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Abstract. In this paper, we investigate the weighted multilinear boundedness prop-
erties of the maximal higher order Calderón commutator for the dimensions larger
than two. We establish all weighted multilinear estimates on the product of the
Lp(Rd, w) space, including some peculiar endpoint estimates of the higher dimen-
sional Calderón commutator.

1. Introduction

In the recent work [21], the author studied the multilinear boundedness of the higher
order Calderón commutator. The purpose of this paper is to further generalize those
results to the weighted space for its maximal type operator. Before stating our main
results, let us give some notation and background. Define the truncated higher (n-th)
order Calderón commutator by

Cε[∇A1, · · · ,∇An, f ](x) =

∫
|x−y|≥ε

K(x− y)
( n∏
i=1

Ai(x)−Ai(y)

|x− y|

)
· f(y)dy,

where n is a positive integer and K is the Calderón-Zygmund convolution kernel on
Rd \ {0} (d ≥ 2) which means that K satisfies the following three conditions:

(1.1) |K(x)| . |x|−d,

(1.2)

∫
r<|x|<R

K(x)(x/|x|)αdx = 0, ∀0 < r < R <∞ and ∀α ∈ Zd+ with |α| = n,

(1.3) |K(x− y)−K(x)| . |y|δ/|x|d+δ for some 0 < δ ≤ 1 if |x| > 2|y|.
Then we define the higher order Calderón commutator and its maximal operator by

C[∇A1, · · · ,∇An, f ](x) = lim
ε→0
Cε[∇A1, · · · ,∇An, f ](x),

C∗[∇A1, · · · ,∇An, f ](x) = sup
ε>0

∣∣Cε[∇A1, · · · ,∇An, f ](x)
∣∣.(1.4)

It is the standard context to check that these functions C[∇A1, · · · ,∇An, f ](x) and
C∗[∇A1, · · · ,∇An, f ](x) are well defined for A1, · · · , An, f ∈ C∞c (Rd) (see e.g. [17]).
This kind of commutator was first introduced by A. P. Calderón [2] when n = 1 and
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K(x) is a homogeneous kernel and later [3] [4] for the higher order one (see also [6],
[7]). One can easily see that the first order Calderón commutator C[∇A, f ](x) is a
generalization of

[A,S]f(x) = A(x)S(f)(x)− S(Af)(x) = −p.v.
1

π

∫
R

1

x− y
A(x)−A(y)

x− y
f(y)dy

where S = d
dx ◦ H and H denotes the Hilbert transform. It is well known that the

commutator [A,S] and it generalization are elementary operators in harmonic analysis,
which play an important role in the theory of the Cauchy integral along Lipschitz curve
in C, the boundary value problem of elliptic equation on non-smooth domain, the Kato
square root problem on R and the mixing flow problem (see e.g. [2], [4], [13], [24], [10],
[18], [8], [25], [19], [23] for the details).

Many classical known results about the higher order Calderón commutator take
place in the setting of the dimension d = 1. For example, the endpoint estimate
that the n-th order Calderón commutator C maps L1(R) × · · · × L1(R) × L1(R) to

L
1

1+n
,∞(R) was proved by C. P. Calderón [5] when n = 1, Coifman and Meyer [6] when

n = 1, 2 and Duong, Grafakos and Yan [11] when n ≥ 1. Here we point out that one
important fact used by Coifman and Meyer [6], Duong, Grafakos and Yan [11] is that the
one dimensional higher order Calderón commutator can be reduced to the multilinear
Calderón Zygmund operator (see the very nice exposition [18, Chapter 7] and the
reference therein). However when the dimension d ≥ 2, things become complicated since
Calderón commutator is a non standard multilinear Calderón-Zygmund operator. If we
consider the Calderón-Zygmund kernel K(x) = |x|−d, then the sharp bilinear estimates
(except some endpoint estimates) of the first order Calderón commutator in this case
has been established by Fong [14] via the time-frequency analysis method. For the more
general Calderón-Zygmund kernel or even rough homogeneous kernel, the author [21]
established all multilinear boundedness of the higher order Calderón commutator for
the higher dimensions, especially the endpoint estimate that the n-th order Calderón
commutator C maps the product of Lorentz space Ld,1(Rd) × · · · × Ld,1(Rd) × L1(Rd)
to L

d
d+n

,∞(Rd).
The weighted results related to the Calderón commutator is also only known for

the case d = 1. Duong, Gong, Grafakos, Li and Yan [12, Theorem 4.3] proved that
C∗ maps Lq1(R, w) × · · · × Lqn(R, w) × Lp(Rd, w) to Lr(R, w) if 1

r =
(∑n

i=1
1
qi

)
+ 1

p

with 1
n+1 < r < ∞, 1 < q1, · · · , qn ≤ ∞, 1 < p < ∞ and w ∈ ∩ni=1Aqi(R) ∩ Ap(R).

For the endpoint estimate, Grafakos, Liu and Yang [16, Corollary 1.7] showed that

C∗ maps L1(R, w) × · · · × L1(R, w) × L1(R, w) to L
1

1+n
,∞(R, w) under the assumption

w ∈ A1(R). The method used in Duong et al. [12] and Grafakos et al. [16] is both
that by establishing the weighted theory for a class of multilinear Calderón-Zygmund
operators with non-smooth kernel and then applying it to the Calderón commutator
for the dimension d = 1. For the higher dimensional case of the Calderón commutator,
no proper weighted multilinear Calderón-Zygmund theory can be applied directly.

In this paper, we are interested in the following weighted strong type multilinear
estimate (or weighted weak type estimate) for the maximal operator of the higher
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order Calderón commutator

(1.5) ‖C∗[∇A1, · · · ,∇An, f ]‖Lr(Rd,w) .
( n∏
i=1

‖∇Ai‖Lqi (Rd,w)

)
‖f‖Lp(Rd,w)

where 1
r =

(∑n
i=1

1
qi

)
+ 1

p with 1 ≤ qi ≤ ∞, (i = 1, · · · , n), and 1 ≤ p ≤ ∞. However, it

is unknown whether those kind of estimates hold for the maximal Calderón commutator
C∗ even in the unweighted case. In this paper, we will work directly on the weighted
space and state our main results as follows.

Theorem 1.1. Let d ≥ 2 and n be a positive integer. Suppose K satisfies (1.1), (1.2)
and (1.3). Assume that 1

r =
(∑n

i=1
1
qi

)
+ 1

p with 1 ≤ qi ≤ ∞ (i = 1, · · · , n), and

1 ≤ p ≤ ∞. Suppose w ∈
(⋂n

i=1Amax{ qi
d
,1}(Rd)

)
∩Ap(Rd). We may have the following

conclusions:
(i). If d

d+n < r <∞, 1 < qi ≤ ∞ (i = 1, · · · , n) and 1 < p ≤ ∞, then (1.5) holds.

(ii). If d
d+n ≤ r < ∞ with qi = 1 for some i = 1, · · · , n; or p = 1; or r = d

d+n , then
the following multilinear estimate holds

(1.6) ‖C∗[∇A1, · · · ,∇An, f ]‖Lr,∞(Rd,w) .
( n∏
i=1

‖∇Ai‖Lqi (Rd,w)

)
‖f‖Lp(Rd,w)

and in this case, if qi = d for some i = 1, · · · , n, Lqi(Rd, w) in the above inequality
should be replaced by Ld,1(Rd, w), the weighted Lorentz space. Specially, we have the
following endpoint estimate

(1.7) ‖C∗[∇A1, · · · ,∇An, f ]‖
L

d
d+n

,∞
(Rd,w)

.
( n∏
i=1

‖∇Ai‖Ld,1(Rd,w)

)
‖f‖L1(Rd,w).

Remark 1.2. (i). These results in Theorem 1.1 are new even in the unweighted case
when the dimension d ≥ 2.

(ii). When 0 < r < d
d+n , these multilinear strong type estimates (1.5) (or weak type

estimates (1.6)) do not hold for the maximal Calderón operator C∗. In fact,
some counterexamples has been constructed in [21, Theorem 1.1] to show that
those multilinear strong type estimates (or weak type estimates) fail even for the
operator C in the case 0 < r < d

d+n . Thus our results in Theorem 1.1 are optimal
in this sense.

(iii). The condition of the weight w ∈
(⋂n

i=1Amax{ qi
d
,1}(Rd)

)
∩ Ap(Rd) seems to be

unnatural at the first sight, since it doesn’t appear previously. However, this kind
of condition is just appropriate for the higher dimensional Calderón commutator
as we will see in our later proof. In fact w ∈ Amax{ qi

d
,1}(Rd) comes from ∇Ai ∈

Lqi(Rd, w) and w ∈ Ap(Rd) comes from f ∈ Lp(Rd, w). When the dimension

d = 1, (1.5) turns out to be that C∗ maps Lq1(R, w)×· · ·×Lqn(R, w)×Lp(Rd, w)
to Lr(R, w) if 1

n+1 < r < ∞, 1 < q1, · · · , qn ≤ ∞, 1 < p ≤ ∞ and w ∈
∩ni=1Aqi(R) ∩ Ap(R), which has been proved by Duong, Gong, Grafakos, Li and
Yan [12, Theorem 4.3] except the endpoint case qi = ∞ for some i or p = ∞.
Therefore even in the one dimensional case (1.5) is new at the endpoint case
qi = ∞ for some i or p = ∞. To the best knowledge of the author, (1.5) is new
when d ≥ 2.
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(iv). Notice that L1,1(R, w) = L1(R, w). Therefore when the dimension d = 1, (1.7) is
just that the maximal n-th order Calderón commutator maps L1(R, w) × · · · ×
L1(R, w) × L1(R, w) to L

1
1+n

,∞(R, w) under the assumption w ∈ A1(R), which
has been proved by Grafakos, Liu and Yang [16, Corollary 1.7]. To the best
knowledge of the author, (1.7) is new when d ≥ 2. Although we assume that
d ≥ 2 in our main results, the proof presented in this paper is also valid for
d = 1. Therefore even when d = 1, the proof of (1.5) and (1.7) here are quite
different from that by Duong, Gong, Grafakos, Li and Yan [12], Grafakos, Liu
and Yang [16], thus we give new proofs of (1.5) and (1.7) for d = 1.

(v). Currently, there are extensively research on seeking the optimal quantitative
weighted bound for singular integral. We do not purse this topic in this paper
but hope to work on it in the future work.

Notice first that if qi = ∞ with i = 1, · · · , n, i.e. Ai is a Lipschitz function,
then C[∇A1, · · · ,∇An, ·] is a standard Calderón Zygmund operator. By the stan-
dard weighted theory of the Calderón-Zygmund operator, we may easily get that C∗
maps L∞(Rd, w) × · · · × L∞(Rd, w) × Lp(Rd, w) to Lp(Rd, w) for 1 < p < ∞ and
L∞(Rd, w)× · · · ×L∞(Rd, w)×L1(Rd, w) to L1,+∞(Rd, w). Recall the method used in
[12] or [16], by establishing the Cotlar inequality for the multilinear Calderón-Zygmund
operator, the authors in [12] or [16] proved the weighted multilinear estimates for the
Calderón-Zygmund operator and then applies them to the one-dimensional Calderón
commutator. There are also variants of the Cotlar inequality for the higher dimension-
al Calderón commutator, which is available only for the multilinear estimates (1.5) in
the case that all qi > d, i = 1, · · · , n, r > 1 (see Proposition 3.3). To deal with the
remainder case, our strategy is as follows. We straightforward establish the endpoint
estimates in (ii) of Theorem 1.1, which means that we need to give some weak type
estimates. Note that Ai belongs to the Sobolev space W 1,qi(Rd, w). We will construct
an exceptional set which satisfies the required weighted weak type estimate. And on
the complementary set of exceptional set , the function Ai is a Lipschitz function with

a bound λ
r
qi . Then, roughly speaking, the strong type estimate and the weak type

L1,∞(Rd, w) boundedness (with qi =∞, i = 1, · · · , n) of C∗[∇A1, · · · ,∇An, f ](x) could
be applied on the complementary set of exceptional set . To construct the exceptional
set , we will make use of the Marry Weiss maximal operator and the weighted Sobolev
inequality.

This paper is organized as follows. Firstly some preliminary lemmas are presented
in Section 2. In Section 3, we give the proof of Theorem 1.1. The proof is divided
into several case. In Subsection 3.1, we prove some strong type estimates of (i) in
Theorem 1.1. The proofs of (ii) in Theorem 1.1 are given in Subsections 3.2 and 3.3.
In Subsection 3.4, we shall use the linear Marcinkiewicz interpolation with some strong
type estimates of (i) and full weak type estimates of (ii) to show the rest of (i) in
Theorem 1.1.

Notation. Throughout this paper, we only consider the dimension d ≥ 2 and the
letter C stands for a positive finite constant which is independent of the essential
variables, not necessarily the same one in each occurrence. A . B means A ≤ CB
for some constant C. By the notation Cε means that the constant depends on the
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parameter ε. A ≈ B means that A . B and B . A. n represents the order of
Calderón commutator. The indexes r, q1, · · · , qn and p satisfy 1

r =
(∑n

i=1
1
qi

)
+ 1

p with

1 ≤ qi ≤ ∞ (i = 1, · · · , n) and 1 ≤ p ≤ ∞ in the whole paper. For a set E ⊂ Rd,
we denote by w(E) =

∫
E w(x)dx. ∇A will stand for the vector (∂1A, · · · , ∂dA) where

∂iA(x) = ∂A(x)/∂xi. Define Nji = {i, i+ 1, · · · , j}. Set

‖∇A‖X =
∥∥∥( d∑

i=1

|∂iA|2
) 1

2
∥∥∥
X

for X = Lp(Rd, w) or X = Ld,1(Rd, w). Z+ denotes the set of all nonnegative integers
and Zd+ = Z+ × · · · × Z+︸ ︷︷ ︸

d

. For α ∈ Zd+ and x ∈ Rd, we define xα = xα1
1 xα2

2 · · ·x
αd
d .

