete L∞ norms are given. The initial solution u0 is taken
to be (4.32) with qnt = k and qnt = k − 1, respectively. The expected min(2k + 1, r)-th order is
observed for the two initial settings. This verifies the first conclusion in Theorem 5.1.

In Table 7.3 we investigate the supraconvergence results with different initial settings. To do that,
we take u0 to be (4.32) with three parameters qnt.

• For qnt = k, the expected min(2k + 1, r)-th order is observed for ‖ξ‖L2(I) and ‖ξx‖L2(I), which
verifies Theorems 4.1 and 4.2. Note that ‖ξxx‖L2(I) does not keep the same order. When
r becomes large enough, the reduction of one order is observed for ‖ξxx‖L2(I), which can be
explained by the inverse inequality.

• The expected order is not achieved for ‖ξ‖L2(I) when qnt = k − 2, and for ‖ξx‖L2(I) when
qnt ≤ k − 1. This verifies that it is sharp for the requirement on qnt in Theorems 4.1 and 4.2.

In Table 7.4, we give the numerical results on the accuracy enhancement of the post-processed
solutions, where u0 is taken to be (4.32) with qnt = k. As an example out of the assumption of
Theorem 6.1, we also take u0 to be (4.32) with qnt = 0 (i.e., the GGR projection) or the L2 projection
of U0. The convergence order min{2k + 1, r} is observed for all cases, indicating that the result in
Theorem 6.1 is correct but not sharp.
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Table 7.1: Example 7.1. Superconvergence results on the solution and derivative.

qnt = 1 J |||e|||L2(SR
h
) |||e|||L∞(SR

h
) |||ex|||L2(SL

h
) |||ex|||L∞(SL

h
)

r = 3

1000 1.89E-10 2.79E-10 1.20E-08 7.30E-08

2000 2.45E-11 2.95 3.53E-11 2.98 1.41E-09 3.09 7.97E-09 3.19

4000 2.98E-12 3.04 4.23E-12 3.06 1.71E-10 3.04 1.12E-09 2.83

8000 3.73E-13 3.00 5.30E-13 3.00 2.11E-11 3.01 1.33E-10 3.07

16000 4.62E-14 3.01 6.54E-14 3.02 2.68E-12 2.98 1.83E-11 2.87

r = 4

1000 1.83E-12 8.22E-12 1.05E-08 5.02E-08

2000 1.20E-13 3.94 6.85E-13 3.59 1.39E-09 2.91 7.76E-09 2.69

4000 7.31E-15 4.04 5.48E-14 3.64 1.69E-10 3.05 1.14E-09 2.77

8000 4.60E-16 3.99 3.38E-15 4.02 2.12E-11 2.99 1.43E-10 2.99

16000 2.90E-17 3.99 2.17E-16 3.96 2.68E-12 2.98 1.79E-11 3.00

r = 5

1000 1.90E-12 8.44E-12 1.10E-08 5.10E-08

2000 1.16E-13 4.03 6.26E-13 3.75 1.33E-09 3.05 7.25E-09 2.81

4000 7.35E-15 3.98 4.03E-14 3.96 1.70E-10 2.97 9.23E-10 2.97

8000 4.63E-16 3.99 3.28E-15 3.62 2.14E-11 2.99 1.38E-10 2.74

16000 2.92E-17 3.98 2.51E-16 3.71 2.72E-12 2.98 2.12E-11 2.70

r = 6

1000 1.91E-12 1.00E-11 1.11E-08 5.84E-08

2000 1.18E-13 4.02 7.79E-13 3.69 1.36E-09 3.03 8.65E-09 2.75

4000 7.29E-15 4.01 4.17E-14 4.22 1.68E-10 3.01 9.12E-10 3.25

8000 4.60E-16 3.99 3.51E-15 3.57 2.12E-11 2.99 1.49E-10 2.62

16000 2.88E-17 4.00 2.35E-16 3.90 2.66E-12 3.00 1.94E-11 2.94

qnt = 0 J |||e|||L2(SR
h
) |||e|||L∞(SR

h
) |||ex|||L2(SL

h
) |||ex|||L∞(SL

h
)

