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Abstract. In this paper, we investigate the concentration inequalities, the exponen-
tial convergence in the Wasserstein metric W1, and uniform-in-time propagation of
chaos for the mean-field weakly interacting particle system related to McKean-Vlasov
equation. By means of the known approximate componentwise reflection coupling and
with the help of some new cost function, we obtain explicit estimates for those three
problems, avoiding the technical conditions in the known results. Our results apply
when the confinement potential V has many wells, the interaction potential W has
bounded second mixed derivative ∇2

xyW which should be not big so that there is no
phase transition. Two examples are provided to illustrate the sharpness and usefulness
in mathematical physics of our results.
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1. Introduction

In this paper, we consider the following nonlinear McKean-Vlasov equation with
initial condition u0

∂tut = ∇ · [∇ut + ut∇V + ut(∇xW ~ ut)], (1.1)

where the unknown ut is a time dependent probability density on Rd (d ≥ 1), V : Rd →
R is a confinement potential and W : Rd × Rd → R is an interaction potential. Here
∇ and ∇ · (applied to a vector field) denote the gradient operator and the divergence
operator respectively, while ∇xW stands for the gradient of W with respect to (w.r.t.
in short) the first variable, and

∇xW ~ ut(x) :=

∫
Rd

∇xW (x, y)ut(y)dy.

When W (x, y) = W0(x− y) for some even potential W0 (as in granular media), ∇xW ~
u = ∇W0 ∗ u (the usual convolution).

The first author is supported by NSFC (11731009), the Fundamental Research Funds for the Central
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The probabilistic equivalent version of (1.1) is the following self-interacting stochastic
differential equation (SDE in short):{

dXt =
√
2dBt −∇V (Xt)dt−∇xW ~ µt(Xt)dt,

X0
law
= u0(x)dx,

(1.2)

where µt is the law of Xt. The density ut of the law µt of Xt with respect to (w.r.t.
in short) the Lebesgue measure dx at time t is the solution of the McKean-Vlasov
equation (1.1) and vice versa. The existence and uniqueness of the solution of the
SDE (1.2) and the McKean-Vlasov equation (1.1) have been extensively studied. The
reader is referred to [30, 17, 29, 34] and recent works [33, 7, 19] as well as the references
therein. For the convergence to equilibrium of solution µt as t → +∞, it is worth
mentioning that Carrillo, McCann and Villani [8] obtained the explicit exponential
convergence in entropy under various kinds of convexity conditions on the potentials
V and W0, via their enlightening idea of interpreting the McKean-Vlasov equation
as the gradient descent flow of the free energy on the space of probability measures
equipped with the L2-Wasserstein metric. Eberle et al. [15] got the quantitative bounds
on the exponential convergence in some appropriate transport cost to equilibrium for
McKean-Vlasov equations by using Lyapunov condition and reflection coupling. Eberle
[14] showed the exponential contractivity for diffusion semigroups w.r.t. Kantorovich
distance by using componentwise reflection coupling methods and choosing appropriate
distance functions. The reader is referred also to Luo and Wang [25] for the exponential
convergence of diffusion semigroups w.r.t. the Lp-Wasserstein distance for all p ≥ 1.

The McKean-Vlasov equation (1.1) or (1.2) is the idealization of the following in-
teracting particle system of mean-field type when the number N of particles goes to
infinity: dX i,N

t =
√
2dBi

t −∇V (X i,N
t )dt− 1

N−1

∑
j:j ̸=i,1≤j≤N

∇xW (X i,N
t , Xj,N

t )dt,

X i,N
0 = X i

0, i = 1, · · · , N,
(1.3)

where the initial values X1
0 , · · · , XN

0 are i.i.d. random variables with common law
µ0(dx) = u0(x)dx, and B1

t · · · , BN
t are N independent Brownian motions taking val-

ues in Rd, independent of X i
0, 1 ≤ i ≤ N . In fact this is the goal of the studies of

the so-called propagation of chaos: when the number N of particles goes to infinity,
the empirical measures 1

N

∑N
i=1 δXi,N

t
of the particle system (1.3) (or the law of a sin-

gle particle) converge weakly to the solution µt of the self-interacting diffusion (1.2).
This corresponds to the law of large number in probability, see the monograph [34] of
Sznitman for propagation of chaos.

The propagation of chaos for the mean-field interacting particle systems has been
widely studied during the last forty years. The early studies were concentrated on
the propagation of chaos in bounded time intervals, see [26, 34, 29] and the references
therein. The study on the propagation of chaos in the whole time interval R+ is much
more difficult and recent. When the confinement potential V is strictly convex and
the interaction potential W (x, y) = W0(x − y) with W0 strictly convex, Malrieu [27]
showed the uniform in time propagation of chaos by applying the logarithmic Sobolev
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inequality. In the case that there is no confinement (i.e. V ≡ 0) and the interaction
potential W0 is strictly convex, Benachour et al. [1, 2] proved propagation of chaos (but
not uniform in time) and polynomial convergence to equilibrium; Malrieu [28] obtained
the uniform in time propagation of chaos and exponential convergence to equilibrium
for the particle system viewed from the center, by using functional inequalities. When
W0 is degenerately convex and V = 0, Cattiaux et al. [9] showed the uniform in time
propagation of chaos and exponential convergence to equilibrium by using synchronous
coupling.

An important and actively studied subject refining the propagation of chaos is the
concentration inequalities which are crucial for stochastic numerical computation of
solution µt or the equilibrium µ∞ of the McKean-Vlasov equation. The concentration
inequalities describe quantitatively why the McKean-Vlasov equation is the idealization
of the particle system (1.3). For the previous works on the concentration inequalities in
the convex case we refer the reader to Malriau [28], Bolley-Guillin-Villani [9] and Bolley
[4] and the references therein. See Section 2 for more details. The reader is referred to
the two monographies of Ledoux [23, 24] for pedagogical and enlightening treatment of
concentration inequalities.

We now go to the case where V and W0 are no longer convex. Without the convexity
of V and W0, recently Durmus, Eberle, Guillin and Zimmer [13] use the componentwise
reflection coupling introduced in [14] to prove the exponential convergence in some
Wasserstein metric and uniform in time propagation of chaos for weakly interacting
mean-field particle system. For more results about propagation of chaos, we refer the
reader to [12, 20, 21, 22, 31, 32] and the references therein. In the actual non-convex
case, phase transition can occur if the interaction is strong, and finding explicit estimates
of the weakness of the interaction for the exponential convergence of the McKean-Vlasov
equation is an important question in mathematical physics.

The main purpose of this paper is to investigate the concentration inequalities, the
exponential convergence in L1-Wasserstein metric W1 (refining the previous results in
[14, 13]), and as by-product the uniform-in-time propagation of chaos of the mean-field
weakly interacting particle system. Although we use the same approximate compo-
nentwise reflection coupling ([14, 13]), our next approach will be quite different from
theirs:

(1) our starting point is some explicit gradient estimate of the Poisson equation
−L(N)G = g where L(N) is the generator of (1.3), which are crucial for the
concentration inequalities of the interacting particle system;

(2) we will choose a different metric from the one used in [14, 13], which allows
us to obtain some explicit and almost sharp estimate of the exponential rate
in the convergence of the interacting particles system to its equilibrium in the
W1−metric, uniform in the number N of the particles.

(3) As a by-product, we obtain some explicit estimate on the propagation of chaos,
uniform in time.

The paper is organized as follows. In the next section, we will present our framework
and main results. The proofs of the results about gradient estimate of the Poisson
equation (in heat diffusion) and on the exponential convergence in Wasserstein metric
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are provided in Section 3 and Section 4. The proofs of concentration inequalities are
given in the last section.

2. Main resutls

2.1. Framework: notations and conditions.
2.1.1. Conditions on the dissipativity rate of a single particle. First we introduce a
dissipative rate b0(r) of the drift of one single particle in (1.3) at distance r > 0. The
function b0(r) is a continuous function on (0,+∞), such that

⟨x− y,−[∇V (x)−∇V (y)]− [∇xW (x, z)−∇xW (y, z)]⟩ ≤ b0(r)|x− y| (2.1)
for any x, y, z ∈ Rd with |x − y| = r. Throughout this paper we assume that b0(r)
satisfies

lim sup
r→+∞

b0(r)

r
< 0, (2.2)

i.e. the drift of one particle is dissipative at infinity.
We also assume that

lim
r→0+

b+0 (r) = 0. (2.3)

Next we introduce an important reference function h which is different from the one
used in [14, 13]. For any function f ∈ C2(0,+∞) and r > 0, let Lref be the generator
defined by

Lreff(r) := 4f ′′(r) + b0(r)f
′(r). (2.4)

Let h : R+ → R+ be the function determined by: h(0) = 0 and

h′(r) =
1

4
exp

(
−1

4

∫ r

0

b0(s)ds

)∫ +∞

r

s · exp
(
1

4

∫ s

0

b0(u)du

)
ds. (2.5)

As h′ is C1-smooth by the continuity of b0, h is a well defined C2 function, and it is a
solution (the smallest in fact) of the one-dimensional Poisson equation

Lrefh(r) = 4h′′(r) + b0(r)h
′(r) = −r, r > 0 (2.6)

with h(0) = 0. This function was used by the second named author [35] for functional
and isoperimetric inequalities on Riemmanian manifolds.