2. Some Preliminary Lemmas

In this section, we will introduce the weighted properties of some operators which
are useful in the proof of Theorem 1.1. Those operators include the Hardy-Littlewood
maximal operator with order δ, the maximal sharp function operator, the Marry Weiss
maximal operator and many others. And also a weighted Sobolev inequality is needed.

Definition 2.1 (Ap(Rd) weight). A nonnegative locally integrable function w on Rd is

called to be an Ap(Rd) weight if there exists a constant C > 0 such that

(2.1) sup
Q

( 1

|Q|

∫
Q
w(x)dx

)( 1

|Q|

∫
B
w(x)

− 1
p−1dx

)p−1
≤ C <∞,

where the supremum is taken all cube Q in Rd. The smallest constant C for (2.1) holds
is called the Ap bound of w and is denoted by [w]Ap . We call w an A1(Rd) weight if
there exists a constant C independent of Q such that

(2.2)
1

|Q|

∫
Q
w(z)dz ≤ Cw(y), a.e. y ∈ Q.

And we set the smallest constant C in (2.2) as [w]A1 , which is called the A1 bound of
w. We also set A∞(Rd) =

⋃
1≤q<∞Aq(Rd).

It is easy to see that an equivalent definition of A1(Rd) weight is that M(w) ≤ Cw(x),
where M is the Hardy-Littlewood maximal operator. Recall the following basic fact
about Ap(Rd) weight (see [17]):

Ap(Rd) ( Aq(Rd), if 1 ≤ p < q ≤ ∞.

Lemma 2.2 (see [20] or [22]). Suppose that w ∈ A∞(Rd). Let 0 < δ, q < ∞. Then
there exists a constant C depends only on w, δ, q such that∫

Rd
[Mδf(x)]qw(x)dx ≤ C

∫
Rd

[M ]
δf(x)]qw(x)dx
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holds for any function provided that the left side integral is finite. Here Mδ, M
]
δ are

the Hardy-Littlewood maximal operator with order δ and the maximal sharp function
operator, which are defined as

Mδ(f)(x) = sup
r>0

( 1

|Q(x, r)|

∫
Q(x,r)

|f(y)|δdy
) 1
δ
,

M ]
δ(f)(x) = sup

Q3x
inf
c

( 1

|Q|

∫
Q
|f(z)− c|δdz

) 1
δ
,

where Q is a cube in Rd and Q(x, r) is a cube with center x and sidelength r.

Next we state some properties of a special maximal function introduced firstly by
Mary Weiss (see [5]), which is defined as

M(∇A)(x) = sup
h∈Rd\{0}

|A(x+ h)−A(x)|
|h|

.

Lemma 2.3. Suppose that w ∈ Ap/d(Rd) with p > d. Let ∇A ∈ Lp(Rd, w). Then M
is bounded on Lp(Rd, w), that is

‖M(∇A)‖Lp(Rd,w) . ‖∇A‖Lp(Rd,w).

Proof. By using the dense argument, it is sufficient to consider A as a C∞ function
with compact support. Then by the result of [5, Lemma 1.4], we get that for any q > d,

|A(x)−A(y)|
|x− y|

.
( 1

|x− y|d

∫
|x−z|≤2|x−y|

|∇A(z)|qdz
) 1
q
.

Since w ∈ Ap/d(Rd), by the revers Hölder inequality of Ap/d(Rd) weight (see [17]) and

its definition, there exist ε > 0 such that w ∈ Ap/d−ε(Rd) and p/d − ε ≥ 1. Therefore
we may choose q in the above inequality such that p/d − ε = p/q and d < q < p.
Applying the fact that the Hardy-Littlewood maximal operator M maps Ls(Rd, w) to
itself if 1 < s ≤ ∞ and w ∈ As(Rd), we may get

‖M(∇A)‖Lp(Rd,w) . ‖Mq(∇A)‖Lp(Rd,w) = ‖M(|∇A|q)‖
1
q

Lp/q(Rd,w)
. ‖∇A‖Lp(Rd,w),

which completes the proof. �

Lemma 2.4. Let A be a function such that ∇A ∈ Ld,1(Rd, w), the Lorentz space with
weight w ∈ A1(Rd). Then for any λ > 0,

w({x ∈ Rd :M(∇A)(x) > λ}) . λ−d‖∇A‖dLd,1(Rd,w).

Proof. By the dense argument, it is sufficient to consider A as a smooth function with
compact support. Using the formula [26, page 125, (17)], one may write

A(x) = Cd

d∑
j=1

∫
Rd

xj − yj
|x− y|d

∂jA(y)dy = K ∗ f(x)

where K(x) = 1/|x|d−1, f = Cd
∑d

j=1Rj(∂jA) with Rjs the Riesz transforms. Notice

that w ∈ A1(Rd) ( Ap(Rd) for all 1 < p ≤ ∞. By applying the general form of the
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Marcinkiewicz interpolation theorem (see [28, page 197, Theorem 3.15]), we obtain that
the Riesz transform Rj maps Ld,1(Rd, w) to itself. Then it is easy to see that

‖f‖Ld,1(Rd,w) . ‖∇A‖Ld,1(Rd,w).

Hence to finish the proof, it is sufficient to prove that

(2.3) w({x ∈ Rd :M(∇A)(x) > λ}) . λ−d‖f‖dLd,1(Rd,w)

with A = K ∗ f . Below we shall show that for any x ∈ Rd, the following estimate

|A(x+ h)−A(x)| . |h|T (f)(x)

holds uniformly for h ∈ Rd\{0} where T is an operator maps Ld,1(Rd, w) to Ld,∞(Rd, w).
Once we show this, we get (2.3) and hence finish the proof of Lemma 2.4. We write

A(x+ h)−A(x)

=

∫
|x−y|≤2|h|

|x+ h− y|−d+1f(y)dy −
∫
|x−y|≤2|h|

|x− y|−d+1f(y)dy

+

∫
|x−y|>2|h|

(
|x+ h− y|−d+1 − |x− y|−d+1

)
f(y)dy

= I + II + III.

Consider I firstly. Observe that K ∈ Ld′,∞(Rd) where d′ = d/(d− 1). Set B(x, r) =
{y ∈ Rd : |x − y| ≤ r}. Applying the rearrangement inequality (see [17, page 74,
Exercise 1.4.1]), we obtain that

|I| ≤
∫
Rd

K(x+ h− y)|fχB(x,2|h|)(y)|dy ≤
∫ ∞

0
K∗(s)(fχB(x,2|h|))

∗(s)ds

≤
(∫ ∞

0
(fχB(x,2|h|))

∗(s)s
1
d
ds

s

)
· sup
s>0

(
K∗(s)s

1
d′
)

. ‖fχB(x,2|h|)‖Ld,1(Rd)‖K‖Ld′,∞(Rd),

where f∗ stands for the decreasing rearrangement of f . Applying the definition of
Lorentz space, we may get that ‖χE‖Ld,1(Rd) = ‖χE‖Ld(Rd) holds for any characteristic

function χE of set E of finite measure, thus ‖χB(x,2|h|)‖Ld,1(Rd) = Cd|h|. Then we obtain
that

|I| . |h|Λ(f)(x), where Λ(f)(x) = sup
r>0

‖fχB(x,r)‖Ld,1(Rd)

‖χB(x,r)‖Ld,1(Rd)

.

In the following it is sufficient to show that the operator Λ maps Ld,1(Rd, w) to
Ld,∞(Rd, w). Note that Ld,1(Rd, w) is a Banach space (see e.g. [28, page 204, Theorem
3.22]), it suffices to show that Λ is restricted of type (d, d), thus is ‖Λ(χE)‖Ld,∞(Rd,w) .

w(E)
1
d (see e.g. [17, page 62, Lemma 1.4.20]). However in this case, the proof is

equivalent to show that

w({x ∈ Rd : M(χE)(x) > λ}) . λ−1‖χE‖L1(Rd,w),

where M is the Hardy-Littlewood maximal operator. Since M is weighted weak type
(1,1) if w ∈ A1(Rd), hence we prove that Λ maps Ld,1(Rd, w) to Ld,∞(Rd, w).
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Next consider II. Observe that the kernel k(x) := ε−1|x|−d+1χ{|x|≤ε} is radial non-

increasing and L1 integrable in Rd, we get

|II| . ‖k‖L1(Rd)|h|M(f)(x).

Notice that Lp,1(Rd, w) ⊂ Lp(Rd, w) and M maps Lp(Rd, w) to itself for 1 < p < ∞.
Hence we get that M maps Ld,1(Rd, w) to Ld,∞(Rd, w).

Finally consider III. Notice that it suffices to consider |x−y| > 2|h|. Then applying
the Taylor expansion of |x− y + h|−d+1, we get

(2.4)
1

|x− y + h|d−1
− 1

|x− y|d−1
= (−d+ 1)

d∑
j=1

hj
xj − yj
|x− y|d+1

+R(x, y, h)

where the remainder term R(x, y, h) in the Taylor expansion satisfies

|R(x, y, h)| ≤ C|h|2|x− y|−d−1 if |x− y| > 2|h|.
Inserting (2.4) into the term III with the above estimate of R(x, y, h), we conclude
that

|III| . |h|
d∑
j=1

R∗j (f)(x) + |h|2
∫
|x−y|>2|h|

|x− y|−d−1|f(y)|dy

where R∗j is the maximal Riesz transform defined by

R∗j (f)(x) = sup
ε>0

∣∣∣ ∫
|x−y|>ε

xj − yj
|x− y|d+1

f(y)dy
∣∣∣.

Since R∗j is bounded on Lp(Rd, w) for 1 < p <∞, we immediately obtain that R∗j maps

Ld,1(Rd, w) to Ld,∞(Rd, w). The second term which controls III can be dealt similar to
that of the estimate of II once we observe that ε|x|−d−1χ{|x|>ε} is radial non-increasing

and L1 integrable. �

In the following, we introduce a weighted Sobolev inequality and a key weighted
weak type estimate for ∇A ∈ Lp(Rd, w) with 1 ≤ p < d. Define the weighted Hardy-
Littlewood maximal operator of order p Mw,p and the weighted maximal operator Mw,s

by

Mw,p(f)(x) = sup
r>0

(
1

w(Q(x, r))

∫
Q(x,r)

|f(y)|pw(y)dy

)1/p

,

Mw,s(∇A)(x) = sup
r>0

( 1

w(Q(x, r))

∫
Q(x,r)

∣∣∣A(x)−A(y)

r

∣∣∣sw(y)dy
)1/s

,

where Q(x, r) is a cube with center x and sidelength r.

Lemma 2.5 (see [9]). If w is an A1(Rd) weight, then the following weighted Sobolev
inequality (∫

Rd
|g(x)|sw(y)dy

) 1
s ≤ C

(∫
Rd

[
w(x)−

1
d |∇g(x)|

]p
w(x)dx

) 1
p

holds for 1 ≤ p < d and 1/s = 1/p−1/d, where g is a C1 function with compact support
and the constant C does not depend on g.
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Lemma 2.6. Let w ∈ A1(Rd) and ∇A ∈ Lp(Rd, w) with 1 ≤ p < d. Set 1/s =
1/p− 1/d. Then we have

w({x ∈ Rd : Mw,s(∇A)(x) > λ}) . λ−p‖∇A‖p
Lp(Rd,w)

.

Proof. By using a standard limiting argument, we only need to consider A as a C∞

function with compact support. Fix a cube Q(x, r). Choose a C∞c function φ such
that φ(y) ≡ 1 if y ∈ Q(x, r), suppφ ⊂ Q(x, 2r) and ‖∇φ‖L∞(Rd) . r−1. Consider the

auxiliary function φ(y)(A(x)− A(y)) where x is fixed and y is the variable. Using the
weighted Sobolev inequality in Lemma 2.5 and the property (2.2) of A1(Rd) weight,
one may get that(∫

Q(x,r)
|A(x)−A(y)|sw(y)dy

) 1
s
.
[ ∫

Rd

[
∇y(φ(y)(A(x)−A(y)))

]p
w(y)1− p

ddy
] 1
p

.
(∫

Q(x,2r)

∣∣∇A(y)
∣∣pw(y)1− p

ddy
) 1
p

+
(∫

Q(x,2r)\Q(x,r)

∣∣∣A(x)−A(y)

r

∣∣∣pw(y)1− p
ddy
) 1
p

.
[w(Q(x, 2r))

|Q(x, 2r)|

]− 1
d
[( ∫

Q(x,2r)

∣∣∇A(y)
∣∣pw(y)dy

) 1
p

+
(∫

Q(x,2r)\Q(x,r)

∣∣∣A(x)−A(y)

r

∣∣∣pw(y)dy
) 1
p
]
.

The above estimate, via the doubling property of w(x)dx (i.e. w(2Q) . w(Q), see [17])
and 1

s = 1
p −

1
d , yields that

( 1

w(Q(x, r))

∫
Q(x,r)

∣∣∣A(x)−A(y)

r

∣∣∣sw(y)dy
) 1
s
.Mw,p(∇A)(x) + Sp(∇A)(x),

where

Sp(∇A)(x) :=
[ 1

w(Q(x, 2r))

∫
Q(x,2r)\Q(x,r)

∣∣∣A(x)−A(y)

r

∣∣∣pw(y)dy
] 1
p
.

Again using the fact that w(x)dx satisfies the doubling property, one may see that the
Hardy-Littlewood maximal operator Mw,1 with the weight w is of weak type (1,1), thus

is Mw,1 maps L1(Rd, w) to L1,∞(Rd, w). Then we get that Mw,p maps Lp(Rd, w) to

Lp,∞(Rd, w). Therefore to complete the proof, it is enough to show that Sp(∇A)(x) .
T (∇A)(x) with T mapping Lp(Rd, w) to Lp,∞(Rd, w).