r = 3

1000 1.96E-10 2.89E-10 1.12E-08 6.70E-08

2000 2.40E-11 3.03 3.48E-11 3.06 1.39E-09 3.02 8.61E-09 2.96

4000 2.98E-12 3.01 4.24E-12 3.03 1.74E-10 2.99 1.14E-09 2.91

8000 3.71E-13 3.01 5.27E-13 3.01 2.16E-11 3.01 1.53E-10 2.90

16000 4.61E-14 3.01 6.54E-14 3.01 2.70E-12 3.00 1.87E-11 3.04

r = 4

1000 1.96E-12 1.16E-11 1.14E-08 6.00E-08

2000 1.19E-13 4.03 7.46E-13 3.96 1.39E-09 3.04 8.18E-09 2.88

4000 7.27E-15 4.04 4.85E-14 3.94 1.67E-10 3.06 9.84E-10 3.06

8000 4.62E-16 3.98 3.84E-15 3.66 2.13E-11 2.97 1.57E-10 2.65

16000 2.88E-17 4.00 2.19E-16 4.13 2.66E-12 3.00 2.03E-11 2.95

r = 5

1000 1.93E-12 8.61E-12 1.13E-08 5.24E-08

2000 1.14E-13 4.08 6.47E-13 3.73 1.30E-09 3.12 7.42E-09 2.82

4000 7.52E-15 3.92 5.59E-14 3.53 1.75E-10 2.90 1.13E-09 2.72

8000 4.58E-16 4.04 2.74E-15 4.35 2.11E-11 3.05 1.48E-10 2.94

16000 2.87E-17 4.00 2.53E-16 3.44 2.65E-12 3.00 2.04E-11 2.86

r = 6

1000 1.91E-12 1.34E-11 1.11E-08 7.20E-08

2000 1.18E-13 4.02 8.20E-13 4.03 1.35E-09 3.03 8.81E-09 3.03

4000 7.37E-15 4.00 4.81E-14 4.09 1.70E-10 2.99 1.06E-09 3.05

8000 4.55E-16 4.02 3.80E-15 3.66 2.09E-11 3.02 1.53E-10 2.79

16000 2.88E-17 3.98 2.35E-16 4.01 2.66E-12 2.98 1.95E-11 2.98
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Table 7.2: Example 7.1. Superconvergence results on the numerical flux and average.

qnt = k J |||{{e}}(θ)|||L2(SB
h
) |||{{e}}(θ)|||L∞(SB

h
) |||ē|||L2(SE

h
) |||ē|||L∞(SE

h
)

r = 3

1000 1.92E-10 2.71E-10 1.92E-10 2.71E-10

2000 2.44E-11 2.97 3.45E-11 2.97 2.44E-11 2.97 3.45E-11 2.97

4000 2.98E-12 3.03 4.21E-12 3.03 2.98E-12 3.03 4.21E-12 3.03

8000 3.72E-13 3.00 5.27E-13 3.00 3.72E-13 3.00 5.27E-13 3.00

16000 4.60E-14 3.02 6.51E-14 3.02 4.60E-14 3.02 6.51E-14 3.02

r = 4

1000 3.90E-14 5.51E-14 3.95E-14 5.77E-14

2000 2.40E-15 4.02 3.39E-15 4.02 2.42E-15 4.03 3.48E-15 4.05

4000 1.53E-16 3.97 2.17E-16 3.97 1.54E-16 3.97 2.19E-16 3.99

8000 9.35E-18 4.03 1.32E-17 4.03 9.37E-18 4.04 1.33E-17 4.04

16000 5.85E-19 4.00 8.27E-19 4.00 5.85E-19 4.00 8.30E-19 4.00

r = 5

1000 3.62E-15 5.12E-15 3.69E-15 5.63E-15

2000 1.13E-16 5.00 1.60E-16 5.00 1.15E-16 5.00 1.79E-16 4.97

4000 3.51E-18 5.01 4.97E-18 5.01 3.58E-18 5.00 5.66E-18 4.99

8000 1.11E-19 4.99 1.57E-19 4.99 1.13E-19 4.99 1.79E-19 4.98

16000 3.45E-21 5.00 4.88E-21 5.00 3.52E-21 5.00 5.64E-21 4.99

r = 6

1000 3.65E-15 5.16E-15 3.72E-15 5.79E-15

2000 1.14E-16 5.00 1.61E-16 5.00 1.16E-16 5.00 1.87E-16 4.96

4000 3.54E-18 5.01 5.01E-18 5.01 3.61E-18 5.01 5.79E-18 5.01

8000 1.11E-19 5.00 1.57E-19 5.00 1.13E-19 5.00 1.80E-19 5.01

16000 3.47E-21 5.00 4.91E-21 5.00 3.54E-21 5.00 5.57E-21 5.02

qnt = k − 1 J |||{{e}}(θ)|||L2(SB
h
) |||{{e}}(θ)|||L∞(SB

h
) |||ē|||L2(SE

h
) |||ē|||L∞(SE

h
)