2.1.2. Kantorovich-Wasserstein W1-metric. For the configuration space (Rd)N , instead
of the usual Euclidean metric, we will use the l1-metric (generalized Hamming metric)

dl1(x, y) =
N∑
i=1

|xi − yi|, x = (x1, · · · , xN), y = (y1, · · · , yN) ∈ (Rd)N .

We consider the Kantorovich-Wasserstein distance w.r.t. dl1 metric on (Rd)N , i.e., for
any two probability measures µ and ν on (Rd)N ,

W1,dl1
(µ, ν) = inf

P∈Π(µ,ν)

∫∫
(Rd)N×(Rd)N

dl1(x, y)P (dx, dy)

where Π(µ, ν) is the set of all couplings of µ, ν, i.e. the set of all probability measures
on (Rd)N × (Rd)N whose marginal distributions of x and y are respectively µ and ν.
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Notice that for a C1-function g on (Rd)N , its Lipschitzian norm ∥g∥Lip(dl1 ) w.r.t. dl1
coincides with max1≤i≤N ∥∇ig∥∞ where ∇i is the gradient w.r.t. xi. By Kantorovich-
Rubinstein duality relation,

Wdl1
(µ, ν) = sup

g∈C1
b ((Rd)N ):max1≤i≤N ∥∇ig∥∞≤1

(∫
gdµ−

∫
gdν

)
When N = 1, we write simply W1 for W1,dl1

. We write quite often µ(u) :=
∫
udµ.

We notice that for two probability measures µ, ν on (Rd)N ,
N∑
i=1

W1(µ
i, νi) ≤ Wdl1

(µ, ν) (2.7)

and the equality holds when µ = ⊗N
i=1µ

i, ν = ⊗N
i=1ν

i are product measures, where
µi (resp. νi) is the marginal distribution of xi of µ (resp. ν). In fact if X =
(X1, · · · , XN), Y = (Y 1, · · · , Y N) are two random vectors such that the law of (X,Y ) is
an optimal coupling of (µ, ν) in W1,dl1

, then for each i, the law of (X i, Y i) is a coupling
of (µi, νi), so

Wdl1
(µ, ν) = Edl1(X,Y ) =

N∑
i=1

E|X i − Y i| ≥
N∑
i=1

W1(µ
i, νi).

When µ, ν are product measures, let (X i, Y i) (or its joint law) be an optimal coupling
of (µi, νi) for W1(µ

i, νi) so that (X1, Y 1), · · · , (XN , Y N) are independent. Then (X =
(X i)1≤i≤N , Y = (Y i)1≤i≤N) is a coupling of (µ, ν), so we get

N∑
i=1

W1(µ
i, νi) =

N∑
i=1

E|X i − Y i| = Edl1(X,Y ) ≥ Wdl1
(µ, ν)

i.e. the equality in (2.7) holds in the prodcut measures case. (This is well known.)

2.2. An explicit gradient estimate of the Poisson equation. Let {P (N)
t }t≥0 be the

transition semigroup of the mean-field interacting particle system (1.3), whose generator
is given by

L(N)f(x1, · · · , xN) =
N∑
i=1

(
∆if −∇V (xi) · ∇if − 1

N − 1

∑
j ̸=i

∇xW (xi, xj) · ∇if

)
.

Its unique invariant probability measure is the mean-field Gibbs measure, given by

µ(N)(dx1, · · · , dxN) =
1

CN

exp

(
−

N∑
i=1

V (xi)− 1

N − 1

∑
1≤i<j≤N

W (xi, xj)

)
dx1 · · · dxN ,

where CN is the normalization constant.
We introduce the following key assumption on the interaction potential:

(H) : ∥∇2
xyW∥∞ · ∥h′∥∞ < 1
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where h is given by (2.5), ∥h′∥∞ := supr≥0 h
′(r), and ∇2

xyW = ( ∂2

∂xi∂yj
W )1≤i,j≤d,

∥∇2
xyW∥∞ := sup

x,y∈Rd

sup
z∈Rd,|z|=1

|∇2
xyW (x, y)z|.

Notice that when the dissipativity at infinity condition (2.2) is satisfied, b0(r) can be
bounded from above by −c1r + c2 (with c1, c2 > 0), so ∥h′∥∞ := supr≥0 h

′(r) < +∞.
The assumption (H) is a (non-trivial) translation of Dobrushin-Zegarlinski’s unique-

ness condition in the framework of mean field, and it implies that the mean field has
no phase transition (established by Guillin and us in [18]).

Notice that under the assumption (H) and (2.2), both the equations (1.2) and (1.3)
have unique strong solutions. On the space of continuous paths C([0, T ], (Rd)N) where
T ∈ (0,+∞], we consider the L1-metric

dL1[0,T ](γ1, γ2) :=

∫ T

0

dl1(γ1(t), γ2(t))dt. (2.8)

Given the starting point x ∈ (Rd)N , let Px be the law of X(N) = (X
(N)
t )t≥0 with

X
(N)
0 = x.

Theorem 2.1. Assume (2.2), (2.3) and (H). For any x0 = (x1
0, · · · , xN

0 ) ∈ (Rd)N and
y0 = (y10, · · · , yN0 ) ∈ (Rd)N , we have∫ +∞

0

Wdl1
(P

(N)
t (x0, ·), P (N)

t (y0, ·))dt ≤ W1,dL1[0,∞]
(Px0 ,Py0)

≤ 1

1− ∥∇2
xyW∥∞∥h′∥∞

N∑
i=1

h(|xi
0 − yi0|).

(2.9)

In particular for any g ∈ C1
b ((Rd)N) with µ(N)(g) = 0, the solution G of the Poisson

equation −L(N)G = g with µ(N)(G) = 0 satisfies
∥∇iG∥∞ ≤ cLip · max

1≤j≤N
∥∇jg∥∞, 1 ≤ i ≤ N, (2.10)

where
cLip :=

h′(0)

1− ∥∇2
xyW∥∞∥h′∥∞

(2.11)

and
h′(0) =

1

4

∫ +∞

0

s · exp
(
1

4

∫ s

0

b0(u)du

)
ds.

Its proof will be given in the next section. We present two applications of the theorem
above, all of physical meaning. The first is an explicit integral (over time) estimate of
the nonlinear McKean-Vlasov equation (1.1).
Corollary 2.2. Under the same assumptions as in Theorem 2.1, for any two solutions
µt, νt of the self-interacting diffusion (1.2) with the initial distributions µ0, ν0 with finite
second moment respectively, we have∫ ∞

0

W1(µt, νt)dt ≤
∥h′∥∞

1− ∥∇2
xyW∥∞∥h′∥∞

W1(µ0, ν0). (2.12)
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In particular for the unique equilibrium µ∞ of the McKean-Vlasov equation (see [18]),∫ ∞

0

W1(µt, µ∞)dt ≤ ∥h′∥∞
1− ∥∇2

xyW∥∞∥h′∥∞
W1(µ0, µ∞).

Proof. By (2.9) in Theorem 2.1 and the fact that
h(r) ≤ h(0) + ∥h′∥∞ · r = ∥h′∥∞ · r, ∀r ≥ 0

we have∫ ∞

0

W1,dl1
(µ⊗N

0 P
(N)
t , ν⊗N

0 P
(N)
t )dt ≤ ∥h′∥∞

1− ∥∇2
xyW∥∞∥h′∥∞

W1,dl1
(µ⊗N

0 , ν⊗N
0 ). (2.13)

Notice that µ(N)
t := µ⊗N

0 P
(N)
t and ν

(N)
t := ν⊗N

0 P
(N)
t are symmetric probability measures

on (Rd)N and their marginal distributions µ
(i,N)
t , ν(i,N)

t of xi converge weakly to µt, νt
(respectively) by the finite time propagation of chaos. By using (2.7) we have

NW1(µ
(1,N)
t , ν

(1,N)
t ) =

N∑
i=1

W1(µ
(i,N)
t , ν

(i,N)
t ) ≤ W1,dl1

(µ
(N)
t , ν

(N)
t )

and then by the lower semi-continuity of W1 in the weak convergence topology,

W1(µt, νt) ≤ lim inf
N→+∞

W1(µ
(1,N)
t , ν

(1,N)
t ) ≤ lim inf

N→+∞

1

N
W1,dl1

(µ
(N)
t , ν

(N)
t ). (2.14)