Below we give some explicit estimates of A(x)−A(y) similar to that in the proof of
Lemma 2.4. By the formula given in [26, page 125, (17)], we may write

A(x) = Cd

d∑
j=1

∫
Rd

xj − yj
|x− y|d

∂jA(y)dy.



10 XUDONG LAI

Split A(x)−A(y) into three terms as follows,

A(x)−A(y)

= Cd

d∑
j=1

[ ∫
|x−z|≤2|x−y|

xj − zj
|x− z|d

∂jA(z)dz −
∫
|x−z|≤2|x−y|

yj − zj
|y − z|d

∂jA(z)dz

+

∫
|x−z|>2|x−y|

( xj − zj
|x− z|d

− yj − zj
|y − z|d

)
∂jA(z)dz

]
= I(x) + II(x) + III(x).

(2.5)

Plug the above three terms back into Sp(∇A)(x) and define these three terms as
Sp,1(∇A)(x), Sp,2(∇A)(x) and Sp,3(∇A)(x) respectively.

Let us first consider Sp,1(∇A)(x). By applying the Hölder inequality,

|I(x)|p . |x− y|p−1
(∫
|x−z|≤2|x−y|

|∇A(z)|p

|x− z|d−1
dz
)
.

Plugging the above inequality into Sp,1(∇A)(x) with |x − y| ≈ r, and then using the

kernel k(x) = ε−1|x|−d+1χ{|x|≤Cε} is a radial non-increasing function and L1 integrable

in Rd, we get that

Sp,1(∇A)(x) .
(
r−1

∫
|x−z|.r

|∇A(z)|p

|x− z|d−1
dz
) 1
p
.Mp(∇A)(x).(2.6)

It is easy to see that Mp maps Lp(Rd, w) to Lp,∞(Rd, w) with w an A1(Rd) weight

is equivalent to that the Hardy-Littlewood maximal operator M maps L1(Rd, w) to
L1,∞(Rd, w), which is however well known.

Next we consider Sp,2(∇A)(x). By using the Hölder inequality to deal with II(x) as
those of I(x), then applying |x− y| ≈ r and the Fubini theorem, we get

Sp,2(∇A)(x) .
[ 1

w(Q(x, 2r))

∫
Q(x,2r)\Q(x,r)

1

r

(∫
|x−z|.r

|∇A(z)|p

|y − z|d−1
dz
)
w(y)dy

] 1
p

.
[ 1

w(Q(x, 2r))

∫
|x−z|.r

r−1
(∫
|y−z|.r

w(y)

|y − z|d−1
dy
)
|∇A(z)|pdz

] 1
p

.
[ 1

w(Q(x, 2r))

∫
|x−z|.r

M(w)(z)|∇A(z)|pdz
] 1
p

.
[ 1

w(Q(x, 2r))

∫
|x−z|.r

|∇A(z)|pw(z)dz
] 1
p
.Mw,p(∇A)(x),

(2.7)

where in the third inequality we use again the fact that the kernel function k(x) =
ε−1|x|−d+1χ{|x|≤Cε} is a radial non-increasing function and L1 integrable in Rd, the

last second inequality follows from (2.2). As showed previously, Mw,p maps Lp(Rd, w)

to Lp,∞(Rd, w).
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We consider Sp,3(∇A)(x). Set Kj(x) =
xj
|x|d . Notice that |x− z| > 2|x− y|. Applying

the Taylor expansion of Kj(x− z), we may get

Kj(x− z)−Kj(y − z) =
d∑
i=1

(xi − yi)∂iKj(x− z) +R(x, y, z)

where the Taylor expansion’s remainder term R(x, y, z) satisfies

|R(x, y, z)| . |x− y|2|x− z|−d−1, ∀ |x− z| > 2|x− y|.
Plunge the Taylor expansion’s main term and reminder term into Sp,3(∇A)(x) and
split Sp,3(∇A)(x) as two terms Sp,3,m(∇A)(x) (related to main term) and Sp,3,r(∇A)(x)
(related to reminder term), respectively. Then by |x − y| ≈ r, we have the following
estimate of Sp,3,m(∇A)(x),

Sp,3,m(∇A)(x)

.
[ 1

w(Q(x, 2r))

∫
Q(x,2r)

( d∑
j=1

d∑
i=1

∣∣∣ ∫
|x−z|>2|x−y|

∂iKj(x− z)∂jA(z)dz
∣∣∣)pw(y)dy

] 1
p

.
d∑
j=1

d∑
i=1

T ∗i,j(∂jA)(x),

where the maximal singular integral operator T ∗i,j(f)(x) is defined as follows

(2.8) T ∗i,j(f)(x) = sup
ε>0

∣∣∣ ∫
|x−y|>ε

∂iKj(x− y)f(y)dy
∣∣∣.

One can easily check that the kernel ∂iKj(x − y) is a standard Calderón-Zygmund

convolution kernel which satisfies (1.1), (1.3) and has mean value zero on Sd−1. Then
by the standard weighted Calderón-Zygmund theory (see [17]), T ∗i,j is bounded on

Lp(Rd, w). So T ∗i,j maps Lp(Rd, w) to Lp,∞(Rd, w).
Finally one may apply the method similar to that of I to handle the reminder term

Sp,3,r(∇A)(x). Indeed, by the Hölder inequality and |x− y| ≈ r, we get

Sp,3,r(∇A)(x) .
[ 1

w(Q(x, 2r))

∫
Q(x,2r)\Q(x,r)

r
(∫

r.|x−z|

|∇A(z)|p

|x− z|d+1
dz
)
w(y)dy

] 1
p

.Mp(∇A)(x),

where in the last inequality we use that the function ε|x|−d−1χ{|x|>ε} is radial non-

increasing and L1 integrable. As showed in the estimate of I, we get that Mp maps

Lp(Rd, w) to Lp,∞(Rd, w). Hence we complete the proof. �

Remark 2.7. When giving an estimate in (2.5), we in fact prove that the following
inequality

(2.9)
|A(x)−A(y)|
|x− y|

.M(∇A)(x) +M(∇A)(y) +

d∑
i=1

d∑
j=1

T ∗i,j(∂jA)(x)

holds for almost every x, y ∈ Rd if A is a C∞c function, where T ∗i,j is defined in (2.8).
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Lemma 2.8. Let {Qk}k be the disjoint cubes in Rd. Denote by l(Qk) the side length
of Qk. Define the operator Ts as

Ts(f)(x) =
∑
k

∫
Qk

l(Qk)
s

[l(Qk) + |x− y|]d+s
|f(y)|dy.

Suppose that 1 ≤ q ≤ ∞, w ∈ Aq(Rd) and f ∈ Lq(Rd, w). Then for any s > 0, we get
that

‖Ts(f)‖Lq(Rd,w) . ‖f‖Lq(Rd,w).

Proof. If q = 1, Lemma 2.8 just follows from the property (2.2) of A1(Rd) weight and
the Fubini theorem. In fact, we have

‖Ts(f)‖L1(Rd,w) ≤
∑
Qk

∫
Qk

[ ∫
Rd

w(x) · l(Qk)s

[l(Qk) + |x− y|]d+s
dx
]
· |f(y)|dy

.
∑
Qk

∫
Qk

M(w)(y) · |f(y)|dy

. [w]A1

∑
Qk

∫
Qk

|f(y)|w(y)dy . [w]A1‖f‖L1(Rd,w),

where the second inequality follows from that splitting the kernel l(Qk)s

[l(Qk)+|x−y|]d+s into

two parts according whether |x − y| ≤ l(Qk) or |x − y| > l(Qk), the third inequality
follows from the property (2.2) and in the last inequality we use that Qks are cubes
disjoint each other. After we establish Ts is bounded on L1(Rd, w) with bound [w]A1 ,
the proof of the case 1 < q < ∞ just follows from the famous extrapolation theorem
(see e.g. Theorem 7.5.3 in [17]). If q =∞, apply the Fubini theorem,

|Ts(f)(x)| ≤
∑
Qk

‖f‖L∞(Qk) sup
x∈Rd

∫
Qk

l(Qk)
s

[l(Qk) + |x− y|]d+s
dy . ‖f‖L∞(Rd).

Then Ts is bounded on L∞(Rd, w) is just a consequence of the chain of inequalities:

(2.10) ‖Ts(f)‖L∞(Rd,w) . ‖Ts(f)‖L∞(Rd) . ‖f‖L∞(Rd) . ‖f‖L∞(Rd,w),

which can be proved as follows. Notice that we have the equivalent definition of
L∞(Rd, µ): ‖f‖L∞(Rd,µ) = sup{α : µ({x ∈ Rd : |f(x)| > α}) > 0}. The first in-

equality in (2.10) follows from the fact that w(E) > 0 implies |E| > 0. Likewise, the
last inequality in (2.10) follows from the fact that |E| > 0 implies w(E) > 0, because
w(x) = 0 only for the points in a set of measure zero by the definition of A∞(Rd)
weight. Hence we complete the proof. �

Remark 2.9. By the last argument above, for any w ∈ A∞(Rd), the follow equality

‖f‖L∞(Rd) ≈ ‖f‖L∞(Rd,w)

holds. We will straightforward apply this equivalence many times later.
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3. Proof of Theorem 1.1

3.1. Some basic strong type multilinear estimates.

In the following, we begin to give the proof of Theorem 1.1. In this subsection, we
will first show our theorem in the case q1 = · · · = qn =∞, r = p ∈ [1,∞) which is not
quite complicated and the case d < q1, · · · , qn ≤ ∞, 1 < r <∞, p =∞.

Proposition 3.1. Let qi = ∞ with i = 1, · · · , n, 1 ≤ r = p < ∞. We have the
following conclusions:

(i). If p = r ∈ (1,∞), w ∈ Ap(Rd), then

‖C∗[∇A1, · · · ,∇An, f ]‖Lp(Rd,w) .
( n∏
i=1

‖∇Ai‖L∞(Rd,w)

)
‖f‖Lp(Rd,w).

(ii). If p = r = 1, w ∈ A1(Rd), then

‖C∗[∇A1, · · · ,∇An, f ]‖L1,∞(Rd,w) .
( n∏
i=1

‖∇Ai‖L∞(Rd,w)

)
‖f‖L1(Rd,w).

Proof. The proof of this lemma is quite standard, so we just give some key steps. When
q1 = · · · = qn =∞, Ai is a Lipschitz function for i = 1, · · · , n. Fix all Ai. Observe that
the kernel

(3.1) K(x, y) := K(x− y)
( n∏
i=1

Ai(x)−Ai(y)

|x− y|

)
is a standard Calderón-Zygmund kernel satisfying the boundedness condition and reg-
ularity condition with bound

∏n
i=1 ‖∇Ai‖L∞(Rd) (see e.g. [18, Definition 4.1.2]). Then

we may have the following L2 boundedness

(3.2) ‖C[∇A1, · · · ,∇An, f ]‖L2(Rd) .
( n∏
i=1

‖∇Ai‖L∞(Rd)

)
‖f‖L2(Rd).

This in fact can be seen by using the famous T1 theorem (see [18]) or by applying the
mean value formula

Ai(x)−Ai(y)

|x− y|
=

∫ 1

0

〈 x− y
|x− y|

,∇Ai(sx+ (1− s)y)
〉
ds

to reduce the operator C to the following operator introduced by Christ and Journé [8]

CCJ [a1, · · · , an, f ](x) = p.v.

∫
Rd
k(x− y)(

n∏
i=1

mx,yai)f(y)dy

which maps L∞(Rd) × · · · × L∞(Rd) × L2(Rd) to L2(Rd) (see [8]). Here in the above

operator k(x− y) is a standard Calderón-Zygmund kernel and mx,ya =
∫ 1

0 a(sx+ (1−
s)y)dy. Then the rest of the proof just follows from the standard weighted Caderón-
Zygmund theory (see [17, Theorem 7.4.6.]). �
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Proposition 3.2. Suppose that 1 < r <∞, d < q1, · · · , qn ≤ ∞ and 1
r =

∑n
i=1

1
qi

. Let

w ∈
⋂n
i=1A qi

d
(Rd). Assume that ∇Ai ∈ Lqi(Rd, w), i = 1, · · · , n and f ∈ L∞(Rd, w).

Then we get

‖C[∇A1, · · · ,∇An, f ]‖Lr(Rd,w) .
( n∏
i=1

‖∇Ai‖Lqi (Rd,w)

)
‖f‖L∞(Rd,w).

Proof. By the standard limiting arguments, it is enough to consider that each Ai
are C∞c functions and f is bounded compact function. Then one can easily check
that

∫
Rd
[
Mδ

(
C[∇A1, · · · ,∇An, f ]

)
(x)
]r
w(x)dx is finite (for example one may use the

method in [22, page 1248] to show this). Therefore using the Fefferman-Stein inequality
in Lemma 2.2, we may get that for any δ > 0,

‖C[∇A1, · · · ,∇An, f ]‖Lr(Rd,w) ≤ ‖Mδ

(
C[∇A1, · · · ,∇An, f ]

)
‖Lr(Rd,w)

. ‖M ]
δ

(
C[∇A1, · · · ,∇An, f ]

)
‖Lr(Rd,w).

In the following, we need to give an estimate of the maximal sharp function. Fix x
and a cube Q 3 x. Define f1 = fχ3Q and f2 = f − f1. Then write

C[∇A1, · · · ,∇An, f ](z) = C[∇A1, · · · ,∇An, f1](z) + C[∇A1, · · · ,∇An, f2](z).

Choose a constant c = C[∇A1, · · · ,∇An, f2](x) in the maximal sharp function. Then

we see that this maximal sharp function M ]
δ(C[∇A1, · · · ,∇An, f ])(x) is bounded by the

following two functions

I(x)+II(x) := sup
Q3x

( 1

|Q|

∫
Q
|C[∇A1, · · · ,∇An, f1](z)|δdz

) 1
δ

+ sup
Q3x

( 1

|Q|

∫
Q
|C[∇A1, · · · ,∇An, f2](z)− C[∇A1, · · · ,∇An, f2](x)|δdz

) 1
δ
.