r = 3

1000 1.89E-10 2.67E-10 1.89E-10 2.67E-10

2000 2.45E-11 2.94 3.47E-11 2.94 2.45E-11 2.94 3.47E-11 2.94

4000 2.98E-12 3.04 4.21E-12 3.04 2.98E-12 3.04 4.21E-12 3.04

8000 3.73E-13 3.00 5.27E-13 3.00 3.73E-13 3.00 5.27E-13 3.00

16000 4.62E-14 3.01 6.53E-14 3.01 4.62E-14 3.01 6.53E-14 3.01

r = 4

1000 3.95E-14 5.62E-14 4.01E-14 5.77E-14

2000 2.41E-15 4.04 3.41E-15 4.04 2.42E-15 4.05 3.47E-15 4.06

4000 1.49E-16 4.02 2.11E-16 4.02 1.49E-16 4.02 2.12E-16 4.03

8000 9.29E-18 4.00 1.31E-17 4.00 9.31E-18 4.00 1.32E-17 4.01

16000 5.81E-19 4.00 8.22E-19 4.00 5.82E-19 4.00 8.24E-19 4.00

r = 5

1000 3.70E-15 5.26E-15 3.67E-15 5.33E-15

2000 1.14E-16 5.01 1.64E-16 5.00 1.14E-16 5.02 1.66E-16 5.00

4000 3.61E-18 4.99 5.21E-18 4.98 3.59E-18 4.98 5.29E-18 4.97

8000 1.12E-19 5.01 1.61E-19 5.01 1.12E-19 5.01 1.65E-19 5.00

16000 3.52E-21 5.00 5.07E-21 4.99 3.50E-21 4.99 5.19E-21 4.99

r = 6

1000 3.73E-15 5.34E-15 3.71E-15 5.41E-15

2000 1.15E-16 5.02 1.66E-16 5.01 1.14E-16 5.02 1.69E-16 5.00

4000 3.58E-18 5.00 5.12E-18 5.02 3.56E-18 5.00 5.24E-18 5.01

8000 1.12E-19 4.99 1.62E-19 4.99 1.12E-19 4.99 1.65E-19 4.98

16000 3.51E-21 5.00 5.05E-21 5.00 3.49E-21 5.00 5.19E-21 5.00
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Table 7.3: Example 7.1. Supraconvergence results.

qnt = k J ‖ξ‖L2(I) ‖ξx‖L2(I) ‖ξxx‖L2(I)

r = 3

1000 1.92E-10 1.20E-09 7.57E-09
2000 2.44E-11 2.97 1.53E-10 2.97 9.63E-10 2.97
4000 2.98E-12 3.03 1.87E-11 3.03 1.18E-10 3.03
8000 3.72E-13 3.00 2.34E-12 3.00 1.47E-11 3.00
16000 4.60E-14 3.02 2.89E-13 3.02 1.82E-12 3.02

r = 4

1000 3.90E-14 2.45E-13 7.97E-12
2000 2.40E-15 4.02 1.51E-14 4.02 4.79E-13 4.06
4000 1.53E-16 3.97 9.63E-16 3.97 3.02E-14 3.99
8000 9.35E-18 4.03 5.88E-17 4.03 1.93E-15 3.96
16000 5.85E-19 4.00 3.67E-18 4.00 1.19E-16 4.02

r = 5

1000 3.62E-15 2.30E-14 7.62E-12
2000 1.13E-16 5.00 7.18E-16 5.00 4.78E-13 3.99
4000 3.51E-18 5.01 2.23E-17 5.01 2.95E-14 4.02
8000 1.11E-19 4.99 7.06E-19 4.98 1.92E-15 3.95
16000 3.45E-21 5.00 2.20E-20 5.01 1.17E-16 4.04

r = 6

1000 3.65E-15 2.32E-14 7.90E-12
2000 1.14E-16 5.00 7.24E-16 5.00 4.77E-13 4.05
4000 3.54E-18 5.01 2.25E-17 5.01 3.00E-14 3.99
8000 1.11E-19 5.00 7.06E-19 4.99 1.89E-15 3.99
16000 3.47E-21 5.00 2.21E-20 5.00 1.18E-16 4.00