Combining (2.13) and (2.14) together, we obtain by Fatou’s lemma,∫ ∞

0

W1(µt, νt)dt ≤ lim inf
N→+∞

1

N

∫ ∞

0

W1,dl1
(µ

(N)
t , ν

(N)
t )dt

≤ ∥h′∥∞
1− ∥∇2

xyW∥∞∥h′∥∞
lim inf
N→+∞

1

N
W1,dl1

(µ⊗N
0 , ν⊗N

0 )

=
∥h′∥∞

1− ∥∇2
xyW∥∞∥h′∥∞

W1(µ0, ν0)

where the last equality follows by (2.7). That completes the proof. �
Remark 2.3. Before the presentation of application of Theorem 2.1 to concentration
inequalities in the next paragraph, we speak quickly the consequence of the gradient
estimate to the spectral gap λ1 of the particle system (1.3) in L2(µ(N)) (i.e. the best
constant λ1 ≥ 0 such that the Poincaré inequality below holds

λ1Varµ(N)(F ) ≤
∫
(Rd)N

N∑
i=1

|∇iF |2dµ(N)

for all bounded and C2-smooth functions F on (Rd)N). In fact the Poisson operator
(−L(N))−1, defined on some dense domain (the whole space in fact) of L2

0(µ
(N)) = {F ∈

L2(µ(N)); µ(N)(F ) = 0} is self-adjoint. Then as in [35], we have
1

λ1

= ∥(−L(N))−1∥L2
0(µ

(N)) ≤ ∥(−L(N))−1∥Lip(dl1 ) ≤ cLip.



8 WEI LIU, LIMING WU, AND CHAOEN ZHANG

Thus

λ1 ≥
1

cLip
=

1− ∥∇2
xyW∥∞∥h′∥∞
h′(0)

. (2.15)

This estimate is more explicit (and better in the Example 2.15 of the double-well V )
than the one in [13]. The reader is referred to our joint work with A. Guillin [18] on the
spectral gap and the log-Sobolev inequality of Gibbs measure (without using coupling).

2.3. Concentration inequality for the time average of the U-statistics. We
present now another application of Theorem 2.1 in the concentration inequality about
the Gaussian concentration of the U -statistics.

For any 1 ≤ m ≤ N , let fm : (Rd)m → R be a measurable and symmetric function.
The U -statistic of order m with kernel fm is defined by

UN(fm)(x
1, · · · , xN) =

1

|ImN |
∑

(i1,··· ,im)∈ImN

fm(x
i1 , · · · , xim), ∀(x1, · · · , xN) ∈ (Rd)N ,

(2.16)
where

ImN := {(i1, · · · , im) ∈ Nk|i1, · · · , im are different , 1 ≤ i1, · · · , im ≤ N} (2.17)

and |ImN | denotes the number of elements in ImN (equal to N !/(N −m)!).
Next we introduce the following Gaussian integrability assumption of the initial dis-

tribution µ0: ∫
Rd

eλ0|x|2µ0(dx) < +∞, for some λ0 > 0 (2.18)

which is equivalent to say that there is some Gaussian concentration constant cG(µ0) > 0
such that ∫

R
ef(x)−µ0(f)dµ0(x) ≤ exp

(
cG(µ0)

2
∥f∥2Lip

)
(2.19)

for all Lipschitzian functions f on Rd (w.r.t. the usual Euclidean distance).

Remark 2.4. The equivalence between the Gaussian integrability (2.18) and the Gauss-
ian concentration inequality (2.19) was established by H. Djellout, A. Guillin and the
second named author [10], and (2.19) is the famous characterization of Bobkov-Götze
[3] of the transport-entropy inequality. By the tensorization of the transport-entropy
inequality for product measure, (2.19) implies that for any N ≥ 1,∫

(Rd)N
eg(x)−µ⊗N

0 (g)dµ⊗N
0 (x) ≤ exp

(
N

2
cG(µ0)∥g∥2Lip(dl1 )

)
(2.20)

for all Lipschitzian functions g on (Rd)N .

Theorem 2.5. Assume the conditions in Theorem 2.1 and the Gaussian integrability
(2.18) of the initial distribution µ0. Let fm ∈ C2((Rd)m,R) be symmetric and 1-Lipschitz
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w.r.t. the dl1-metric on (Rd)m, i.e. maxi ∥∇if∥∞ ≤ 1. Then for any λ, T > 0, we have

E exp

(
λ

T

[∫ T

0

UN(fm)(X
1,N
t , · · · , XN,N

t )dt−
∫ T

0

Efm(X1,N
t , · · · , Xm,N

t )dt

])
≤ exp

(
m2λ2c2Lip
2NT

(
1 +

cG(µ0)

T

))
,

(2.21)

where cLip is the same as given in (2.11). In particular we have for any δ > 0

P
{
1

T

∫ T

0

UN(fm)(X
1,N
t , · · · , XN,N

t )dt− 1

T

∫ T

0

Efm(X1,N
t , · · · , Xm,N

t )dt > δ

}
≤ exp

(
−

(1− ∥∇2
xyW∥∞∥h′∥∞)2

2m2(h′(0))2(1 + cG(µ0)/T )
NTδ2

)
.

(2.22)

The explicit concentration inequality (2.22) is sharp when V is quadratic and W (x, y) =
Kxy (the Gaussian case), shown in Example 2.14. Its proof will given in §5 after a more
general result, Proposition 5.1.

2.4. Exponential convergence of the particle system in the W1,dl1
-metric.

Theorem 2.6. Assume (2.2) and (H). Suppose that there exists a constant M ∈ R
such that

b0(r) ≤ rM, ∀r > 0 (2.23)
(this condition is stronger than (2.3)), then for any ε > 0 such that

Kε :=
1− ∥∇2

xyW∥∞∥h′∥∞ − ε(M + ∥∇2
xyW∥∞)

∥h′∥∞ + ε
> 0, (2.24)

we have for any x0, y0 ∈ (Rd)N

Wdl1
(P

(N)
t (x0, ·), P (N)

t (y0, ·)) ≤ Aεe
−Kεtdl1(x0, y0), ∀t ≥ 0, (2.25)

where

Aε = sup
r>0

r

h(r) + εr
· sup
r>0

h(r) + εr

r
. (2.26)

Its proof is given in Section 3.

Remark 2.7. An easy estimate of Aε is Aε ≤
supr≥0 h

′
(r)+ε

infr≥0 h
′ (r)+ε

(since h(0) = 0). Note that
when M + ∥∇2

xyW∥∞ > 0, the exponential rate Kε increases (then better and better)
as ε decreases to 0, but Aε may explode once if infr≥0 h

′
(r) = 0 (that is the case if

V (x) = x4 − x2 for example).

Remark 2.8. Notice that (2.23) is equivalent to say that

∇2V (x) +∇2
xxW (x, y) ≥ −MI, x, y ∈ Rd
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i.e. the Bakry-Emery’s curvature for one particle’s motion is bounded from below by
the constant −M . When κ := −M − ∥∇2

xyW∥∞ > 0, we see that the Hessian of the
Hamiltonian

H(x1, · · · , xN) =
N∑
i=1

V (xi) +
1

N − 1

∑
1≤i<j≤N

W (xi, xj)

is bounded from below by κI (this estimate of the lower bound of the Bakry-Emery
curvature is sharp if ∇2

xyW is constant and definitely nonnegative). Notice that when
M < 0, we can take b0(r) = Mr, so h′(r) = −1/M . Then κ > 0 if and only if (H) is
satisfied. The advantage of our condition (H) (w.r.t. the positive curvature condition)
is: it does not depend on the curvature but on the dissipativity at infinity, it holds even
if V has many wells (non-convex) once if the interaction is weak enough so that there
is no phase transition.

If κ > 0, we have by Bakry-Emery’s curvature characterization

W1(P
(N)
t (x, ·), P (N)

t (y, ·)) ≤ e−κt|x− y|
in the Euclidean metric on (Rd)N . On the other hand as above b0(r) = Mr, h(r) =
−r/M , we see that Kε → −M − ∥∇2

xyW∥∞ = κ as ε → +∞, and Aε ≡ 1, so (2.25)
yields

W1,dl1
(P

(N)
t (x, ·), P (N)

t (y, ·)) ≤ e−κtdl1(x, y), (2.27)
a curious but not at all surprising phenomenon (it can be obtained by the synchronous
coupling as indicated by a referee).

Theorem 2.6 above will give us an explicit exponential convergence in W1 of the
nonlinear McKean-Vlasov equation (1.1). For the exponential convergence in entropy
of the nonlinear McKean-Vlasov equation (1.1) under the condition (H), see Guillin
and the authors [18].

Corollary 2.9. Under the same assumptions as in Theorem 2.6, for any ε > 0 so that
Kε > 0 (i.e. (2.24)), we have for the solutions µt, νt of the self-interacting diffusion
(1.2) with the initial distributions µ0, ν0 which have finite second moments respectively,

W1(µt, νt) ≤ Aεe
−KεtW1(µ0, ν0), ∀t ≥ 0, (2.28)

where Kε and Aε are given by (2.24) and (2.26) respectively.