We first consider the above first function I(x). Define Ãi = Aiχ3Q. Then for any
z ∈ Q, we may write

C[∇A1, · · · ,∇An, f1](z) = C[∇Ã1, · · · ,∇Ãn, f1](z).

Choose δ ≤ d/n. Applying the Hölder inequality, strong type multilinear estimate (see

[21, Theorem 1.1]) and the definition of Ãi, we may get( 1

|Q|

∫
Q
|C[∇A1, · · · ,∇An, f1](z)|δdz

) 1
δ
. ‖C[∇Ã1, · · · ,∇Ãn, f1]‖

L
d
n (Q, dx|Q| )

. ‖f1‖L∞(Rd)

n∏
i=1

‖∇Ãi‖Ld(Rd, dx|Q| )

. ‖f‖L∞(Rd)

d∏
i=1

Md(∇Ai)(x),

where Md is the Hardy-Littlewood maximal operator of order d. Notice that w ∈⋂n
i=1Aqi/d(R

d), by using the weighted boundedness of the Hardy-Littlewood maximal
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operator, one may easily get that ‖Md(∇Ai)‖Lqi (Rd,w) . ‖∇Ai‖Lqi (Rd,w). Therefore

‖I‖Lr(Rd,w) .
( n∏
i=1

‖∇Ai‖Lqi (Rd,w)

)
‖f‖L∞(Rd,w).

Next we turn to II(x). Write

C[∇A1, · · · ,∇An, f2](z)− C[∇A1, · · · ,∇An, f2](x) =

∫
(3Q)c

[
K(z, y)− K(x, y)

]
f(y)dy

where K(x, y) := K(x− y)
∏n
i=1

Ai(x)−Ai(y)
|x−y| . Then write

K(z, y)− K(x, y)

=
(K(z − y)

|z − y|n
− K(x− y)

|x− y|n
) n∏
i=1

(Ai(z)−Ai(y))

+
K(x− y)

|x− y|n
( n∏
i=1

(Ai(z)−Ai(y))−
n∏
i=1

(Ai(x)−Ai(y))
)

=: K1(z, x, y) + K2(z, x, y).

We consider the term K1(z, x, y). Notice that x, z ∈ Q and y ∈ (3Q)c, then |z− y| ≈
|x− y|. By the regularity condition (1.3) and the formula (2.9), we get that

|K1(z, x, y)| . (l(Q))δ

|x− y|d+δ

d∏
i=1

[M(∇Ai)(z) + T (∇Ai)(y)],

where here and in the following, T is the sum of combination of the Hardy-Littlewood
maximal operator and maximal singular integral T ∗i,j defined in (2.8), which both map

Lq(Rd, w) to itself for 1 < q <∞.
Next we consider the term K2(z, x, y). We may split K2(z, x, y) into n terms and

apply (2.9),

K2(z, x, y) .
1

|x− y|d+n

∣∣∣ n∑
i=1

[Ai(z)−Ai(x)]
i−1∏
k=1

[Ak(x)−Ai(y)]
n∏

k=i+1

[Ak(z)−Ak(y)]
∣∣∣

.
l(Q)

|x− y|d+1

n∏
i=1

[M(∇Ai)(z) + T (∇Ai)(x) + T (∇Ai)(y)].

Combining these estimates of K1 and K2, we get

|K(z, y)− K(x, y)|

.
(l(Q))δ

|x− y|d+δ

n∏
i=1

[M(∇Ai)(z) + T (∇Ai)(x) + T (∇Ai)(y)]

.
(l(Q))δ

|x− y|d+δ

∑
Nn1

∏
i∈N1

M(∇Ai)(z)
∏
i∈N2

T (∇Ai)(x)
∏
i∈N3

T (∇Ai)(y),

where in the last inequality we divide Nn1 = N1 ∪ N2 ∪ N3 with Nn1 = {1, · · · , n} and
N1, N2, N3 non intersecting each other. Plugging the above estimates into II(x) and
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applying the Hölder inequality, we get that

II(x) .
∑
Nn1

[ ∏
i∈N2

T (∇Ai)(x)
] 1

|Q|

∫
Q

∫
(3Q)c

(l(Q))δ

|x− y|d+δ

[ ∏
i∈N3

T (∇Ai)(y)
]
f(y)dy

×
[ ∏
i∈N1

T (∇Ai)(z)
]
dz

. ‖f‖L∞(Rd)

∑
Nn1

[ ∏
i∈N2

T (∇Ai)(x)
]
M
[ ∏
i∈N3

T (∇Ai)
]
(x) ·M

[ ∏
i∈N1

T (∇Ai)
]
(x).

Now using the Hölder inequality and the fact that M , T are bounded on Lq(Rd, w) for
1 < q <∞, we get

‖II‖Lr(Rd,w) .
( n∏
i=1

‖∇Ai‖Lqi (Rd,w)

)
‖f‖L∞(Rd,w),

which completes the proof. �

Proposition 3.3. Suppose that 1 < r < ∞, d < q1, · · · , qn ≤ ∞, p = ∞ and 1
r =∑n

i=1
1
qi

. Let w ∈
⋂n
i=1Aqi/d(R

d). Then we get

‖C∗[∇A1, · · · ,∇An, f ]‖Lr(Rd,w) .
( n∏
i=1

‖∇Ai‖Lqi (Rd,w)

)
‖f‖L∞(Rd).

Proof. Let ϕ be a C∞c function which is supported in {x ∈ Rd : |x| < 1/4}, ϕ(x) = 1
if |x| < 1/8 and

∫
Rd ϕ(x)dx = 1. Set ϕε(x) = ε−dϕ(ε−1x). It is easy to see that

ϕε∗C[∇A1, · · · ,∇An, f ](x) is bounded by M(C[∇A1, · · · ,∇An, f ])(x). By the weighted
boundedness of the Hardy-Littlewood maximal operator M and Proposition 3.2, we
may get that

‖M(C[∇A1, · · · ,∇An, f ])‖Lr(Rd,w) .
( n∏
i=1

‖∇Ai‖Lqi (Rd,w)

)
‖f‖L∞(Rd,w).

So, to complete the proof, it is suffice to show that the following difference

Cε[∇A1, · · · ,∇An, f ](x)− ϕε ∗ C[∇A1, · · · ,∇An, f ](x)

is controlled uniformly in ε by a function which is bounded from Lq1(Rd, w) × · · · ×
Lqn(Rd, w)×L∞(Rd, w) to Lr(Rd, w). We write the difference in the above equality as
follows∫

Rd
ϕε(z)

[ ∫
|x−y|>ε

(
K(x, y)− K(x− z, y)

)
f(y)dy

]
dz

+

∫
Rd
ϕε(z)

[
p.v.

∫
|x−y|<ε

K(x− z, y)f(y)dy
]
dz =: Pε(x) +Qε(x),

where K(x, y) := K(x − y)
∏n
i=1

Ai(x)−Ai(y)
|x−y| . Now we first give an estimate of Qε(x).

By the Fubini theorem,
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Qε(x) =

∫
Rd
ϕε(x− z)

[
p.v.

∫
|x−y|<ε

K(z, y)f(y)dy
]
dz

=

∫
|x−y|<ε

[
p.v.

∫
Rd
ϕε(x− z)K(z, y)dz

]
f(y)dy.

Notice that |x − y| < ε and |x − z| < ε
4 . For each i = 1, · · · , n, define Ãi(·) =

Ai(·)χ{|·−x|<ε}. The all Ai in the above inequality can be replaced by Ãi. Choose
1
r̃ = (

∑n
i=1

1
q̃i

) + 1
p̃ such that 1 < r̃ < +∞, 1 ≤ q̃i < qi < ∞ for all i = 1, · · · , n,

1 < p̃ <∞. Then by the multilinear boundedness properties of C[∇A1, · · · ,∇An, f ](x),
we may continue to give an estimate of Qε(x) as follows

|Qε(x)| . ‖f‖L∞(Rd)ε
d
r̃′

n∏
i=1

‖∇Ãi‖Lq̃i (Rd)‖ϕε‖Lp̃(Rd)

≤ ‖f‖L∞(Rd)

( n∏
i=1

1

εd

∫
|x−z|<ε

|∇Ai(z)|q̃idz
) 1
q̃i ε

d
r̃′+

∑n
i=1

d
q̃i
−d p̃−1

p̃ ‖ϕ‖Lp̃(Rd)

. ‖f‖L∞(Rd,w)

n∏
i=1

Mq̃i(∇Ai)(x).

As we have done in the proof of Lemma 2.3, we see that Mq̃i maps Lqi(Rd, w) to itself

for w ∈ Aqi/d(Rd). Then by using the Hölder inequality, we may get that

‖ sup
ε
|Qε|‖Lr(Rd,w) .

( n∏
i=1

‖∇Ai‖Lqi (Rd,w)

)
‖f‖L∞(Rd,w).

Next we turn to Pε(x). Write

K(x,y)− K(x− z, y)

=
(K(x− y)

|x− y|n
− K(x− z − y)

|x− z − y|n
) n∏
i=1

(Ai(x)−Ai(y))

+
K(x− z − y)

|x− z − y|n
[ n∏
i=1

(Ai(x)−Ai(y))−
n∏
i=1

(Ai(x− z)−Ai(y))
]

=: I + II.

We consider the term I. Notice that |x−y| > ε and |z| < 1
4ε, then |x−y| ≈ |x−z−y|.

By the regularity condition (1.3) and (2.9), we get that

|I| . εδ

|x− y|d+δ

d∏
i=1

[M(∇Ai)(x) + T (∇Ai)(y)].
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Consider the term II. We may split II into n terms and use (2.9),

|II| . 1

|x− y|d+n

∣∣∣ n∑
i=1

[Ai(x)−Ai(x− z)]
i−1∏
k=1

[Ak(x− z)−Ai(y)]
n∏

k=i+1

[Ak(x)−Ak(y)]
∣∣∣

.
ε

|x− y|d+1

n∏
i=1

[M(∇Ai)(x) + T (∇Ai)(x− z) + T (∇Ai)(y)].

Combining the estimates of I and II, we get

|K(x,y)− K(x− z, y)|

.
εδ

|x− y|d+δ

n∏
i=1

[M(∇Ai)(x) + T (∇Ai)(x− z) + T (∇Ai)(y)]

.
εδ

|x− y|d+δ

∑
Nn1

∏
i∈N1

M(∇Ai)(x)
∏
i∈N2

T (∇Ai)(x− z)
∏
i∈N3

T (∇Ai)(y),

where in the last inequality we divide Nn1 = N1 ∪ N2 ∪ N3 with N1, N2, N3 non
intersecting each other. Plugging the above estimate into Pε(x), we get that

|Pε(x)| .
∑
Nn1

[ ∏
i∈N1

M(∇Ai)(x)
] ∫

Rd

∫
|x−y|>ε

εδ

|x− y|d+δ

[ ∏
i∈N3

T (∇Ai)(y)
]
f(y)dy

× ϕε(z)
[ ∏
i∈N2

T (∇Ai)(x− z)
]
dz

. ‖f‖L∞(Rd)

∑
Nn1

[ ∏
i∈N1

M(∇Ai)(x)
]
M
[ ∏
i∈N2

T (∇Ai)
]
(x) ·M

[ ∏
i∈N3

T (∇Ai)
]
(x).

Now using the Hölder inequality and the fact that M , T are bounded on Lq(Rd, w) for
1 < q <∞, we get that

‖ sup
ε
|Pε|‖Lr(Rd,w) .

( n∏
i=1

‖∇Ai‖Lqi (Rd,w)

)
‖f‖L∞(Rd,w),

which completes the proof. �

3.2. Case: all qis are larger than d.

In this subsection, we consider the case d/(d+ n) ≤ r <∞ and d ≤ q1, · · · , qn ≤ ∞.
Without loss of generality, we assume that the first q1, · · · , ql > d and ql+1, · · · , qn = d
with 0 ≤ l ≤ n. Here and in the following, when l = 0, we mean all q1 = · · · = qn = d.
The proof of the case p = ∞ is slight different from that of 1 ≤ p < ∞. So we shall
give two propositions below. Let us see the case 1 ≤ p < ∞ firstly and we emphasize
in the proof where it doesn’t work for p =∞.

Proposition 3.4. Let 1
r =

(∑n
i=1

1
qi

)
+ 1
p , d

d+n ≤ r <∞, d < q1, · · · , ql ≤ ∞ and ql+1 =

· · · = qn = d with 0 ≤ l ≤ n, 1 ≤ p < ∞. Suppose that w ∈
(⋂n

i=1Amax{ qi
d
,1}(Rd)

)
∩
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Ap(Rd). Then

‖C∗[∇A1, · · · ,∇An, f ]‖Lr,∞(Rd,w)

.
( l∏
i=1

‖∇Ai‖Lqi (Rd,w)

)( n∏
i=l+1

‖∇Ai‖Ld,1(Rd,w)

)
‖f‖Lp(Rd,w),

(3.3)

where Ld,1(Rd, w) is the weighted Lorentz space.