qnt = k − 1 J ‖ξ‖L2(I) ‖ξx‖L2(I) ‖ξxx‖L2(I)

r = 3

1000 1.89E-10 1.19E-09 7.45E-09
2000 2.45E-11 2.94 1.54E-10 2.94 9.68E-10 2.94
4000 2.98E-12 3.04 1.87E-11 3.04 1.17E-10 3.04
8000 3.73E-13 3.00 2.34E-12 3.00 1.47E-11 3.00
16000 4.62E-14 3.01 2.90E-13 3.01 1.82E-12 3.01

r = 4

1000 3.95E-14 2.77E-13 1.34E-10
2000 2.41E-15 4.04 1.61E-14 4.11 1.04E-11 3.69
4000 1.49E-16 4.02 9.72E-16 4.05 9.38E-13 3.47
8000 9.29E-18 4.00 5.98E-17 4.02 8.10E-14 3.53
16000 5.81E-19 4.00 3.72E-18 4.01 7.53E-15 3.43

r = 5

1000 3.70E-15 9.76E-14 1.05E-10
2000 1.14E-16 5.01 4.91E-15 4.31 9.65E-12 3.44
4000 3.61E-18 4.99 2.72E-16 4.17 9.42E-13 3.36
8000 1.12E-19 5.01 1.33E-17 4.36 8.24E-14 3.51
16000 3.52E-21 5.00 6.96E-19 4.25 7.70E-15 3.42

r = 6

1000 3.73E-15 1.08E-13 1.14E-10
2000 1.15E-16 5.02 5.20E-15 4.38 1.03E-11 3.47
4000 3.58E-18 5.00 2.71E-16 4.26 9.57E-13 3.43
8000 1.12E-19 4.99 1.38E-17 4.30 8.54E-14 3.49
16000 3.51E-21 5.00 6.64E-19 4.37 7.38E-15 3.53

qnt = k − 2 J ‖ξ‖L2(I) ‖ξx‖L2(I) ‖ξxx‖L2(I)

r = 3

1000 1.96E-10 1.23E-09 1.70E-08
2000 2.40E-11 3.03 1.51E-10 3.03 2.22E-09 2.94
4000 2.98E-12 3.01 1.87E-11 3.01 3.10E-10 2.84
8000 3.71E-13 3.01 2.33E-12 3.01 4.44E-11 2.81
16000 4.61E-14 3.01 2.90E-13 3.01 5.93E-12 2.90

r = 4

1000 4.22E-14 1.95E-11 2.36E-08
2000 2.48E-15 4.09 1.64E-12 3.57 3.58E-09 2.72
4000 1.53E-16 4.02 1.39E-13 3.56 5.46E-10 2.71
8000 9.51E-18 4.01 1.31E-14 3.40 9.11E-11 2.58
16000 5.96E-19 4.00 1.18E-15 3.48 1.45E-11 2.65

r = 5

1000 1.63E-14 1.80E-11 2.18E-08
2000 8.42E-16 4.27 1.72E-12 3.39 3.76E-09 2.53
4000 4.11E-17 4.36 1.44E-13 3.57 5.53E-10 2.76
8000 2.05E-18 4.32 1.29E-14 3.48 8.95E-11 2.63
16000 1.04E-19 4.31 1.16E-15 3.48 1.43E-11 2.64

r = 6

1000 1.66E-14 1.80E-11 2.15E-08
2000 8.05E-16 4.37 1.60E-12 3.49 3.48E-09 2.62
4000 3.95E-17 4.35 1.41E-13 3.50 5.47E-10 2.67
8000 2.00E-18 4.31 1.27E-14 3.47 8.82E-11 2.63
16000 1.10E-19 4.19 1.23E-15 3.36 1.51E-11 2.55
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Table 7.4: Example 7.1. Accuracy enhancement of the post-processed solution with three different
initial solutions.