Proof. The proof of this corollary is similar to that of Corollary 2.2, and we utilize the
same notations as in the Corollary 2.2. First by Theorem 2.6, we have for any t ≥ 0

W1,dl1
(µ⊗N

0 P
(N)
t , ν⊗N

0 P
(N)
t ) ≤ Aεe

−KεtW1,dl1
(µ⊗N

0 , ν⊗N
0 ).

Dividing the inequality above by N , we obtain by (2.14) and propagation of chaos,

W1(µt, νt) ≤ Aεe
−Kεt lim inf

N→+∞

1

N
W1,dl1

(µ⊗N
0 , ν⊗N

0 )

= Aεe
−KεtW1(µ0, ν0)

the desired result. �
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2.5. Concentration inequality for the empirical mean uniform in time. We
go into more details in this subject, spoken already in the Introduction. Under the
conditions that V is uniformly convex and W is convex, Malrieu [27] established log-
arithmic Sobolev inequality and then used its connection with optimal transport and
concentration of measure to get the following non-asymptotic bounds on the deviation
of the empirical mean of an observable f from µt(f),

sup
∥f∥Lip≤1

P

{
| 1
N

N∑
i=1

f(X i,N
t )− µt(f)| >

A√
N

+ δ

}
≤ 2e−λNδ2 , t > 0, δ ≥ 0 (2.29)

where A and λ are positive constants depending on the particle system.
As pointed out in [6], this approach can lead to nice bounds but it is limited to a

finite number of observables. Bolley-Guillin-Villani [6, Theorem 2.9] obtained for any
t > 0 fixed and δ > 0

P

{
sup

∥f∥Lip≤1

| 1
N

N∑
i=1

f(X i,N
t )− µt(f)| > δ

}
≤ C(1 + tδ−2)e−K(t)Nδ2 , (2.30)

for all N big enough (quantifiable), where K(t) depending on t is some explicitly com-
putable constant. Furthermore, Bolley [4] got quantitative concentration inequalities
on the sample path space with uniform norm, on a given time interval [0, T ], which
implies (2.30) by projection at time t ∈ [0, T ].
Theorem 2.10. Assume the conditions in Theorem 2.6 and the Gaussian integrability
(2.18) of the initial distribution µ0. Then for any Lipschitzian observable f : Rd → R
with ∥f∥Lip = 1, N ≥ 2, and for any δ > 0,

Pµ⊗N
0

{
1

N

N∑
i=1

f(X i,N
T )− Eµ⊗N

0
f(X1,N

T ) > δ

}
≤ exp

(
− NKεδ

2

A2
ε [1 + 2cG(µ0)Kεe−2KεT ]

)
(2.31)

where ε > 0 is any small constant such that Kε > 0 (see (2.24)), Aε is the constant
given by (2.26).

As the absolute value of the bias |Eµ⊗N
0

f(X1,N
T ) − µT (f)| ≤ A/

√
N by Remark 4.4,

our result above generalizes Malrieu’s result (2.29) to the case that V may have many
wells. It will be proved in Section 5.
2.6. Propagation of chaos in large time. We have the following uniform in time
propagation of chaos.
Theorem 2.11. Assume (2.2), (2.23) and (H). Suppose that there exist some positive
constants c1, c2, c3 such that

⟨x,∇V (x)⟩ ≥ c1|x|2 − c2, ∀x ∈ Rd (2.32)
and

⟨z,∇2
xxW (x, y)z⟩ ≥ −c3|z|2, ∀x, y, z ∈ Rd. (2.33)

Assume
c1 − c3 − ∥∇2

xyW∥∞ > 0. (2.34)
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Then for any ε > 0 such that Kε > 0, and ε̃ ∈ (0, c1 − c3 −∥∇2
xyW∥∞), the following

estimates of propagation of chaos hold for the mean-field interacting particle system
(1.3) with any initial probability measure µ0 having finite second moment:
(a) (path-type propagation of chaos) for any T > 0, 1 ≤ k ≤ N , denote Pν(·) =∫

(Rd)N
Px(·)dν(x) the law of (X(N)

t )t≥0 with the initial distribution ν, P[1,k],N
ν |[0,T ] the

joint law of paths of the k particles ((X i,N
t )t∈[0,T ], 1 ≤ i ≤ k) in time interval [0, T ],

and Qµ0 the law of the self-interacting diffusion (Xt)t≥0 with the initial distribution
µ0. We have

1

kT
W1,dL1[0,T ]

(P[1,k],N

µ⊗N
0

|[0,T ],Q⊗k
µ0
|[0,T ]) ≤

max{m2(µ0), ĉ(ε)}√
N − 1

∥∇2
xyW∥∞∥h′∥∞

1− ∥∇2
xyW∥∞∥h′∥∞

(2.35)

where

m2(µ0) =

(∫
Rd

|x|2dµ0(x)

) 1
2

, ĉ(ε) =

(
d+ c2 +

1
4ε̃
|∇xW (0, 0)|2

c1 − c3 − ∥∇2
xyW∥∞ − ε̃

) 1
2

. (2.36)

(b) (Uniform in time propagation of chaos) Assume moreover for all time t > 0
and any 1 ≤ k ≤ N :

W1,dl1
(µ

[1,k],N
t , µ⊗k

t ) ≤ k√
N − 1

Aε

Kε

∥∇2
xyW∥∞ max{m2(µ0), ĉ(ε)} (2.37)

where µt = utdx is the solution of the McKean-Vlasov equation (1.1), and µ
[1,k],N
t is

the joint law of the k particles (X i,N
t , 1 ≤ i ≤ k) in the mean-field system (1.3) of

interacting particles (X i,N
t )1≤i≤N with X i,N

0 , 1 ≤ i ≤ N i.i.d. of law µ0 (independent
of (Bi,N

t )1≤i≤N,t≥0), and the constants Kε, Aε, m2(µ0) and ĉ(ε) are given in (2.24),
(2.26) and (2.36) respectively.

Remark 2.12. The time-uniform propagation of chaos is much more difficult than the
bounded time propagation of chaos, accomplished in the 80-90’s of the last century.
The physical reason is that the time-uniform propagation of chaos fails in the regime of
phase transition. That is why we impose the condition (H), which excludes the phase
transition.

The reader is referred to [5, 9, 12, 13, 22] and the references therein for recent studies
and progresses on this subject. The main new point here is that our estimate (2.37) is
explicit and relatively neat.

Remark 2.13. All the results presented in this paper can be extended to more general
case:

dXt =
√
2dBt + b(Xt, µt)dt

where µt is the law of Xt, if b satisfies some dissipative condition in x (uniformly in µ)
and a Lipchitz condition in µ with sufficiently small Lipschitz constant. For the sake
of clarity, we deal only with the case of b(Xt, µt) = −∇V (Xt)−∇xW ~ µt(Xt) in this
paper.
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2.7. Examples. We first present the Gaussian model for which the constants in The-
orem 2.1 and Theorem 2.6 become exact, showing their sharpness.
Example 2.14. (Gaussian model) Let d = 1, and

V (x) = β
x2

2
, W (x, y) = −βKxy

where β > 0 is the inverse temperature, K ≥ 0.
For this model, by some simple calculations we have

b0(r) = −βr, ∀r > 0.

and
h′(r) ≡ β−1, ∀r ≥ 0.

It is obvious that conditions (2.2) and (2.3) hold, and the assumption (H) holds once if
K < 1. (2.38)

But this condition is equivalent to say that the matrix A = (aij)1≤i,j≤N is positively
definite, where

aii = β, aij =
−βK

N − 1
, i ̸= j.

A must be the inverse of the covariance matrix of the Gaussian measure µ(N). In other
words (H) is equivalent to well defining the equilibrium probability measure µ(N).

Note that ∥∇2
xyW∥∞ = βK, so we have cLip =

1
β(1−K)

under (2.38). Moreover (2.23)
is satisfied with M = −β.
• Sharpness of Theorem 2.1. The gradient estimate (2.10) in Theorem 2.1 tells us:

if −L(N)G = g, then
∥∇iG∥∞ ≤ 1

β(1−K)
max

i
∥∇ig∥∞.

Let us show that it becomes equality for g(x1, · · · , xN) =
∑N

i=1 x
i. In fact

L(N)g(x1, · · · , xN) = −
∑
i

βxi +
∑
i

1

N − 1

∑
j ̸=i

βKxj = −β(1−K)g.

In other words G = 1
β(1−K)

g for which the gradient estimate above becomes equality.
As the gradient estimate (2.10) comes from (2.9), the process level W1,dL1 estimate (2.9)
is sharp too.

• Sharpness of Theorem 2.6. As ε → +∞ in (2.24), we have by Theorem 2.6
W1,dl1

(P
(N)
t (x0, ·), P (N)

t (y0, ·)) ≤ e−β(1−K)tdl1(x0, y0).