Proof. By the dense limiting argument and scaling argument, it is sufficient to prove
that when Ai (i = 1, · · · , n) and f are C∞ functions with compact supports,

‖∇Ai‖Lqi (Rd,w) = ‖∇Aj‖Ld,1(Rd,w) = ‖f‖Lp(Rd,w) = 1,

for i = 1, · · · , l and j = l + 1, · · · , n, the following inequality

w({x ∈ Rd : C∗[∇A1, · · · ,∇An, f ](x) > λ}) . λ−r

holds for any λ > 0. Fix λ > 0. For convenience we set

(3.4) Eλ = {x ∈ Rd : C∗[∇A1, · · · ,∇An, f ](x) > λ}.
Our goal is to show w(Eλ) . λ−r. First assume that all q1, · · · , ql < ∞. Once the

proof in this situation is well understood, we can modify the proof to the other case
that there exist some qi =∞ for i = 1, · · · , l. We shall show how to do this in the last
part of the proof. Define the exceptional set

Ji,λ =
{
x ∈ Rd :M(∇Ai)(x) > λ

r
qi

}
.

for i = 1, · · · , n. Here it should be pointed out that the above definition is meaningless
if qi =∞. Therefore we need to assume all qi <∞ firstly. By Lemma 2.3 and Lemma
2.4, M maps Lp(Rd, w) to itself for p > d and maps Ld,1(Rd, w) to Ld,∞(Rd, w), i.e.

w(Ji,λ) . λ−r‖∇Ai‖qiLqi (Rd,w)
= λ−r, i = 1, · · · , l;

w(Jj,λ) . λ−r‖∇Aj‖dLd,1(Rd,w) = λ−r, j = l + 1, · · · , n.
(3.5)

Set Jλ = ∪ni=1Ji,λ. Since w(x)dx satisfies the doubling property, we may choose an
open set Gλ which satisfies the following conditions: (1) Jλ ⊂ Gλ; (2) w(Gλ) . w(Jλ).
By the property (3.5) of Ji,λ, we see that w(Gλ) . λ−r. Next making a Whitney
decomposition of Gλ (see e.g. [17]), we may obtain a family of disjoint dyadic cubes
{Qk}k such that

(i). Gλ =
⋃∞
k=1Qk;

(ii).
√
d · l(Qk) ≤ dist(Qk, (Gλ)c) ≤ 4

√
d · l(Qk).

With those properties (i) and (ii), for each Qk, we may construct a larger cube Q∗k so
that Qk ⊂ Q∗k, Q

∗
k is centered at yk and yk ∈ (Gλ)c, l(Q∗k) ≈ l(Qk). By the property

(ii) above, the distance between Qk and (Gλ)c equals to Cl(Qk). Therefore by the
construction of Q∗k and yk, one may get

(3.6) dist(yk, Qk) ≈ l(Qk), w(Q∗k) ≈ w(Qk).

Now we come back to give an estimate of w(Eλ). Split f into two parts f = f1 + f2

where f1(x) = f(x)χ(Gλ)c(x) and f2(x) = f(x)χGλ(x). By the definition of Jλ, when

restricted on (Gλ)c, Ai is a Lipschitz function with ‖∇Ai‖L∞((Gλ)c) ≤ λ
r
qi for i =
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1, · · · , n. Let Ãi represent the Lipschitz extension of Ai from (Gλ)c to Rd (see [26, page
174, Theorem 3]) so that for each i = 1, · · · , n,

Ãi(y) = Ai(y) if y ∈ (Gλ)c;∣∣Ãi(x)− Ãi(y)
∣∣ ≤ λ r

qi |x− y| for all x, y ∈ Rd.
Since the operator C∗[· · · , ·] is sub-multilinear, we split Eλ as three terms and give

estimates as follows:

w({x ∈ Rd : C∗[∇A1, · · · ,∇An, f ](x) > λ})
≤ w(10Gλ) + w

(
{x ∈ (10Gλ)c : C∗[∇A1, · · · ,∇An, f1](x) > λ/2}

)
+ w

(
{x ∈ (10Gλ)c : C∗[∇A1, · · · ,∇An, f2](x) > λ/2}

)
.

(3.7)

The above first term satisfies w(10Gλ) . λ−r, which is our required estimate. In
the following, we only consider the second terms. Notice that we only need to consider
x ∈ (10Gλ)c. By the definition of f1, it is not difficulty to see that

C∗[∇A1, · · · ,∇An, f1](x) = C∗[∇Ã1, · · · ,∇Ãn, f1](x).

With this equality in hand, Proposition 3.1 (1 ≤ p <∞) implies

w
({
x ∈ (10Gλ)c : C∗[∇A1, · · · ,∇An, f1](x) > λ/2

})
= w

({
x ∈ (10Gλ)c : C∗[∇Ã1, · · · ,∇Ãn, f1](x) > λ/2

})
. λ−p

( n∏
i=1

‖∇Ãi‖pL∞(Rd,w)

)
‖f1‖pLp(Rd,w)

. λ
−p+p

∑n
i=1

r
qi = λ−r.

(3.8)

If p = ∞, the above method does not work. We will show how to prove this kind of
estimate in the next proposition.

Let us turn to C∗[∇A1, · · · ,∇An, f2](x). Recall Nji = {i, i + 1, · · · , j} and our con-
struction of Gλ, yk, Qk and Q∗k above (3.6). Then by the property (i) of {Qk}k, we
may write f2 =

∑
k fχQk . Therefore we may get

Cε[∇A1, · · · ,∇An, f2](x) =
∑
k

Cε[∇A1, · · · ,∇An, fχQk ](x).

In the following we need to study carefully
∏n
i=1

Ai(x)−Ai(y)
|x−y| . We will separate it into

several terms and then give an estimate for each term. Write

n∏
i=1

Ai(x)−Ai(y)

|x− y|

=

n∏
i=1

(Ãi(x)− Ãi(y)

|x− y|
+
Ãi(y)− Ãi(yk)
|x− y|

+
Ai(yk)−Ai(y)

|x− y|

)
=
∑( ∏

i∈N1

Ãi(x)− Ãi(y)

|x− y|

)( ∏
i∈N2

Ãi(y)− Ãi(yk)
|x− y|

)( ∏
i∈N3

Ai(yk)−Ai(y)

|x− y|

)
= I(x, y) + II(x, y, yk),
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where in the third equality we divide Nn1 = N1∪N2∪N3 withN1, N2, N3 non intersecting
each other; and I(x, y), II(x, y, yk), are defined as follows

I(x, y) =
n∏
i=1

Ãi(x)− Ãi(y)

|x− y|
,

II(x, y, yk) =
∑

N1(Nn1

[ ∏
i∈N1

Ãi(x)− Ãi(y)

|x− y|

]
×
[ ∏
i∈N2

Ãi(y)− Ãi(yk)
|x− y|

][ ∏
i∈N3

Ai(yk)−Ai(y)

|x− y|

]
.

(3.9)

By the above decomposition, we in fact write Cε[∇A1, · · · ,∇An, fχQk ](x) into 3n terms
and separate these terms into two parts according I and II.

Weighted estimate of C∗[· · · , ·] related to I. This estimate is similar to (3.8). In

fact, in this case there is only one term C∗[∇Ã1, · · · ,∇Ãn, f2]. Then by Proposition 3.1
(1 ≤ p <∞), we get

w
({
x ∈(10Gλ)c : C∗[∇Ã1, · · · ,∇Ãn, f2](x) > λ/2

})
. λ−p

( n∏
i=1

‖∇Ãi‖pL∞(Rd,w)

)
‖f2‖pLp(Rd,w)

. λ
−p+p

∑n
i=1

r
qi = λ−r.

If p =∞, the above argument may not work again.
Weighted estimate of C∗[· · · , ·] related to II. It is sufficient to consider one term

C∗[· · · , ·] related to II in which N1 is a proper subset of Nn1 . In such a case, without
loss of generality, we may suppose that N1 = {1, · · · , v}, N2 = {v + 1, · · · ,m} and
N3 = {m + 1, · · · , n} with 0 ≤ v ≤ m ≤ n and v < n. Here if v = 0, it means that
N1 = ∅; if v = m, N2 = ∅; if m = n, N3 = ∅. With these notation, it is easy to see that
N1 is a proper subset of Nn1 . By a slight abuse of notation, we still utilize II(x, y, yk)
to represent one term related to N1, N2 and N3 in (3.9) and utilize HII(x) to represent
C∗[· · · , ·] related to II(x, y, yk), i.e.

HII(x) = sup
ε>0

∣∣∣∑
k

∫
|x−y|>ε

K(x− y)II(x, y, yk)f(y)χQk(y)dy
∣∣∣.

Notice that yk ∈ (Gλ)c, thus yk ∈ (Ji,λ)c. Therefore we obtain that

M(∇Ai)(yk) ≤ λ
r
qi , for i = m+ 1, · · · , n.

With the above fact and Ãi is a Lipschitz function with bound λr/qi for i = 1, · · · ,m,
we get

|II(x, y, yk)| . λ
∑m
i=1

r
qi
|y − yk|n−v

|x− y|n−v
n∏

i=m+1

M(∇Ai)(yk)

. λ
∑n
i=1

r
qi
|y − yk|n−v

|x− y|n−v
.
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Since it is sufficient to consider x ∈ (10Gλ)c, then for y ∈ Qk, |x−y| ≥ 2l(Qk) ≈ |y−yk|
by (3.6). Combining the above discussion with (1.1), we obtain

HII(x) ≤
∑
k

∫
Qk

|K(x− y)| · |II(x, y, yk)| · |f(y)|dy

. λ
∑n
i=1

r
qi

∑
k

∫
Qk

l(Qk)
n−v

[l(Qk) + |x− y|]d+n−v |f(y)|dy = λ
∑n
i=1

r
qi Tn−vf(x)

(3.10)

where Tn−v is defined in Lemma 2.8. Applying the Chebyshev inequality with the
above estimate, and utilizing Lemma 2.8 (notice that n− v ≥ 1 because N1 is a proper
set of Nn1 ), we finally get

w({x ∈ (10Gλ)c : HII(x) > λ}) ≤ λ−p+
∑n
i=1

rp
qi ‖Tn−vf‖pLp(Rd,w)

. λ−r‖f‖p
Lp(Rd,w)

.

Hence we finish the proof of the term II. If p = ∞, the above last argument may
not work and some different discussion should be involved, see the proof in the next
proposition.

Finally, we show how to modify our proof here to the case qi = ∞ for some i =
1, · · · , l. We may assume that only q1 = · · · = qu = ∞ with 1 ≤ u ≤ l. Thus A1,
· · · , Au are Lipschitz functions which in fact are nice functions. Then we just fix
A1, · · · , Au in the rest of the proof. We only make a construction of exceptional set

for Au+1, · · · , An and study
∏n
i=u+1

Ai(x)−Ai(y)
|x−y| by using the same way as we have done

previously. After that utilizing A1, · · · , Au are Lipschitz functions to deal with all
estimates involved with A1, · · · , Au, we could obtain our required bound. �

Proposition 3.5. Let 1
r =

(∑n
i=1

1
qi

)
+ 1

p , d
d+n ≤ r <∞, d < q1, · · · , ql ≤ ∞ and ql+1,

· · · , qn = d with 0 ≤ l ≤ n, p =∞. Suppose that w ∈
⋂n
i=1Amax{ qi

d
,1}(Rd). Then

‖C∗[∇A1, · · · ,∇An, f ]‖Lr,∞(Rd,w)

.
( l∏
i=1

‖∇Ai‖Lqi (Rd,w)

)( n∏
i=l+1

‖∇Ai‖Ld,1(Rd,w)

)
‖f‖L∞(Rd,w),

where Ld,1(Rd, w) is the weighted Lorentz space.

Proof. The proof here is similar to that of Proposition 3.4. So we shall be brief and
only indicate necessary modifications here. Proceeding the proof in Proposition 3.4,
there are four different arguments.

The first one is that when we choose the set Eλ, we set

Eλ = {x ∈ Rd : C∗[∇A1, · · · ,∇An, f ](x) > C0λ},

where C0 is a constant determined later. Our goal is to show w(Eλ) . λ−r. We split
Eλ as several terms and give estimates as follows:

w({x ∈ Rd : C∗[∇A1, · · · ,∇An, f ](x) > C0λ})
≤ w(10Gλ) + w

(
{x ∈ (10Gλ)c : C∗[∇A1, · · · ,∇An, f1](x) > C0λ/2}

)
+ w

(
{x ∈ (10Gλ)c : C∗[∇A1, · · · ,∇An, f2](x) > C0λ/2}

)
.

(3.11)
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The first term above satisfies w(10Gλ) . λ−r, so it is sufficient to consider the second
and third terms. Thus we only need to consider x ∈ (10Gλ)c.

The second difference is the estimate related to the second term in (3.11). Here
we choose r̃, q̃1, · · · , q̃n, such that 1 < r̃ < ∞, q1 < q̃1 < ∞, · · · , qn < q̃n < ∞,
d < q̃1, · · · , q̃n and 1

r̃ =
∑n

i=1
1
q̃i

. Utilize Proposition 3.3 with those above r̃, q̃1, · · · , q̃n
and Ai is a Lipschitz function on (Gλ)c with Lipschitz bound λ

r
qi for i = 1, · · · , n , we

may obtain

w
({
x ∈ (10Gλ)c : C∗[∇A1, · · · ,∇An, f1](x) > C0λ/2

})
≤ w

({
x ∈ (Gλ)c : C∗[∇(A1χ(Gλ)c), · · · ,∇(Anχ(Gλ)c), f1](x) > C0λ/2

})
. λ−r̃

( n∏
i=1

‖∇(Aiχ(Gλ)c)‖r̃Lq̃i (Rd,w)

)
‖f1‖r̃L∞(Rd,w)

. λ−r̃
( n∏
i=1

‖∇Ai‖
(q̃i−qi) r̃q̃i
L∞((Gλ)c)

)( n∏
i=1

‖∇Ai‖
qi
q̃i
r̃

Lqi (Rd,w)

)
‖f1‖r̃L∞(Rd,w)

. λ
−r̃+r̃

(∑n
i=1

r
qi

)
−r
(∑n

i=1
r̃
q̃i

)
= λ−r.

Next consider the estimate related to the third term in (3.11). As done in the proof of
Proposition 3.4, we divide Cε[∇A1, · · · ,∇An, f2](x) into several terms and then separate
these terms into two parts according I and II in (3.9). So we get

w
(
{x ∈ (10Gλ)c : C∗[∇A1, · · · ,∇An, f2](x) > C0λ/2}

)
≤ w

({
x ∈ (10Gλ)c : C∗[∇Ã1, · · · ,∇Ãn, f2](x) > C0λ/4

})
+ w

({
x ∈ (10Gλ)c : HII(x) > C0λ/4

})
.