J qnt = k qnt = 0 (GGR) L2 projection

r = 3

1000 3.67E-10 3.67E-10 3.67E-10

2000 4.59E-11 3.00 4.59E-11 3.00 4.59E-11 3.00

4000 5.74E-12 3.00 5.74E-12 3.00 5.74E-12 3.00

8000 7.17E-13 3.00 7.17E-13 3.00 7.17E-13 3.00

16000 8.97E-14 3.00 8.97E-14 3.00 8.97E-14 3.00

r = 4

1000 9.38E-14 9.29E-14 9.24E-14

2000 5.82E-15 4.01 5.79E-15 4.00 5.77E-15 4.00

4000 3.62E-16 4.01 3.61E-16 4.00 3.61E-16 4.00

8000 2.26E-17 4.00 2.26E-17 4.00 2.25E-17 4.00

16000 1.41E-18 4.00 1.41E-18 4.00 1.41E-18 4.00

r = 5

1000 3.46E-15 3.18E-15 3.15E-15

2000 1.06E-16 5.03 9.73E-17 5.03 9.61E-17 5.03

4000 3.28E-18 5.01 3.00E-18 5.02 2.97E-18 5.02

8000 1.02E-19 5.01 9.33E-20 5.01 9.22E-20 5.01

16000 3.18E-21 5.00 2.91E-21 5.00 2.87E-21 5.00

r = 6

1000 3.48E-15 3.20E-15 3.17E-15

2000 1.07E-16 5.03 9.79E-17 5.03 9.67E-17 5.03

4000 3.30E-18 5.01 3.02E-18 5.02 2.99E-18 5.02

8000 1.03E-19 5.01 9.39E-20 5.01 9.28E-20 5.01

16000 3.20E-21 5.00 2.93E-21 5.00 2.89E-21 5.00

Example 7.2 To investigate the sharpness of regularity assumption, we take U0 = sinε+2/3(2πx),
where ε is a positive integer. This function belongs to Hε+1(I) but not Hε+2(I).

The superconvergence results are shown in Table 7.5, the supraconvergence results are shown in
Table 7.6, and the accuracy enhancements of the post-processed solution are shown in Table 7.7. In
each group, the regularity parameter is ε− 1 for the left column, and is ε for the right column. When
the regularity parameter satisfies the requirement in the theorems, the expected orders are observed.
However, when the regularity parameter drops, the expected orders are lost. These results indicate
that the regularity assumptions in the theorems appear to be sharp.

8 Concluding remarks

In this paper we establish the superconvergence results for the fully-discrete RKDG methods with
arbitrary stages, time order and degree of piecewise polynomials, when the upwind-biased flux is
used. To complete this task, many analysis techniques are involved. Firstly we are able to avoid the
computer-aided manipulation on the matrix transferring process, and set up the relationship between
the single-step and multiple-steps time-marching. As a result, the stability results can be directly
concluded by an equivalent representation of the RKDG methods. Secondly, we present a uniform
strategy on the reference functions and the incomplete correction functions at every time stage. Then
many superconvergence results are rigorously given under different regularity assumptions, and the
optimal time order is achieved as expected. Thirdly, we obtain two interesting results in addition.
With the help of the discrete derivative operator according to the DG spatial discretization, as well
as the transform between the spatial derivative and temporal difference, we are able to prove that
the first order spatial derivative of the solution has the same supraconvergence order as that for the
solution. We also present a new proof for the accuracy enhancement of the post-processed solution,
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Table 7.5: Example 7.2. Superconvergence results. In each group, the regularity parameter is ε − 1
for the left column, and is ε for the right column.

J |||e|||L2(SR
h
), qnt = 0, r = 4, ε = 4 |||ex|||L2(SL

h
), qnt = 0, r = 3, ε = 4

1000 6.53E-10 8.42E-11 1.42E-06 4.92E-07

2000 5.65E-11 3.53 4.96E-12 4.09 2.57E-07 2.46 6.35E-08 2.95

4000 4.91E-12 3.52 3.10E-13 4.00 4.52E-08 2.51 7.76E-09 3.03

8000 4.31E-13 3.51 1.91E-14 4.02 8.29E-09 2.45 9.87E-10 2.98

16000 3.84E-14 3.49 1.21E-15 3.98 1.54E-09 2.43 1.22E-10 3.02

J |||{{e}}(θ)|||L2(SB
h
), qnt = k, r = 5, ε = 5 |||ē|||L2(SE

h
), qnt = k, r = 5, ε = 5

1000 1.72E-11 5.12E-12 1.64E-11 5.12E-12

2000 8.20E-13 4.39 1.61E-13 4.99 7.88E-13 4.38 1.61E-13 4.99

4000 4.11E-14 4.32 5.06E-15 4.99 3.97E-14 4.31 5.07E-15 4.99

8000 2.02E-15 4.34 1.57E-16 5.01 1.97E-15 4.33 1.57E-16 5.01

16000 9.99E-17 4.34 4.94E-18 4.99 9.80E-17 4.33 4.94E-18 4.99

Table 7.6: Example 7.2. Supraconvergence results. In each group, the regularity parameter is ε − 1
for the left column, and is ε for the right column.