This is equivalent to say that
max ∥∇iP

(N)
t g∥∞ ≤ e−β(1−K)t max ∥∇ig∥∞.

But it becomes equality for g =
∑N

i=1 x
i : in fact as L(N)g = −β(1−K)g,

P
(N)
t g = e−β(1−K)tg.

Hence the exponential convergence result (2.25) in Theorem 2.6 is sharp.



14 WEI LIU, LIMING WU, AND CHAOEN ZHANG

Of course for this Gaussian model all results in Theorems 2.1 and 2.6 can be derived
easily by using the synchronous coupling, or from the commutativity relation

∇P
(N)
t g = e−AtP

(N)
t ∇g

which is one of the origins of the Bakry-Emery curvature.

Next we consider a typical physical model to illustrate our results.

Example 2.15. (Double-Well confinement potential and quadratic interac-
tion in granular media) Let d ≥ 1,

V (x) = β(|x|4/4− |x|2/2), W (x, y) = βK|x− y|2

where β > 0 is the inverse temperature, K ∈ R. This model has the double-well
confinement potential and quadratic interaction potential W0(z) = K|z|2. Here and
hereafter |x| denotes the Euclidean norm of x, ⟨·, ·⟩ the Euclidean inner product.

First of all, for this model we have

b0(r) = βr(1− 2K − r2/4), ∀r > 0 (2.39)

and so conditions (2.2) and (2.3) are satisfied. Indeed, set r = |x− y|, σ = x−y
|x−y| for any

x ̸= y, then ⟨
x− y

|x− y|
, x|x|2 − y|y|2

⟩
=⟨σ, (y + rσ)|y + rσ|2 − y|y|2⟩

=2r⟨σ, y⟩2 + 3r2⟨σ, y⟩+ r|y|2 + r3

≥3r⟨σ, y⟩2 + 3r2⟨σ, y⟩+ r3

≥r3

4

with equality if and only if x = r
2
σ, y = − r

2
σ. Therefore we obtain⟨

x− y

|x− y|
,∇V (x)−∇V (y) +∇xW (x, z)−∇xW (y, z)

⟩
=

⟨
x− y

|x− y|
, β(x|x|2 − x)− β(y|y|2 − y) + 2βK(x− z)− 2βK(y − z)

⟩
≥βr

(
r2

4
− 1 + 2K

)
.

Then the best b0(r) is given by (2.39).
Next we estimate ∥h′∥∞. By (2.5) and some calculations, we have for any r ≥ 0

h′(r) =
1

4
exp

(
β

64
(r4 − 8(1− 2K)r2)

)∫ +∞

r

s · exp
(

β

64
(8(1− 2K)s2 − s4)

)
ds

=
1

4
exp

(
β

16

(
r2

2
− 2(1− 2K)

)2
)∫ +∞

r2/2

exp

(
− β

16
(u− 2(1− 2K))2

)
du.
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When K > 1
2
, we have r2

2
− 2(1− 2K) > 0 and so

h′(r) ≤ 1

4
exp

(
β

16

(
r2

2
− 2(1− 2K)

)2
)

·
√

16π

β
exp

(
− β

16
(u− 2(1− 2K))2

)
=

√
π√
β
.

(2.40)

When K ≤ 1
2

and r2

2
> 2(1− 2K), the above bound (2.40) holds as well.

When K ≤ 1
2

and r2

2
≤ 2(1− 2K), we have by (2.6)

4h′′(r) = −r − βr(1− 2K − r2/4)h′(r) ≤ 0,

and hence

h′(r) ≤ h′(0) =
1

4
exp

(
β(1− 2K)2

4

)∫ +∞

0

exp

(
− β

16
(u− 2(1− 2K))2

)
du

<

√
π√
β
exp

(
β(1− 2K)2

4

)
. (2.41)

Combining (2.40) and (2.41), we obtain

∥h′∥∞ < α :=

{ √
π√
β
exp

(
β(1−2K)2

4

)
, if K ≤ 1

2
,

√
π√
β
, if K > 1

2
.

(2.42)

Since ∥∇2
xyW∥∞ = 2|K|β, assumption (H) holds once if

2β|K|α < 1. (2.43)
and then the conclusion of Theorem 2.1 holds under (2.43), and then all its consequences
in §2.2 and 2.3. For instance

cLip ≤
√
π√
β

exp
(

β(1−2K)2

4

)
1− 2|K|βα

, λ1 ≥
1

cLip
≥

√
β(1− 2|K|βα)

√
π exp

(
β(1−2K)2

4

) . (2.44)

Furthermore, note that (2.23) holds with M = β(1− 2K), and then
M + ∥∇2

xyW∥∞ = β(1 + 4K−) > 0.

Thus the conclusion of Theorem 2.6 holds with

Kε =
1− α− εβ(1 + 4K−)

α + ε

where ε > 0 is small such that 1− α− εβ(1 + 4K−) > 0, and by Remark 2.7,

Aε ≤
supr≥0 h

′
(r) + ε

infr≥0 h
′(r) + ε

≤ α + ε

ε
.

For the result of propagation of chaos in Theorem 2.11, we can take c3 = 0 when
K ≥ 0, and c3 = −2Kβ when K < 0. To ensure that conditions (2.32) and (2.34) are
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satisfied, one can take c1 = 2|K|β+ ε′, c2 =
β
4
(1+ 2|K|+ ε′

β
)2 in the case of K > 0 and

c1 = −4Kβ + ε′, c2 =
β
4
(1− 4K + ε′

β
)2 in the case of K < 0, for any ε′ > 0.

3. Proof of Theorem 2.1 and Theorem 2.6

3.1. Coupling. We first introduce the approximate componentwise reflection coupling
by following [13] and [14]. Given δ > 0, let λδ, πδ : R+ → [0, 1] be two Lipschitz
continuous functions such that

λδ(r)
2 + πδ(r)

2 = 1, ∀r ∈ R+ (3.1)
and

λδ(r) =

{
1, if r ≥ δ,

0, if r ≤ δ/2.
(3.2)

Then a coupling of two solutions of the mean-field interacting particle system (1.3)
with initial values x0, y0 ∈ (Rd)N is given by a strong solution of the system

dX i,N
t =

√
2[λδ(|Zi

t |)dB
1,i
t + πδ(|Zi

t |)dB
2,i
t ]−∇V (X i,N

t )dt

− 1

N − 1

∑
j:j ̸=i,1≤j≤N

∇xW (X i,N
t , Xj,N

t )dt,

dY i,N
t =

√
2[λδ(|Zi

t |)Ri
tdB

1,i
t + πδ(|Zi

t |)dB
2,i
t ]−∇V (Y i,N

t )dt

− 1

N − 1

∑
j:j ̸=i,1≤j≤N

∇xW (Y i,N
t , Y j,N

t )dt,

(3.3)

1 ≤ i ≤ N. Here Zi
t := X i,N

t −Y i,N
t and Ri

t := Id−2eit(e
i
t)

T , where Id is the d-dimensional
unit matrix and eit(e

i
t)

T is the orthogonal projection onto the unit vector eit := Zi
t/|Zi

t |
if |Zi

t | ̸= 0, B1
t = (B1,i

t )1≤i≤N and B2
t = (B2,i

t )1≤i≤N are two given independent standard
Brownian motions taking values in (Rd)N .

We will denote X
(N)
t = (X1,N

t , · · · , XN,N
t ), Y

(N)
t = (Y 1,N

t , · · · , Y N,N
t ) and Z

(N)
t :=

X
(N)
t −Y

(N)
t . To see that (X(N)

t , Y
(N)
t ) is a coupling process, it is enough to notice that

B̂i
t : =

∫ t

0

λδ(|Zi
s|)dB1,i

s +

∫ t

0

πδ(|Zi
s|)dB2,i

s

B̌i
t : =

∫ t

0

λδ(|Zi
s|)Ri

tdB
1,i
s +

∫ t

0

πδ(|Zi
s|)dB2,i

s , 1 ≤ i ≤ N,

(3.4)

are standard Brownian motions on (Rd)N . That follows by Lévy’s characterization of
Brownian motions, because their brackets in matrix form are

d⟨B̂i
t, B̂

j
t ⟩t = λ2

δ(|Zi
s|)d⟨B1,i, B1,j⟩t + π2

δ (|Zi
s|)d⟨B2,i, B2,j⟩t

+ λδ(|Zi
s|)πδ(|Zi

s|)(d⟨B1,i, B2,j⟩t + d⟨B1,j, B2,i⟩t)
= δijIddt.

The same for B̌i
t. (That is already well detailed in [13] or [14]).
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Remark 3.1. (1) The coupling (3.3) behaves as a reflection coupling when the distance
between the two particles X i,N

t and Y i,N
t are larger than δ. When the particles are

very close (with distance less than 1
2
δ), they are driven by the same Brownian

motion, i.e., it is a synchronous coupling. And when the distance is between 1
2
δ and

δ, it is a mixture of reflection coupling and synchronous coupling. The aim is to
make λδ and πδ globally Lipschitz continuous, so that the coupling SDE has a unique
strong solution, given the independent Brownian motions B1,i

t , B2,i
t , 1 ≤ i ≤ N .