The third difference is the weighted estimate of C∗[· · · , ·] related to I. Here we utilize
Lemma 3.1 and the estimate ‖f2‖L1(Rd,w) . ‖f‖L∞(Rd,w)w(Gλ) . λ−r to get

w
({
x ∈(10Gλ)c : C∗[∇Ã1, · · · ,∇Ãn, f2](x) > C0λ/4

})
. λ−1

( n∏
i=1

‖∇Ãi‖L∞(Rd)

)
‖f2‖L1(Rd,w) . λ

−1+
(∑n

i=1
r
qi

)
−r

= λ−r.

The fourth difference is the weighted estimate of C∗[· · · , ·] related to II. We shall
prove that

(3.12)
{
x ∈ (10Gλ)c : HII(x) > C0λ/4

}
= ∅.

In fact, by (3.10) and Lemma 2.8 with q =∞, we get for any x ∈ (10Gλ)c,

HII(x) ≤ Cdλ
∑n
i=1

r
qi ‖f‖L∞(Rd,w) = Cdλ.

If we choose C0 > 4Cd, we get (3.12). So we complete the proof. �
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3.3. Case: some qis are smaller than d and some are not.

In this subsection, we consider the case: d/(d+n) ≤ r <∞ with at least one qi < d,
1 ≤ p ≤ ∞. By our condition, the weight w satisfies w ∈

(⋂n
i=1Amax{ qi

d
,1}(Rd)

)
∩

Ap(Rd) = A1(Rd). Without loss of generality, we may suppose that d ≤ q1, · · · , ql ≤ ∞
and 1 ≤ ql+1, · · · , qn < d with 0 ≤ l < n. If l = 0, it means that all q1, · · · , qn ∈ [1, d).
Also we suppose that q1 = · · · = qk = d and d < qk+1, · · · , ql ≤ ∞ with 0 ≤ k ≤ l. If
k = 0, we mean that there is no index in q1, · · · , ql equals to d, i.e. d < q1, · · · , ql ≤ ∞;
if k = l, we mean that q1 = · · · = ql = d. Since the proof of p = ∞ is a little different
from that of 1 ≤ p <∞, we shall give two propositions.

Proposition 3.6. Suppose w ∈ A1(Rd). Let 1
r =

(∑n
i=1

1
qi

)
+ 1

p , d
d+n ≤ r < ∞,

q1 = · · · = qk = d, d < qk+1, · · · , ql ≤ ∞ and 1 ≤ ql+1, · · · , qn < d with 0 ≤ k ≤ l and
0 ≤ l < n, 1 ≤ p <∞. Then

‖C∗[∇A1, · · · ,∇An, f ]‖Lr,∞(Rd,w)

.
( k∏
i=1

‖∇Ai‖Ld,1(Rd,w)

)( n∏
i=k+1

‖∇Ai‖Lqi (Rd,w)

)
‖f‖Lp(Rd,w),

where Ld,1(Rd, w) is the weighted Lorentz space.

Proof. We need to prove that for any λ > 0, the following inequality holds

w({x ∈ Rd : C∗[∇A1, · · · ,∇An, f ](x) > λ})

. λ−r
( k∏
i=1

‖∇Ai‖rLd,1(Rd,w)

)( n∏
i=k+1

‖∇Ai‖rLqi (Rd,w)

)
‖f‖rLp(Rd,w).

(3.13)

By the standard dense and scaling argument, it is sufficient to consider that each Ai
(i = 1, · · · , n) and f as smooth functions with compact supports and

‖∇A1‖Ld,1(Rd,w) = · · · = ‖∇Ak‖Ld,1(Rd,w) = 1;

‖∇Ai‖Lqi (Rd,w) = 1 for i = k + 1, · · · , n, and ‖f‖Lp(Rd,w) = 1.

As done in the proof of Proposition 3.4, we first suppose that all qk+1, · · · , ql < ∞
since the other case is easy and we will show lastly how to modify the proof to the case
that there exist qi =∞ for some i = k + 1, · · · , l. Fix λ > 0 and set

Eλ = {x ∈ Rd : C∗[∇A1, · · · ,∇An, f ](x) > λ}.

Our goal is to show w(Eλ) . λ−r. The main idea is to construct some exceptional set
such that the w measure of exceptional set is bounded by λ−r, which is our required
estimate. At the same time on the complementary set of exceptional set these functions

Ais should be Lipschitz functions with bound λ
r
qi for each i = 1, · · · , n. The construc-

tions of exceptional sets are different between d ≤ qi < ∞ and 1 ≤ qi < d. Now we
begin our constructions of some exceptional sets.

Step 1: Exceptional set related to q1, · · · , ql. Define the exceptional set for i = 1, · · · , l

Ji,λ =
{
x ∈ Rd :M(∇Ai)(x) > λ

r
qi

}
; Jλ = ∪li=1Ji,λ.
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Since w ∈ A1(Rd), by Lemma 2.3 and Lemma 2.4,M maps Lp(Rd, w) to itself for p > d
and maps Ld,1(Rd, w) to Ld,∞(Rd, w), i.e.

w(Ji,λ) . λ−r‖∇Ai‖dLd,1(Rd,w) = λ−r, i = 1, · · · , k;

w(Ji,λ) . λ−r‖∇Ai‖qiLqi (Rd,w)
= λ−r, i = k + 1, · · · , l.

(3.14)

So we obtain that w(Jλ) . λ−r.

Step 2: Calderón-Zygmund decomposition. By the formula given in [26, page 125, (17)],
for each Ai, i = l + 1, · · · , n, we may write

Ai(x) =
d∑
j=1

Cd

∫
Rd

xj − yj
|x− y|d

∂jAi(y)dy =:

d∑
j=1

Ai,j(x).

Notice that w ∈ A1(Rd) in this case. For each |∂jAi|qi ∈ L1(Rd, w) with j = 1, · · · , d
and i = l + 1, · · · , n, making a Calderón-Zygmund decomposition at level λr, we may
have the following conclusions (see e.g. [15, page 413, Theorem 3.5]):

(cz-i) ∂jAi = gj,i + bj,i, ‖gj,i‖L∞(Rd) . λ
r
qi , ‖gj,i‖Lqi (Rd,w) . ‖∂jAi‖Lqi (Rd,w);

(cz-ii) bj,i =
∑

Q∈Qj,i bj,i,Q, supp bj,i,Q ⊂ Q, where Qj,i is a countable set of disjoint

dyadic cubes;
(cz-iii) Let Ej,i =

⋃
Q∈Qj,i Q, then w(Ej,i) . λ−r‖∂jAi‖qiLqi (Rd,w)

;

(cz-iv)
∫
bj,i,Q(y)dy = 0 for each Q ∈ Qj,i, the unweighted estimate ‖bj,i,Q‖qiLqi (Rd)

.

λr|Q| and the weighted estimate ‖bj,i‖Lqi (Rd,w) . ‖∂jAi‖Lqi (Rd,w) hold.

We shall split Ai,j into two parts according the above Calderón-Zygmund decompo-
sition (cz-i):

Agi,j(x) = Cd

∫
Rd

xj − yj
|x− y|d

gj,i(y)dy;

Abi,j(x) = Cd

∫
Rd

xj − yj
|x− y|d

bj,i(y)dy.

Define the exceptional set Bλ = ∪ni=l+1 ∪dj=1 Ej,i. Then by (cz-iii), we obtain w(Bλ) .
λ−r.

Step 3: Exceptional set Dλ. Set 1
si

= 1
qi
− 1

d for i = l+ 1, · · · , n. Notice that w belongs

to A1(Rd). Define the following exceptional set

Di,λ =
{
x ∈ Rd : Mw,si(∇Ai)(x) > λ

r
qi

}
where the maximal operator Mw,si is defined in the paragraph above Lemma 2.5.
Denote Dλ = ∪ni=l+1Di,λ. Then by Lemma 2.6, we get that

w(Di,λ) . λ−r‖∇Ai‖qiLqi (Rd,w)
= λ−r; w(Dλ) . λ−r.
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Step 4: Exceptional set Fλ. For each j = 1, · · · , d, i = l+ 1, · · · , n, define the functions

∆j,i(x) =
∑

Q∈Qj,i

l(Q)

[l(Q) + |x− yQ|]d+1
m(Q)

where yQ is the center of Q. Define another exceptional set

Fj,i,λ = {x ∈ Rd : ∆j,i(x) > 1}, Fλ = ∪dj=1 ∪ni=l+1 Fj,i,λ.

Notice that we have w ∈ A1(Rd). We claim the following property of A1 weight: For
any cube Q and α > 1, there exists a constant C independent of Q and α such that

(3.15) w(αQ) ≤ Cαdw(Q).

In fact by (2.2) in Definition 2.1, there exist a constant C independent of α and Q such
that

1

|αQ|

∫
αQ

w(z)dz ≤ C ess infy∈Qw(y) ≤ C 1

|Q|

∫
Q
w(y)dy,

which immediately implies (3.15). In the following, by using the Chebyshev inequality
in the first inequality, (3.15) with α = 2k in the last second inequality and (cz-iii) in
the last inequality, we get

w(Fj,i,λ) ≤
∫
Rd

∆j,i,λ(x)w(x)dx .
∑

Q∈Qj,i

[ ∫
Rd

l(Q)d+1

[l(Q) + |x− yQ|]d+1
w(x)dx

]

≤
∑

Q∈Qj,i

[ ∫
Q
w(x)dx+

∞∑
k=1

∫
2kQ\2k−1Q

l(Q)d+1

[l(Q) + |x− yQ|]d+1
w(x)dx

]

.
∑

Q∈Qj,i

[
w(Q) +

∞∑
k=1

w(2kQ)

2k(d+1)

]
.

∑
Q∈Qj,i

w(Q) . λ−r.

Therefore we obtain that w(Fλ) . λ−r.

Step 5: Exceptional set Hλ. Define the exceptional set for i = l+1, · · · , n, j = 1, · · · , d,

Hi,j,λ = {x ∈ Rd :M(∇Agi,j)(x) > λr/qi}, Hλ = ∪ni=l+1 ∪dj=1 Hi,j,λ.

Notice that by the definition of Agi,j , for each s = 1, · · · , d, we get

F(∂sA
g
i,j)(ξ) = C

ξsξj
|ξ|2
F(gj,i)(ξ)⇒ ∇Agi,j = CRRjgj,i,

where F is the Fourier transform, Rj is the Riesz transform and R = (R1, · · · , Rd).
Recall w ∈ A1(Rd). Since Rj is weighted strong type (q, q) for 1 < q < ∞, we get
‖∇Agi,j‖Lq(Rd,w) . ‖gj,i‖Lq(Rd,w). Choose d < q < ∞, by the Chebyshev inequality,

Lemma 2.3 and (cz-i) in Step 2, we get

w(Hi,j,λ) . λ
− qr
qi

∫
Rd

[M(∇Agi,j)(x)]qw(x)dx . λ
− qr
qi

∫
Rd
|∇Agi,j(x)|qw(x)dx

. λ
− qr
qi

∫
Rd
|gj,i(x)|qw(x)dx . λ−r

∫
Rd
|gj,i(x)|qiw(x)dx . λ−r.

Therefore we get w(Hλ) . λ−r.
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Step 6: Final exceptional set Gλ. Based on the construction of Jλ, Bλ, Dλ, Fλ, Hλ in
Step 1-5 and the fact w satisfies the doubling property, we choose an open set Gλ which
satisfies the following conditions:

(1).
(
10Jλ ∪ 10Bλ ∪ 10Dλ ∪ 10Fλ ∪ 10Hλ

)
⊂ Gλ;

(2). w(Gλ) . w(Jλ) + w(Bλ) + w(Dλ) + w(Fλ) + w(Hλ).

Applying the previous weighted estimates of Jλ, Bλ, Dλ, Fλ and Hλ, we obtain that
w(Gλ) . λ−r. Next making a Whitney decomposition of Gλ (see [17]), we may obtain
a family of disjoint dyadic cubes {Qk}k such that

(i). Gλ =
⋃∞
k=1Qk;

(ii).
√
d · l(Qk) ≤ dist(Qk, (Gλ)c) ≤ 4

√
d · l(Qk).

By the property (ii) above, the distance between Qk and (Gλ)c equals to Cl(Qk). For
each Qk above, we could construct a larger cube Q∗k so that Qk ⊂ Q∗k, Q

∗
k is centered

at yk and yk ∈ (Gλ)c, l(Q∗k) ≈ l(Qk). Therefore by the construction of Q∗k and yk, we
may get that

(3.16) dist(yk, Qk) ≈ l(Qk).

Clearly, the exceptional set Gλ constructed in Step 6 satisfies that w(Gλ) . λ−r.
Below we will prove that these functions Ais are Lipschitz functions on (Gλ)c.

Step 7: Lipschitz estimates of Ai on (Gλ)c. Choose any x, y ∈ (Gλ)c. By the exceptional
set Jλ constructed in Step 1, we see that for i = 1, · · · , l

(3.17) |Ai(x)−Ai(y)| ≤ λ
r
qi |x− y|.

In the following we only consider i = l + 1, · · · , n. By the Calderón-Zygmund decom-
position in Step 2, it is sufficient to prove that Agi,j and Abi,j satisfy Lipschitz estimates

on
(
Gλ
)c

for each i = l + 1, · · · , n and j = 1, · · · , d. Firstly, it is easy to see that Agi,j
satisfies Lipschitz estimates by the construction of Hλ in Step 5. In fact, x, y ∈ (Gλ)c

implies that x, y ∈ Hc
λ, we obtain that for i = l + 1, · · · , n, j = 1, · · · , d,

(3.18) |Agi,j(x)−Agi,j(y)| ≤ λ
r
qi |x− y|.