J ‖ξ‖L2(I) , qnt = k, r = 5, ε = 5 ‖ξx‖L2(I) , qnt = k, r = 5, ε = 6

1000 1.72E-11 5.12E-12 6.38E-10 2.99E-10

2000 8.32E-13 4.37 1.61E-13 4.99 3.04E-11 4.39 9.39E-12 4.99

4000 4.08E-14 4.35 5.06E-15 4.99 1.48E-12 4.36 2.95E-13 4.99

8000 2.01E-15 4.34 1.57E-16 5.01 7.23E-14 4.35 9.15E-15 5.01

16000 9.96E-17 4.33 4.94E-18 4.99 3.58E-15 4.34 2.87E-16 4.99

Table 7.7: Example 7.2. Accuracy enhancement of the post-processed solution. The regularity
parameter is ε− 1 for the left column, and is ε for the right column.

J qnt = k, r = 5, ε = 5

1000 1.59E-11 4.50E-12

2000 7.59E-13 4.39 1.38E-13 5.03

4000 3.67E-14 4.37 4.25E-15 5.02

8000 1.79E-15 4.36 1.32E-16 5.01

16000 8.82E-17 4.35 4.12E-18 5.00
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as an application of the obtained supraconvergence result and the properties of the divided differences
of the numerical error.

In future work, we shall extend the above techniques and analyses to non-periodic boundary con-
ditions and to nonlinear equations and/or systems. The extensions to other time-marching methods
are also on the plan. Furthermore, we plan to explore the proof of piecewise-point superconvergence
results that have been shown in the numerical experiments for the RKDG methods.

9 Appendix

In this section, the supplement proofs of three technical results are given.

9.1 Proof of (3.16)

Substituting the offset into the relationship in Lemma 2.2, we have

ez +

∞∑
i=r+1

α̃i(m)zi =
[
e
z
m +

∞∑
i=r+1

α̃i(1)
( z
m

)i]m
=
[
e
z
m +

zr+1

mr+1
q(z)

]m
, (9.1)

where q(z) =
∑∞

i=0 qiz
i =

∑∞
i=0

α̃i+r+1(1)
mi

zi. Denote α̃max = max
∀κ
|α̃κ(1)|. By a direct calculation, the

coefficient of [q(z)]j =
∑∞

i=0 qi,jz
i satisfies

|qi,j | ≤ C(α̃max)j , 0 ≤ i, j ≤ 2ζ − 1,

where the bounding constant C > 0 solely depends on the termination index ζ.
Subtracting ez from both sides of (9.1) we have

∞∑
i=r+1

α̃i(m)zi =
∑

1≤j≤m

(
m

j

)(
e
z
m

)m−j(zr+1q(z)

mr+1

)j
=

∑
1≤j≤m

(
m

j

)
zj(r+1)

mj(r+1)

[ ∞∑
i=0

1

i!

(m− j
m

)i
zi
][ ∞∑

i=0

qi,jz
i
]
.

and get

α̃i(m) =
∑

1≤j≤m

(m
j

)
1

mj(r+1)

∑
0≤`≤σij

q`,j

(m− j
m

)σij−` 1

(σij − `)!

 ,
where σij = i− j(r + 1). Hence

|α̃i(m)| ≤ C
∑

1≤j≤m

[ α̃max

mr

]j
≤ Cα̃max

mr
,

provided mr ≥ 2α̃max. This completes the proof of this inequality.
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9.2 Proof of (4.40)

It is no harm in assuming that q ≥ 1. Substituting (4.32) into the definition of ξ̃0 yields

ξ̃0 = Hh
(
GhU0 −

∑
1≤p≤qinit

Fp(−∂x)pU0

)
−
(
GhΠ0 −

∑
1≤p≤q

Fp(−∂x)pΠ0

)
= HhGhU0 −

∑
1≤p≤qinit

HhFp(−∂x)pU0 + βGh(U0)x − β
∑

1≤p≤q
Fp(−∂x)p(U0)x,

(9.2)

since Π0 = −β(U0)x. Because U0 ∈ H1(I) is continuous in I, for any v ∈ Vh we have

(HhGhU0, v) = H(GhU0, v) = H(U0, v) = −β((U0)x, v) = −β(Ph(U0)x, v),

where the definitions of the two projections are used. Similarly, due to Lemma 4.4, each term in the
first summation of (9.2) satisfies

(HhFp(−∂x)pU0, v) = H(Fp(−∂x)pU0, v) = β(Fp−1(−∂x)pU0, v), ∀v ∈ Vh.