(2) If one adopts the componentwise reflection coupling (i.e. the limit coupling when
δ → 0), since X i,N , Y i,N will separate after the time that they meet (i.e. X i,N

t =

Y i,N
t ), the local times will appear when Itô’s formula is applied for |X i,N

t − Y i,N
t |.

This makes the control of
∑N

i=1 |X
i,N
t − Y i,N

t | difficult to deal with. That is the
reason why A. Eberle [14] introduced the synchronous coupling when |X i,N

t − Y i,N
t |

is small (we guess).

3.2. Proof of Theorem 2.1.

Proof of Theorem 2.1. 1). Proof of (2.9). The first inequality in (2.9) is trivial, and
next we prove the second inequality. By doing subtraction of the equations in (3.3), we
have

dZ i
t = 2

√
2λδ(|Zi

t |)eitdB̃i
t − [∇V (X i,N

t )−∇V (Y i,N
t )]dt

− 1

N − 1

∑
j:j ̸=i,1≤j≤N

[∇xW (X i,N
t , Xj,N

t )−∇xW (Y i,N
t , Y j,N

t )]dt,

Zi
0 = xi

0 − yi0,

(3.5)

where the processes B̃i
t =

∫ t

0
(eis)

TdB1,i
s , 1 ≤ i ≤ N, are one-dimensional standard Brow-

nian motions such that ⟨B̃i, B̃j⟩t = 0 for i ̸= j.
Let rit = |Zi

t |, 1 ≤ i ≤ N. Though | · | is not C2 at 0, but since Zi
t is of bounded

variation and continuous when it is close to 0 (because of the synchronous coupling
when X i

t , Y
i
t are close), we can apply Itô’s formula (see [13, Lemma 7]) to obtain

drit = 1{rit ̸=0}2
√
2λδ(r

i
t)dB̃

i
t − 1{rit ̸=0}⟨eit,∇V (X i,N

t )−∇V (Y i,N
t )⟩dt

− 1{rit ̸=0}⟨eit,
1

N − 1

∑
j:j ̸=i,1≤j≤N

[∇xW (X i,N
t , Xj,N

t )−∇xW (Y i,N
t , Y j,N

t )]⟩dt

+ 1{rit ̸=0}

d∑
k,l=1

[1{k=l}(r
i
t)

−1 − (X i,N,k
t − Y i,N,k

t )(X i,N,l
t − Y i,N,l

t )(rit)
−3]λδ(r

i
t)

2(Id −Ri
t)

2
kldt,

(3.6)
where X i,N,k

t and Y i,N,k
t denote the k-th coordinate of X i,N

t and Y i,N
t respectively, 1 ≤

k ≤ d. Notice that the last term in the right hand side of the above equation equals to



18 WEI LIU, LIMING WU, AND CHAOEN ZHANG

0 by an easy calculation. Hence we get

drit = 1{rit ̸=0}2
√
2λδ(r

i
t)dB̃

i
t − 1{rit ̸=0}⟨eit,

1

N − 1

∑
j:j ̸=i,1≤j≤N

[∇xW (X i,N
t , Xj,N

t )−∇xW (X i,N
t , Y j,N

t )]⟩dt

− 1{rit ̸=0}⟨eit,∇V (X i,N
t )−∇V (Y i,N

t ) +
1

N − 1

∑
j:j ̸=i,1≤j≤N

[∇xW (X i,N
t , Y j,N

t )−∇xW (Y i,N
t , Y j,N

t )]⟩dt

≤ 1{rit ̸=0}2
√
2λδ(r

i
t)dB̃

i
t +

1

N − 1
∥∇2

xyW∥∞
∑

j:j ̸=i,1≤j≤N

rjtdt+ 1{rit ̸=0}b0(r
i
t)dt,

(3.7)
where we use the definition (2.1) of b0 in the last inequality. Here dξt ≤ dηt means that
ηt − ξt is a non-decreasing process.

Let Lλδ
be the generator defined by for any function f ∈ C2(0,+∞) and r > 0,

Lλδ
f(r) := 4λ2

δ(r)f
′′(r) + b0(r)f

′(r). (3.8)

Note that Lλδ
equals Lref when λδ ≡ 1.

Applying Itô’s formula to the function h(rit) and using (3.7) and the fact that h′(r) >
0, we get for any t > 0 and i = 1, · · · , N ,

dh(rit) ≤ 2
√
2λδ(r

i
t)h

′(rit)dB̃
i
t + h′(rit)b0(r

i
t)dt+ 4h′′λδ(r

i
t)

2dt

+
1

N − 1
∥∇2

xyW∥∞h′(rit)
∑

j:j ̸=i,1≤j≤N

rjtdt

= 2
√
2λδ(r

i
t)h

′(rit)dB̃
i
t + Lλδ

h(rit)dt+
1

N − 1
∥∇2

xyW∥∞h′(rit)
∑

j:j ̸=i,1≤j≤N

rjtdt.

(3.9)
Notice that by the definition of Lλδ

and the Poisson equation (2.6),

Lλδ
h(r) = Lrefh(r) + 4(λ2

δ − 1)h′′(r) = −r + (1− λ2
δ)(r + b0(r)h

′(r)). (3.10)

Then

−
N∑
i=1

(
Lλδ

h(rit) +
1

N − 1
∥∇2

xyW∥∞h′(rit)
∑

j:j ̸=i,1≤j≤N

rjt

)

≥ (1− ∥∇2
xyW∥∞∥h′∥∞)

N∑
i=1

rit −
N∑
i=1

(1− λδ(r
i
t)

2)(rit + b0(r
i
t)h

′(rit))

which is bounded from below by −N(δ+ supr∈(0,δ) b
+
0 (r)∥h′∥∞) according to the condi-

tions (H) and (2.3). By integrating from 0 to T and taking expectation in the previous
inequality (3.9) for dh(rit) and using Fatou’s lemma, we have for any T > 0,
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E
∫ T

0

{
(1− ∥∇2

xyW∥∞∥h′∥∞)
N∑
i=1

rit −
N∑
i=1

(1− λδ(r
i
t)

2)(rit + b0(r
i
t)h

′(rit))

}
dt

≤
N∑
i=1

h(|xi
0 − yi0|).

(3.11)

Letting Px|[0,T ] be the law of (X(N)
t )t∈[0,T ], we obtain by assumption (H) and (3.11)

W1,dL1[0,T ]
(Px0 |[0,T ],Py0 |[0,T ]) ≤ E

∫ T

0

dl1(X
(N)
t , Y

(N)
t )dt = E

∫ T

0

N∑
i=1

ritdt

≤ 1

1− ∥∇2
xyW∥∞∥h′∥∞

{
N∑
i=1

h(|xi
0 − yi0|) +

N∑
i=1

E
∫ T

0

(1− λδ(r
i
t)

2)(rit + b+0 (r
i
t)h

′(rit))dt

}
.

(3.12)
By the definition of λδ and the assumption lim

r→0
b+0 (r) = 0, the second term in the right

hand side of the inequality above converges to 0, a.s., as δ ↓ 0 by dominated convergence,
because b+0 (r

i
t)h

′(rit) ≤ ∥h′∥∞ supr>0 b
+
0 (r) < +∞ by condition (2.2). Hence

W1,dL1[0,T ]
(Px0 |[0,T ],Py0 |[0,T ]) ≤

1

1− ∥∇2
xyW∥∞∥h′∥∞

N∑
i=1

h(|xi
0 − yi0|). (3.13)

Let Qn be an optimization coupling of (Px0 |[0,n],Py0 |[0,n]) for W1,dL1[0,n]
(Px0 |[0,n],Py0 |[0,n]).

Then {Qn|[0,T ];n ≥ T} is tight for any finite time T (because their marginal distribu-
tions are respectively Px0 |[0,T ] and Py0 |[0,T ]), hence one can find a probability measure
Q on C(R+, (Rd)N)2 such that Qn|[0,T ] → Q|[0,T ] weakly for all T > 0. Thus

W1,dL1[0,∞]
(Px0 ,Py0) ≤ EQ

∫ ∞

0

dl1(γ1(t), γ2(t))dt

= lim
T→+∞

EQ

∫ T

0

dl1(γ1(t), γ2(t))dt

≤ lim
T→∞

lim
T≤n→+∞

EQn

∫ T

0

dl1(γ1(t), γ2(t))dt

≤ lim
n→∞

W1,dL1[0,n]
(Px0 |[0,n],Py0 |[0,n]).

The converse inequality is evident. Therefore we have

W1,dL1 (Px0 ,Py0) = lim
n→∞

W1,dL1[0,n]
(Px0 |[0,n],Py0 |[0,n]).