We devote to proving that Abi,j is a Lipschitz function on (Gλ)c. Recall the Calderón-

Zygmund decomposition properties (cz-ii), (cz-iii) and (cz-iv) in Step 2. For each
bj,i =

∑
Q∈Qj,i bj,i,Q, supp bj,i,Q ⊂ Q, where Qj,i is a countable set of disjoint dyadic

cubes. Then for each Q ∈ Qj,i, we define

A
bQ
i,j (x) = Cd

∫
Rd

xj − zj
|x− z|d

bj,i,Q(z)dz.

Now we fix a dyadic cube Q ∈ Qj,i. We are going to give a straight-forward Lipschitz

estimate of A
bQ
i,j . By the construction of Gλ, we get that x, y ∈ (10Bλ)c, i.e. x, y ∈

(10Q)c, therefore we obtain dist(x,Q) ≥ 9
2 l(Q) and dist(y,Q) ≥ 9

2 l(Q). Let zQ be the
center of Q. Without loss of generality, assume that |x − zQ| ≤ |y − zQ|. Choose a

point Z ∈ Rd such that

|x− Z| < 100|x− y|; |y − Z| ≤ 100|x− y|; |X − zQ| >
2

5
|x− zQ|
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for any X belongs to the polygonal with vertex x, y, Z. We could draw a figure to show
that such a point Z exists under the condition that dist(x,Q) > 9

2 l(Q) and dist(y,Q) >
9
2 l(Q). Now we write A

bQ
i,j (x)−AbQi,j (y) = A

bQ
i,j (x)−AbQi,j (Z)+A

bQ
i,j (Z)−AbQi,j (y). By using

the mean value formula, we have

A
bQ
i,j (x)−AbQi,j (Z) =

∫ 1

0
〈x− Z,∇(A

bQ
i,j )(tx+ (1− t)Z)〉dt;

A
bQ
i,j (Z)−AbQi,j (y) =

∫ 1

0
〈Z − y,∇(A

bQ
i,j )(tZ + (1− t)y)〉dt.

(3.19)

For any 0 ≤ t ≤ 1, the points tx+ (1− t)Z and tZ + (1− t)y lie in the polygonal with
vertex x, y, Z. Notice that |x− zQ| ≥ 5l(Q). Then by our choice of Z, we get

|tx+ (1− t)Z − zQ| >
2

5
|x− zQ| > 2l(Q),

|tZ + (1− t)y − zQ| >
2

5
|x− zQ| > 2l(Q).

(3.20)

We set Z(t) equals to tx + (1 − t)Z or tZ + (1 − t)y and Kj(x) = xj/|x|d. Using the
cancelation condition of bj,i,Q, (3.20) and the unweighted estimate in (cz-iv) of Step 2,
we get that

|∇(A
bQ
i,j )(Z(t))| =

∣∣∣ ∫
Rd

[
(∇Kj)(Z(t)− z)− (∇Kj)(Z(t)− zQ)

]
bj,i,Q(z)dz

∣∣∣
.

l(Q)

[l(Q) + |x− zQ|]d+1
‖bj,i,Q‖L1(Q) . λ

r
qi

l(Q)

[l(Q) + |x− zQ|]d+1
|Q|.

Combining the above arguments with (3.19) and the construction of Z, we obtain∣∣AbQi,j (x)−AbQi,j (y)
∣∣ . λ r

qi
l(Q)

[l(Q) + |x− zQ|]d+1
|Q||x− y|.

Notice x ∈ (Gλ)c implies that x ∈ (Fλ)c in Step 3. Then we get that

(3.21)
∣∣Abi,j(x)−Abi,j(y)

∣∣ . λ r
qi |x− y|

∑
Q∈Qj,i

l(Q)

[l(Q) + |x− zQ|]d+1
|Q| ≤ λ

r
qi |x− y|.

Therefore we conclude that the Lipschitz estimates in (3.17) for i = 1, · · · , l, good
function (3.18) and bad function (3.21) for i = l + 1, · · · , n, to obtain that for any
i = 1, · · · , n, x, y ∈ (Gλ)c,

(3.22) |Ai(x)−Ai(y)| ≤ λ
r
qi |x− y|.

Step 8: Weighted estimate of Eλ. We come back to give an estimate of Eλ. Split f
into two parts f = f1 + f2 where f1(x) = f(x)χ(Gλ)c(x) and f2(x) = f(x)χGλ(x). By
the Lipschitz estimate in (3.22), when restricted on (Gλ)c, Ai is a Lipschitz function

with ‖∇Ai‖L∞((Gλ)c) ≤ λ
r
qi for i = 1, · · · , n. Let Ãi represent the Lipschitz extension

of Ai from (Gλ)c to Rd (see [26, page 174, Theorem 3]) so that for each i = 1, · · · , n,

Ãi(y) = Ai(y) if y ∈ (Gλ)c;∣∣Ãi(x)− Ãi(y)
∣∣ ≤ λ r

qi |x− y| for all x, y ∈ Rd.
(3.23)
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Since the operator C∗[· · · , ·] is sub-multilinear, we split Eλ as three terms

w({x ∈ Rd : C∗[∇A1, · · · ,∇An, f ](x) > λ})
≤ w(10Gλ) + w

(
{x ∈ (10Gλ)c : C∗[∇A1, · · · ,∇An, f1](x) > λ/2}

)
+ w

(
{x ∈ (10Gλ)c : C∗[∇A1, · · · ,∇An, f2](x) > λ/2}

)
.

The above first term satisfies w(10Gλ) . λ−r, which is our required estimate. Below
we consider the second term. We only consider x ∈ (10Gλ)c. By the definition of f1,

C∗[∇A1, · · · ,∇An, f1](x) = C∗[∇Ã1, · · · ,∇Ãn, f1](x).

Notice that w ∈ A1(Rd) ( Ap(Rd). Applying the above equality and Proposition 3.1
(1 ≤ p <∞), we derive that

w
({
x ∈ (10Gλ)c : C∗[∇A1, · · · ,∇An, f1](x) > λ/2

})
= w

({
x ∈ (10Gλ)c : C∗[∇Ã1, · · · ,∇Ãn, f1](x) > λ/2

})
. λ−p

( n∏
i=1

‖∇Ãi‖pL∞(Rd,w)

)
‖f1‖pLp(Rd,w)

. λ
−p+p

∑n
i=1

r
qi = λ−r.

If p =∞, the above argument does not work.

Step 9: Weighted estimate of C∗[∇A1, · · · ,∇An, f2](x). Recall Nji = {i, i+1, · · · , j} and
the construction of Gλ, yk, Qk and Q∗k above (3.16). Then we may write f2 =

∑
k fχQk .

So

Cε[∇A1, · · · ,∇An, f2](x) =
∑
k

Cε[∇A1, · · · ,∇An, fχQk ](x).

In the following we study
∏n
i=1

Ai(x)−Ai(y)
|x−y| . We shall separate it into several terms and

then give an estimate for each term. Write

n∏
i=1

Ai(x)−Ai(y)

|x− y|

=

n∏
i=1

(Ãi(x)− Ãi(y)

|x− y|
+
Ãi(y)− Ãi(yk)
|x− y|

+
Ai(yk)−Ai(y)

|x− y|

)
=
∑
Nn1

( ∏
i∈N1

Ãi(x)− Ãi(y)

|x− y|

)( ∏
i∈N2

Ãi(y)− Ãi(yk)
|x− y|

)( ∏
i∈N3

Ai(yk)−Ai(y)

|x− y|

)
= I(x, y) + II(x, y, yk) + III(x, y, yk) + IV (x, y, yk),
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where in the third equality we divide Nn1 = N1∪N2∪N3 withN1, N2, N3 non intersecting
each other; and I(x, y), II(x, y, yk), III(x, y, yk) and IV (x, y, yk) are defined as follows

I(x, y) =
n∏
i=1

Ãi(x)− Ãi(y)

|x− y|
,

II(x, y, yk) =
∑
N1(Nn1
N3=∅

( ∏
i∈N1

Ãi(x)− Ãi(y)

|x− y|

)( ∏
i∈N2

Ãi(y)− Ãi(yk)
|x− y|

)
,

III(x, y, yk) =
∑
N1(Nn1

N3 6=∅,N3⊂{1,··· ,l}

( ∏
i∈N1

Ãi(x)− Ãi(y)

|x− y|

)( ∏
i∈N2

Ãi(y)− Ãi(yk)
|x− y|

)

×
( ∏
i∈N3

Ai(yk)−Ai(y)

|x− y|

)
,

IV (x, y, yk) =
∑
N1(Nn1

N3 6=∅,N3∩{l+1,··· ,n}6=∅

( ∏
i∈N1

Ãi(x)− Ãi(y)

|x− y|

)( ∏
i∈N2

Ãi(y)− Ãi(yk)
|x− y|

)

×
( ∏
i∈N3

Ai(yk)−Ai(y)

|x− y|

)
.

(3.24)

In the above decomposition, we in fact divide Cε[∇A1, · · · ,∇An, fχQk ](x) into 3n terms
and separate these terms into four parts according I, II, III and IV .

Step 10: Weighted estimate of C∗[· · · , ·] related to I. In this case there is only one term,

i.e. C∗[∇Ã1, · · · ,∇Ãn, f2]. Then by Proposition 3.1 (1 ≤ p <∞), we get

w
({
x ∈(10Gλ)c : C∗[∇Ã1, · · · ,∇Ãn, f2](x) > λ/2

})
. λ−p

( n∏
i=1

‖∇Ãi‖pL∞(Rd,w)

)
‖f2‖pLp(Rd,w)

. λ
−p+p

∑n
i=1

r
qi = λ−r.

If p =∞, the above argument may not work.

Step 11: Weighted estimate of C∗[· · · , ·] related to II. It is sufficient to consider one
term C∗[· · · , ·] related to II in which N1 is a proper subset of Nn1 and N3 = ∅. In such a
case, without loss of generality, we may suppose N1 = {1, · · · , v}, N2 = {v + 1, · · · , n}
with 0 ≤ v < n. Here if v = 0, it means that N1 = ∅. With these notation, we see that
N1 is a proper subset of Nn1 . By a slight abuse of notation, we still utilize II(x, y, yk) to
represent one term related to N1, N2 and N3 in (3.24) and utilize HII(x) to represent
C∗[· · · , ·] related to II(x, y, yk), i.e.

HII(x) = sup
ε>0

∣∣∣∑
k

∫
|x−y|>ε

K(x− y)II(x, y, yk)fχQk(y)dy
∣∣∣.
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Notice that Ãi is a Lipschitz function with bound λ
r
qi for i = 1, · · · , n by (3.23). Then

we obtain that

|II(x, y, yk)| . λ
∑n
i=1

r
qi
|y − yk|n−v

|x− y|n−v
.

Since we only need to consider x ∈ (10Gλ)c, then by (3.16), we obtain that

(3.25) |x− y| ≥ 2l(Qk) ≈ |y − yk| for any y ∈ Qk.
Now combining with (1.1), the above estimate of II(x, y, yk) and (3.25), we obtain that

HII(x) ≤
∑
k

∫
Qk

|K(x− y)| · |II(x, y, yk)| · |f(y)|dy

. λ
∑n
i=1

r
qi

∑
k

∫
Qk

l(Qk)
n−v

[l(Qk) + |x− y|]d+n−v |f(y)|dy.

Utilizing the Chebyshev inequality, the above estimate of HII and Lemma 2.8 (since
n− v ≥ 1), we finally obtain that

w({x ∈ (10Gλ)c : HII(x) > λ}) ≤ λ−p+
∑n
i=1

rp
qi ‖Tn−vf‖pLp(Rd,w)

. λ−r‖f‖p
Lp(Rd,w)

.

Hence we finish the proof related to II.

Step 12: Weighted estimate of C∗[· · · , ·] related to III. It is sufficient to consider one
term C∗[· · · , ·] related to III in which N1 is a proper subset of Nn1 and N3 is a nonempty
subset of {1, · · · , l}. By the condition in this proposition, for any i ∈ N3, d ≤ qi <∞.
Thus ∇Ai ∈ Lqi(Rd, w) (or Ld,1(Rd, w) if qi = d) with d ≤ qi <∞. Then by using the
fact yk lies in the (Gλ)c, i.e. yk ∈ (Ji,λ)c, we give the estimates in N3 as follows

(3.26)
|Ai(yk)−Ai(y)|
|y − yk|

≤ M(∇Ai)(yk) ≤ λ
r
qi , for i ∈ N3.

Define v = card(N1). Then we see that 0 ≤ v < n. By a slight abuse of notation, we
still utilize III(x, y, yk) to stand for one term related to N1, N2 and N3 in (3.24) and
utilize HIII(x) to represent C∗[· · · , ·] related to III(x, y, yk), i.e.

HIII(x) = sup
ε>0

∣∣∣∑
k

∫
|x−y|>ε

K(x− y)III(x, y, yk)fχQk(y)dy
∣∣∣.

From the fact Ãis are Lipschitz functions with bounds λr/qi for i ∈ N1 ∪ N2 and
(3.26), we obtain that

|III(x, y, yk)| . λ
∑
i∈N1∪N2

r
qi
|y − yk|n−v

|x− y|n−v
∏
i∈N3

M(∇Ai)(yk) . λ
∑n
i=1

r
qi
|y − yk|n−v

|x− y|n−v
.

Inserting this estimate of III(x, y, yk) into HIII , combining with (1.1) and (3.25), and
next utilizing the Chebyshev inequality and Lemma 2.8 (since n − v ≥ 1), we finally
obtain that

w({x ∈ (10Gλ)c : HIII(x) > λ}) ≤ λ−p+p
(∑n

i=1
r
qi

)
‖Tn−vf‖pLp(Rd,w)

. λ−r‖f‖p
Lp(Rd,w)

.