Hence, HhGhU0 = −βPh(U0)x and HhFp(−∂x)pU0 = βFp−1(−∂x)pU0. Substituting them into (9.2),
we arrive at

ξ̃0 = −β
∑

1≤p≤qnt−1

Fp(−∂x)p+1U0 + β
∑

1≤p≤q
Fp(−∂x)p+1U0. (9.3)

Since q ≤ qnt ≤ k, we can get (4.40), along the same line as for (4.34).
A supplement is given for q = 0. Since the summation is equal to zero if the index set is empty,

the formula (9.3) also holds for q = 0 and qnt ≥ 1. If q = qnt = 0, the two summations in (9.2) vanish
such that ξ̃0 = −βF0(U0)x. For these special cases, it is easy to see that (4.40) holds.

9.3 Proof of Lemma 5.2

By the definitions of the two projections we have

(Ghw − Chw)|Ij = w̃jLj,k, j = 1, 2, . . . , J,

and the undetermined constants w̃j satisfy the following system of linear equations

θw̃j + (1− θ)(−1)kw̃j+1 = {{C⊥hw}}
(θ)

j+ 1
2

, j = 1, 2, . . . , J. (9.4)

It is proved in [8] that this linear system has a unique solution since θ 6= 1/2, and

‖Ghw − Chw‖2L2(I) ≤ Ch
∑

1≤j≤J
|w̃j |2 ≤ Ch

∑
1≤j≤J

|{{C⊥hw}}
(θ)

j+ 1
2

|2. (9.5)

Hence, it is sufficient to prove this lemma by showing

|{{C⊥hw}}
(θ)

j+ 1
2

| ≤ Chk+ 3
2 ‖w‖Hk+2(Ij∪Ij+1) , j = 1, 2, . . . , J. (9.6)

To this end, let us consider the decomposition

{{C⊥hw}}
(θ)

j+ 1
2

= {{C⊥h (Pk+1
h )⊥w}}(θ)

j+ 1
2

+ {{C⊥h Pk+1
h w}}(θ)

j+ 1
2

= bj1 + bj2,
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where Pk+1
h denotes the local L2-projection on V k+1

h . By using the approximation property of the

projections Ch and Pk+1
h , we get

|bj1| ≤ Ch
1
2

∥∥∥(Pk+1
h )⊥w

∥∥∥
H1(Ij∪Ij+1)

≤ Chk+ 3
2 ‖w‖Hk+2(Ij∪Ij+1) . (9.7)

Using (5.10), we know that C⊥h P
k+1
h w(x) = wj,k+1(Lj,k+1(x)− ϑjLj,k(x)) for x ∈ Ij , where

wj,k+1 =
2k + 3

2

∫ 1

−1
w
(
xj +

hj x̂

2

)
Lk+1(x̂)dx̂ = hk+1

j

∫ 1

−1
∂k+1
x w

(
xj +

hj x̂

2

)
Φ(x̂)dx̂,

and the kernel function Φ(x̂) = (−1)k+1(2k+3)
22k+3(k+1)!

(x̂2 − 1)k+1 is independent of j. In the above manipula-

tions the Rodrigue’s formula of the Legendre polynomials and integration by parts are used. Using
(5.1), we get

bj2 = θ(1− ϑj)wj,k+1 + (1− θ)[(−1)k+1 − ϑj+1(−1)k]wj+1,k+1

= θ(1− ϑj)hk+1
j

∫ 1

−1

[
∂k+1
x w

(
xj +

hj x̂

2

)
− ∂k+1

x w
(
xj+1 +

hj+1x̂

2

)]
Φ(x̂)dx̂

≤ Chk+ 3
2 ‖w‖Hk+2(Ij∪Ij+1) .

(9.8)

where the Holder’s inequality is used at the last step. We have now proved (9.6) and hence completed
the proof of this lemma.
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