From this and (3.13) we obtain (2.9).
2). Proof of (2.10). Note that for any Lipschitzian function g w.r.t the dl1-metric

on (Rd)N , g is µ(N)-integrable because
∫ ∑N

i=1 |xi|dµ(N)(x) < +∞. So we can assume
µ(N)(g) = 0 without loss of generality. In that case as µ(N)(P

(N)
t g) = µ(N)(g) = 0, we
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have∫ +∞

0

|P (N)
t g(x)|dt =

∫ +∞

0

|P (N)
t g(x)−

∫
P

(N)
t g(y)dµ(N)(y)|dt

≤ ∥g∥Lip(dl1 )
∫
(Rd)N

∫ +∞

0

Wdl1
(P

(N)
t (x, ·), P (N)

t (y, ·))dtdµ(N)(y)

≤
∥g∥Lip(dl1 )

1− ∥∇2
xyW∥∞∥h′∥∞

∫
(Rd)N

N∑
i=1

h(|xi − yi|)dµ(N)(y)

< +∞,

then the unique solution of the Poisson equation −L(N)G = g with µ(N)(G) = 0 is given
by G(x) =

∫ +∞
0

P
(N)
t g(x)dt, ∀x ∈ (Rd)N .

For each 1 ≤ i ≤ N , letting x̃i ̸= xi and x̃ ∈ (Rd)N so that (x̃)j = xj for j ̸= i and
(x̃)i = x̃i, we have

|∇iG(x)| ≤ lim sup
x̃i→xi

|G(x)−G(x̃)|
|xi − x̃i|

≤ lim sup
x̃i→xi

1

|xi − x̃i|

∫ +∞

0

|P (N)
t g(x)− P

(N)
t g(x̃)|dt

≤ lim sup
x̃i→xi

1

|xi − x̃i|
∥g∥Lip(dl1 )

∫ +∞

0

Wdl1
(P

(N)
t (x, ·), P (N)

t (x̃, ·))dt

≤ 1

1− ∥∇2
xyW∥∞∥h′∥∞

∥g∥Lip(dl1 ) lim
x̃i→xi

h(|xi − x̃i|)
|xi − yi|

=
h′(0)

1− ∥∇2
xyW∥∞∥h′∥∞

∥g∥Lip(dl1 ),

(3.14)

where the fourth inequality follows from (3.13). �

3.3. Proof of Theorem 2.6.

Proof of Theorem 2.6. Here we also adopt the coupling (3.3) . Let h be defined as in
(2.5). Define for any ε > 0,

hε(r) := h(r) + εr, ∀r ≥ 0, (3.15)

and

Hε
t := eKεt

N∑
i=1

hε(r
i
t),
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where rit = |X i,N
t − Y i,N

t |, 1 ≤ i ≤ N , as in the proof of Theorem 2.1. By using Ito’s
formula and (3.7), we get for any t ≥ 0,

dHε
t ≤ 2

√
2eKεt

N∑
i=1

λδ(r
i
t)dB̃

i
t +KεH

ε
t dt+ eKεt

N∑
i=1

(Lλδ
h(rit) + εb0(r

i
t))dt

+ eKεt

N∑
i=1

(h′(rit) + ε)
∑
j:j ̸=i

1

N − 1
∥∇2

xyW∥∞rjtdt

= 2
√
2eKεt

N∑
i=1

λδ(r
i
t)dB̃

i
t +Dε

tdt

(3.16)

where

Dε
t : = KεH

ε
t + eKεt

N∑
i=1

(Lλδ
h(rit) + εb0(r

i
t)) +

∑
i ̸=j,1≤i,j≤N

(h′(rit) + ε)
1

N − 1
eKεt∥∇2

xyW∥∞rjt .

(3.17)
Calculating as in the proof of Theorem 2.1, we have

Dε
t ≤ eKεt

N∑
i=1

[1− λδ(r
i
t)

2][rit + b0(r
i
t)h

′(rit)]

+ eKεt

N∑
i=1

{Kεhε(r
i
t)− [1− (∥h′∥∞ + ε)∥∇2

xyW∥∞]rit + εb0(r
i
t)}

≤ eKεt

N∑
i=1

[1− λδ(r
i
t)

2][rit + b0(r
i
t)h

′(rit)]

+ eKεt

N∑
i=1

{Kε(∥h′∥∞ + ε) + εM − [1− (∥h′∥∞ + ε)∥∇2
xyW∥∞]}rit,

(3.18)
where we use the assumption b0(r) ≤ Mr, ∀r > 0.

By taking

Kε =
1− ∥∇2

xyW∥∞∥h′∥∞ − ε(M + ∥∇2
xyW∥∞)

∥h′∥∞ + ε
, (3.19)

the second term in the right hand side of the inequality above vanishes. Then by taking
expectation in (3.16) and using (3.18), we get for any t ≥ 0,

EeKεt

N∑
i=1

hε(r
i
t) ≤

N∑
i=1

hε(|xi
0 − yi0|) + E

∫ t

0

eKεs[1− λδ(r
i
t)

2][rit + b+0 (r
i
t)h

′(rit)]ds.

(3.20)
Note that the second term in the right hand side of the above inequality converges

to 0 as δ ↓ 0 by dominated convergence (see the reason presented just after (3.12)).
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Therefore we obtain

W1,dl1
(P

(N)
t (x0, ·),P (N)

t (y0, ·)) ≤ lim
δ→0

E
N∑
i=1

rit

≤ sup
r>0

r

h(r) + εr
lim
δ→0

E
N∑
i=1

hε(r
i
t)

≤ sup
r>0

r

h(r) + εr
e−Kεt

N∑
i=1

hε(|xi
0 − yi0|)

≤ sup
r>0

r

h(r) + εr
· sup
r>0

h(r) + εr

r
e−Kεt

N∑
i=1

|xi
0 − yi0|

where the third inequality above follows by (3.20). That is the desired result (2.25). �

4. Uniform-in-time propagation of chaos: proof of Theorem 2.11

We begin with a uniform in time control of the second moment, which is more or less
known, see e.g. Cattiaux et al. [9].
Lemma 4.1. Suppose that there exist some positive constants c1, c2, c3 such that

⟨x,∇V (x)⟩ ≥ c1|x|2 − c2, ∀x ∈ Rd (4.1)
and

⟨z,∇2
xxW (x, y)z⟩ ≥ −c3|z|2, ∀x, y, z ∈ Rd. (4.2)

Assume
c1 − c3 − ∥∇2

xyW∥∞ > 0. (4.3)
Let Xt be a solution of (1.2) with E|X0|2 < ∞, then for any ε ∈ (0, c1−c3−∥∇2

xyW∥∞),

sup
t≥0

E(|Xt|2)
1
2 ≤ max{m2(µ0), ĉ(ε)}, (4.4)

where m2(µ0) and ĉ(ε) are given in (2.36).
Proof. By Itô’s formula, we have

d|Xt|2 = −2⟨Xt,∇V (Xt)⟩dt− 2⟨Xt,∇xW ~ µt(Xt)⟩dt+ 2d · dt+ 2
√
2⟨Xt, dBt⟩

Notice that for any x ∈ Rd, we have

⟨x,∇xW ~ µt(x)−∇xW ~ µt(0)⟩ = ⟨x,
∫ 1

0

d

ds
∇xW ~ µt(sx)ds⟩

= ⟨x,
∫ 1

0

d

ds

∫
Rd

∇xW (sx, y)µt(dy)ds⟩

=

∫ 1

0

∫
Rd

⟨x,∇2
xxW (sx, y)x⟩µt(dy)ds

≥ −c3|x|2,

(4.5)

where the last inequality follows from (4.2).
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On the other hand,

|∇xW ~ µt(0)⟩| ≤ |∇xW (0, 0)|+
∫
Rd

|∇xW (0, y)−∇xW (0, 0)|µt(dy)

≤ |∇xW (0, 0)|+ ∥∇2
xyW∥∞E|Xt|.

(4.6)

Therefore we have
d|Xt|2 ≤ 2

(
c3|Xt|2 + ∥∇2

xyW∥∞|Xt|E|Xt|+ |∇xW (0, 0)||Xt|
)
dt

+ 2(−c1|Xt|2 + c2 + d)dt+ 2
√
2⟨Xt, dBt⟩

≤ −2(c1 − c3 − ε)|Xt|2dt+ 2∥∇2
xyW∥∞|Xt|E|Xt|dt

+ 2(d+ c2 +
1

4ε
|∇xW (0, 0)|2)dt+ 2

√
2⟨Xt, dBt⟩

where 0 < ε < c1 − c3 − ∥∇2
xyW∥∞. By the previous stochastic differential inequality,

|Xt|2 +
∫ t

0

[2(c1 − c3 − ε)|Xs|2 − 2∥∇2
xyW∥∞|Xs|E|Xs|]ds− 2t(d+ c2 +

1

4ε
|∇xW (0, 0)|2)

is a local supermartingale, then a supermartingale by Fatou’s lemma. Then for any
T > 0, we have

E|X0|2 ≥ E|XT |2 + 2(c1 − c3 − ε)

∫ T

0

E|Xs|2ds− 2∥∇2
xyW∥∞

∫ T

0

(E|Xs|)2ds

− 2T (d+ c2 +
1

4ε
|∇xW (0, 0)|2)

≥ 2(c1 − c3 − ε− ∥∇2
xyW∥∞)

∫ T

0

E|Xs|2ds− 2T (d+ c2 +
1

4ε
|∇xW (0, 0)|2),

which implies E
∫ T

0
|Xs|2ds < +∞. In other words

∫ t

0
2
√
2⟨Xs, dBs⟩ is a L2-martingale.