Hence we finish the proof of this part.
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Step 13: Weighted estimate of C∗[· · · , ·] related to IV . It is sufficient to consider one
term C∗[· · · , ·] related to IV in which N1 ( Nn1 and N3 6= ∅ with N3∩{l+1, · · · , n} 6= ∅.
In such a case, without loss of generality, we may suppose l + 1, · · · , v ∈ N3 with
l + 1 ≤ v ≤ n and v + 1, · · · , n belongs to N1 or N2. So we may assume that N3 =
{ι, · · · , w, l+1, · · · , v} with 0 ≤ ι ≤ w ≤ l. Define u = card(N1). Then n−u ≥ 1. With
these notation, we can easily see that N3 is a nonempty set with N3∩{l+1, · · · , n} 6= ∅.
Note that w ∈ A1(Rd). By a slight abuse of notation, we still use IV (x, y, yk) to stand
for one term related to N1, N2 and N3 in (3.24) and use HIV (x) to stand for C∗[· · · , ·]
related to IV (x, y, yk), i.e.

HIV (x) = sup
ε>0

∣∣∣∑
k

∫
|x−y|>ε

K(x− y)IV (x, y, yk)fχQk(y)dy
∣∣∣.

Note that d ≤ q1, · · · , ql ≤ ∞ and 1 ≤ ql+1, · · · , qn < d. Recall in Step 3, we set
1
si

= 1
qi
− 1

d for i = l + 1, · · · , n. We also set 1
q =

(∑v
i=l+1

1
si

)
+ 1

p . Since r ≥ d
d+n and

1
r =

(∑n
i=1

1
qi

)
+ 1

p , we could obtain 1 ≤ q ≤ ∞ which will be crucial when we use

Lemma 2.8. With (3.16) and Ãi is a Lipschitz function with bound λr/qi for i ∈ N1∪N2,
we have

|IV (x, y, yk)| . λ
(
∑
i∈N1∪N2

) r
qi

(l(Qk))
n−u

|x− y|n−u
[ w∏
i=ι

M(∇Ai)(yk)
] v∏
i=l+1

|Ai(yk)−Ai(y)|
l(Qk)

. λ
(
∑l
i=1 +

∑n
i=v+1) r

qi
(l(Qk))

n−u

|x− y|n−u
v∏

i=l+1

|Ai(yk)−Ai(y)|
l(Qk)

.

Then inserting the above estimate of IV into HIV with (1.1) and (3.25), we get

HIV (x) ≤
∑
k

∫
Qk

|K(x− y)| · |IV (x, y, yk)| · |f(y)|dy

. λ
(
∑l
i=1 +

∑n
i=v+1) r

qi

∑
k

∫
Qk

l(Qk)
n−u

[l(Qk) + |x− y|]d+n−uhl,v(y)dy

= λ
(
∑l
i=1 +

∑n
i=v+1) r

qi Tn−u
(
hl,v
)
(x),

where the operator Tn−u is defined in Lemma 2.8 and the function hl,v(y) is defined as

hl,v(y) =
∑
Qk

v∏
i=l+1

( |Ai(yk)−Ai(y)|
l(Qk)

)
χQk |f |(y).

Utilizing the Chebyshev inequality and the above estimate of HIV , applying Lemma
2.8(note that 1 ≤ q ≤ ∞ and n− u ≥ 1), we finally obtain that

w({x ∈(10Gλ)c : HIV (x) > λ})

≤ λ−q+(
∑l
i=1 +

∑n
i=v+1) rq

qi

∫
(10Gλ)c

[Tn−u(hl,v)(x)]qw(x)dx

. λ
−q+(

∑l
i=1 +

∑n
i=v+1) rq

qi ‖hl,v‖qLq(Rd,w)
.

(3.27)
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In the following we give an estimate of ‖hl,v‖qLq(Rd,w)
. We may write

‖hl,v‖qLq(Rd,w)
=
∑
Qk

∫
Qk

[ v∏
i=l+1

( |Ai(yk)−Ai(y)|
l(Qk)

)q]
|f(y)|qw(y)dy

≤
∑
Qk

v∏
i=l+1

[ ∫
Qk

( |Ai(yk)−Ai(y)|
l(Qk)

)si
w(y)dy

] q
si

[ ∫
Qk

|f(y)|pw(y)dy
] q
p

.
∑
Qk

v∏
i=l+1

[ ∫
Q∗k

( |Ai(yk)−Ai(y)|
l(Q∗k)

)si
w(y)dy

] q
si

[ ∫
Qk

|f(y)|pw(y)dy
] q
p

.
∑
Qk

[ v∏
i=l+1

Mw,si(∇Ai)(yk)qw(Qk)
q
si

][ ∫
Qk

|f(y)|pw(y)dy
] q
p
,

where in the second inequality we use the Hölder inequality and the third inequality
follows from the fact Qk ⊂ Q∗k, yk is the center of Q∗k and l(Q∗k) ≈ l(Qk). Notice that
yk lies in the (Gλ)c, i.e. yk ∈ (Di,λ)c (see Step 3). Then we obtain that

Mw,si(∇Ai)(yk) ≤ λ
r
qi , for i = l + 1, · · · , v.

Utilizing the above inequality, the Hölder inequality again and (cz-iii) in Step 2, we get

‖hl,v‖qLq(Rd,w)
. λ

∑v
i=l+1

qr
qi

[∑
Qk

w(Qk)
]∑v

i=l+1
q
si ‖f‖q

Lp(Rd,w)

. λ
∑v
i=l+1

qr
qi

[
w(Gλ)

]∑v
i=l+1

q
si . λ

∑v
i=l+1

(
qr
qi
− qr
si

)
.

Plunge the above estimate into (3.27) with some elementary calculations, we finally
obtain that

w({x ∈ (10Gλ)c : HIV (x) > λ}) . λ−q+
(∑n

i=1
rq
qi

)
−
(∑v

i=l+1
qr
si

)
. λ−r,

hence we finish the proof of the term IV .
Finally, we show how to modify the above argument to the case qi = ∞ for some

i = k+1, · · · , l. Notice that only in Step 1 the construction of exceptional set is involved
with Ak+1, · · · , Al. We may assume that only qk+1 = · · · = qu =∞ with k+ 1 ≤ u ≤ l.
Therefore Ak+1, · · · , Au are Lipschitz functions. Then we just fix Ak+1, · · · , Au in the
rest of the proof. In Step 1 we modify the argument that we only make a construction
of exceptional set for A1, · · · , Ak and Au+1, · · · , Al. These proofs in Steps 2-8 are the
same. Later when studying( n∏

i=1

Ai(x)−Ai(y)

|x− y|

)
=
( u∏
i=k+1

k∏
i=1

n∏
i=u+1

)Ai(x)−Ai(y)

|x− y|
,

we just use the same way as in Steps 9-13 to deal with the terms from
∏k
i=1

∏n
i=u+1

since the term
∏u
i=k+1

Ai(x)−Ai(y)
|x−y| could be absorbed by the kernel K(x−y) if we observe

that K(x− y)
∏u
i=k+1

Ai(x)−Ai(y)
|x−y| is a standard Calderón-Zygmund kernel. �
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Proposition 3.7. Let d
d+n ≤ r ≤ 1, q1 = · · · = qk = d, d < qk+1, · · · , ql ≤ ∞ and

1 ≤ ql+1, · · · , qn < d with 0 ≤ k ≤ l and 1 ≤ l < n, p =∞. Suppose that w ∈ A1(Rd).
Then

‖C∗[∇A1, · · · ,∇An, f ]‖Lr,∞(Rd,w)

.
( k∏
i=1

‖∇Ai‖Ld,1(Rd,w)

)( n∏
i=k+1

‖∇Ai‖Lqi (Rd,w)

)
‖f‖L∞(Rd,w),

where Ld,1(Rd, w) is the standard Lorentz space.

Proof. The proof is similar to that of Proposition 3.6 and one could follow the idea in
the proof of Proposition 3.5, so the details of the proof is omitted. �

3.4. Interpolation.

Notice that we have already proven all the cases (ii) in Theorem 1.1 by Propositions
3.4,3.5,3.6 and 3.7. And only part strong type multilinear estimates of (i) in Theorem
1.1 has been established by Proposition 3.1 and Proposition 3.3. The rest part of (i)
in Theorem 1.1 just follow from the linear Marcinkiewicz interpolation (see [28] or [1]).
In the following we show how to do this.

Since the maximal Calderón commutator C∗ is (n+ 1)th submultilinear, when using
the Marcinkiewicz interpolation, our main strategy is that we consider C∗ as a sublinear
operator if we fix part of n variables.

Let ∇Ai ∈ Lqi(Rd, w) and f ∈ Lp(Rd, w) with 1
r =

(∑n
i=1

1
qi

)
+ 1

p , d
d+n < r < ∞,

1 < qi ≤ ∞ (i = 1, · · · , n) and 1 < p ≤ ∞. Let w ∈
(⋂n

i=1Amax{ qi
d
,1}(Rd)

)
∩ Ap(Rd).

Our goal is to show the follow strong type estimate

(3.28) ‖C∗[∇A1, · · · ,∇An, f ]‖Lr(Rd,w) .
( n∏
i=1

‖∇Ai‖Lqi (Rd,w)

)
‖f‖Lp(Rd,w).

We divide the proof into several cases. We first consider the case all qi 6= d for
i = 1, · · · , n. Therefore by (ii) of Theorem 1.1, the multilinear estimates (1.6) are not
involved with Ld,1(Rd, w) spaces. We further divide this case into two cases: 1 < p <∞
and p = ∞. Consider firstly the case 1 < p < ∞. We fix all ∇Ai, qi and w ∈(⋂n

i=1Amax{ qi
d
,1}(Rd)

)
∩Ap(Rd). By the basic property of Ap(Rd) weight, w ∈ Ap1(Rd)

for all p1 > p. If we choose p1, r1 such that p < p1 <∞ and 1
r1

=
(∑n

i=1
1
qi

)
+ 1

p1
, then

by (ii) of Theorem 1.1

(3.29) C∗[∇A1, · · · ,∇An, ·] : Lp1(Rd, w) 7→ Lr1,∞(Rd, w).

Since w ∈ Ap(Rd), by the revers Hölder inequality of Ap(Rd) weight (see [17]) and its
definition, there exist ε > 0 such that w ∈ Ap−ε and p − ε ≥ 1. Then we may choose

p0, r0 such that p − ε ≤ p0 < p, d
d+n < r0 < ∞ and 1

r0
=
(∑n

i=1
1
qi

)
+ 1

p0
. Hence we

obtain w ∈
(⋂n

i=1Amax{ qi
d
,1}(Rd)

)
∩Ap0(Rd). By using (ii) of Theorem 1.1, we get

(3.30) C∗[∇A1, · · · ,∇An, ·] : Lp0(Rd, w) 7→ Lr0,∞(Rd, w).

Applying the Marcinkiewicz interpolation with (3.29) and (3.30), we establish the
strong type estimate (3.28) provided that all qi 6= d and 1 < p <∞. Next we consider
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another case all qi 6= d and p = ∞. By our condition r < ∞, there is at least one
qi < ∞. Without loss of generality, we may suppose that q1 < ∞. If d < q1 < ∞,
then the rest of proof is similar to the case qi 6= d and 1 < p < ∞ once fixing ∇Ai,
qi for i = 2, · · · , n, f ∈ L∞(Rd, w) and w ∈

⋂n
i=2Amax{ qi

d
,1}(Rd). If 1 < q1 < d, then

w ∈ A1(Rd) by our condition. Therefore it is easy to show (3.28) using (ii) of Theorem
1.1 once we fix ∇Ai, qi for i = 2, · · · , n, f ∈ L∞(Rd, w) and w ∈ A1(Rd).

Secondly let us consider the case there is only one qi which equals to d. Without
loss of generality, we may suppose q1 = d. Then by our condition w ∈ A1(Rd) in
this case. Fix ∇Ai, qi for i = 2, · · · , n, f ∈ Lp(Rd, w) and w ∈ A1(Rd). Then
we may choose r0, r1, q1,0, q1,1 such that d

d+n < r0, r1 < ∞, 1 < q1,0 < d < q1,1,
1
r0

= 1
q1,0

+
(∑n

i=2
1
qi

)
+ 1

p , 1
r1

= 1
q1,1

+
(∑n

i=2
1
qi

)
+ 1

p . Then by (ii) of Theorem 1.1, we

get
C∗[·,∇A2, · · · ,∇An, f ] : Lq1,j (Rd, w) 7→ Lrj ,∞(Rd, w) j = 0, 1.

Using the Marcinkiewicz interpolation with the above two estimate, we get (3.28) in
the case q1 = d and all q2, · · · , qn 6= d.

Finally we consider the general case there are m numbers of qis which equal to d.
We only need to show m = 2, the general case just follows from the induction. Without
loss of generality, we suppose that q1 = q2 = d. In this case, w ∈ A1(Rd). Fix ∇Ai, qi
for i = 2, · · · , n, f ∈ Lp(Rd, w) and w ∈ A1(Rd). Then we may choose r0, r1, q1,0, q1,1

such that d
d+n < r0, r1 < ∞, 1 < q1,0 < d < q1,1, 1

r0
= 1

q1,0
+
(∑n

i=2
1
qi

)
+ 1

p , 1
r1

=
1
q1,1

+
(∑n

i=2
1
qi

)
+ 1

p . Since q2 = d, by the result of the case there is only one qi = d we

discussed above, we get the strong type estimate

C∗[·,∇A2, · · · ,∇An, f ] : Lq1,j (Rd, w) 7→ Lrj (Rd, w) j = 0, 1.

Using the Marcinkiewicz interpolation with the above two estimate, we get (3.28) in
the case q1 = q2 = d and all q3, · · · , qn 6= d. Applying the induction of m, we finish the
proof.

Remark 3.8. Instead of using the linear Marcinkiewicz interpolation in this proof, an-
other possible more straightforward method is the multilinear interpolation with change
of measures. To the best knowledge of the author, such kind of multilinear interpola-
tion with change of measures is currently unknown. Therefore it will be interesting to
establish the multilinear version of Stein-Weiss interpolation with change of measures
(see [27]).
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