By taking expectation in (4.1) we obtain by (4.5) and (4.6),
d

dt
E|Xt|2 ≤ −2c1E|Xt|2 + 2[c3E|Xt|2 + ∥∇2

xyW∥∞(E|Xt|)2 + |∇xW (0, 0)|E|Xt|] + 2(d+ c2)

≤ −2(c1 − c3 − ∥∇2
xyW∥∞ − ε)E|Xt|2 + 2(d+ c2 +

1

4ε
|∇xW (0, 0)|2)

(4.7)
where 0 < ε < c1 − c3 − ∥∇2

xyW∥∞. By Gronwall’s lemma we get for any t ≥ 0

E|Xt|2 ≤ e−2(c1−c3−∥∇2
xyW∥∞−ε)t

(
E|X0|2 −

d+ c2 +
1
4ε
|∇xW (0, 0)|2

c1 − c3 − ∥∇2
xyW∥∞ − ε

)
+

d+ c2 +
1
4ε
|∇xW (0, 0)|2

c1 − c3 − ∥∇2
xyW∥∞ − ε

≤ max

{
E|X0|2,

d+ c2 +
1
4ε
|∇xW (0, 0)|2

c1 − c3 − ∥∇2
xyW∥∞ − ε

}
the desired result. �
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Following the proof above we have the much stronger uniform Gaussian integrability
for Xt, which should be of independent interest.

Lemma 4.2. Assume (4.1), (4.2) and (4.3). Let Xt be a solution of (1.2) with

E exp
(
λ0|X0|2

)
< ∞, for some λ0 > 0.

If

0 < λ ≤ min{λ0;
1

2
(c1 − c3 − ∥∇2

xyW∥∞ − ε)}

for some ε > 0, then
sup
t≥0

E exp(λ|Xt|2) < +∞.

Proof. By Itô’s formula, we have by the estimates leading to (4.7) in the proof of Lemma
4.1,

d exp(λ|Xt|2)

=λ exp(λ|Xt|2)
(
[2d− 2⟨Xt,∇V (Xt) +∇xW ~ µt(Xt)⟩]dt+ 2

√
2⟨Xt, dBt⟩

)
+ 4λ2|Xt|2 exp(λ|Xt|2)dt

≤λ exp(λ|Xt|2)
[
−2(c1 − c3 − ∥∇2

xyW∥∞ − ε− 2λ)|Xt|2 + 2(d+ c2 +
1

4ε
|∇xW (0, 0)|)

]
dt

+ λ exp(λ|Xt|2)2
√
2⟨Xt, dBt⟩

where ε > 0, λ > 0 verify c1−c3−∥∇2
xyW∥∞−ε−2λ > 0. Taking L > 0 large sufficient

so that

c5 := 2(c1 − c3 − ∥∇2
xyW∥∞ − ε− 2λ)L2 − 2(d+ c2 +

1

4ε
|∇xW (0, 0)|) > 0,

and noting that

−ax2 + b ≤ −(aL2 − b) + aL21|x|≤L, ∀a > 0, ∀x ∈ R,

we obtain by following the same argument as in Lemma 4.1

d

dt
E exp(λ|Xt|2) ≤ −λc5E exp(λ|Xt|2) + 2(c1 − c3 − ∥∇2

xyW∥∞ − ε− 2λ)L2λeλL
2

.

Therefore by Gronwall’s lemma

sup
t≥0

E exp(λ|Xt|2) < +∞.

�

Next we present the proof of Theorem 2.11, which is quite close to those of Theorems
2.1 and 2.6 .
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Proof of Theorem 2.11. Let λδ and πδ be defined as in Section 3.1. Consider the follow-
ing coupling between the independent copies X̄ i

t , 1 ≤ i ≤ N of the nonlinear diffusion
process (1.2) and the mean-field interacting particle system (1.3):

dX̄ i
t =

√
2[λδ(|Zi

t |)dB
1,i
t + πδ(|Zi

t |)dB
2,i
t ]−∇V (X̄ i

t)dt−∇xW ~ µt(X̄
i
t)dt,

dX i,N
t =

√
2[λδ(|Zi

t |)Ri
tdB

1,i
t + πδ(|Zi

t |)dB
2,i
t ]−∇V (X i,N

t )dt

− 1

N − 1

∑
j:j ̸=i,1≤j≤N

∇xW (X i,N
t , Xj,N

t )dt.

(4.8)

Here Zi
t := X̄ i

t −X i,N
t and Ri

t := Id − 2eite
i,T
t , where Id is the d-dimensional unit matrix

and eite
i,T
t is the orthogonal projection onto the unit vector eit := Zi

t/|Zi
t | if |Zi

t | ̸= 0. B1,i
t

and B2,i
t , 1 ≤ i ≤ N, are independent standard Brownian motions in Rd. We assume

that X̄ i
t and X i,N

t , 1 ≤ i ≤ N have the same starting points X i
0, 1 ≤ i ≤ N , i.i.d. of

law µ0. The independence of X̄ i
t , 1 ≤ i ≤ N comes from the fact that the Brownian

motions {
∫ t

0
λδ(|Zi

s|)dB1,i
s +

∫ t

0
πδ(|Zi

s|)dB2,i
s , 1 ≤ i ≤ N} are independent because their

inter-brackets are zero.
By doing subtraction of the equations in (4.8), we have

dZ i
t = 2

√
2λδ(|Zi

t |)eitdB̃i
t − [∇V (X̄ i

t)−∇V (X i,N
t )]dt−∇xW ~ µt(X̄

i
t)dt

+
1

N − 1

∑
j:j ̸=i,1≤j≤N

∇xW (X i,N
t , Xj,N

t )dt,

where the processes B̃i
t =

∫ t

0
(eis)

TdB1,i
s , 1 ≤ i ≤ N, are one-dimensional standard Brow-

nian motions such that ⟨B̃i, B̃j⟩t = 0 for i ̸= j.
Let rit = |Zi

t |, 1 ≤ i ≤ N. By applying Itô’s formula, we have

drit = 1{rit ̸=0}2
√
2λδ(r

i
t)dB̃

i
t − 1{rit ̸=0}⟨eit,∇V (X̄ i

t)−∇V (X i,N
t )⟩dt

− 1{rit ̸=0}⟨eit,∇xW ~ µt(X̄
i
t)−

1

N − 1

∑
j:j ̸=i,1≤j≤N

∇xW (X i,N
t , Xj,N

t )⟩dt

= 1{rit ̸=0}2
√
2λδ(r

i
t)dB̃

i
t

− 1{rit ̸=0}⟨eit,∇V (X̄ i
t)−∇V (X i,N

t )⟩dt

− 1{rit ̸=0}⟨eit,∇xW ~ µt(X̄
i
t)−

1

N − 1

∑
j:j ̸=i,1≤j≤N

∇xW (X̄ i
t , X̄

j
t )⟩dt

− 1{rit ̸=0}⟨eit,
1

N − 1

∑
j:j ̸=i,1≤j≤N

[∇xW (X̄ i
t , X̄

j
t )−∇xW (X̄ i

t , X
j,N
t )]⟩dt

− 1{rit ̸=0}⟨eit,
1

N − 1

∑
j:j ̸=i,1≤j≤N

[∇xW (X̄ i
t , X

j,N
t )−∇xW (X i,N

t , Xj,N
t )]⟩dt.

Remark that the sum of the first and the fourth drift terms above is ≤ b0(r
i
t)dt, the

third drift term above is ≤ 1
N−1

∥∇2
xyW∥∞

∑
j:j ̸=i,1≤j≤N rjtdt, and the second drift term
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is bounded by I itdt, where

I it := |∇xW ~ µt(X̄
i
t)−

1

N − 1

∑
j:j ̸=i,1≤j≤N

∇xW (X̄ i
t , X̄

j
t )|. (4.9)

Therefore we obtain

drit ≤ 2
√
2λδ(r

i
t)dB̃

i
t + b0(r

i
t)dt+

1

N − 1
∥∇2

xyW∥∞
∑

j:j ̸=i,1≤j≤N

rjtdt+ I itdt. (4.10)

Recall that for any ε ≥ 0, hε(r) = h(r)+εr, ∀r ≥ 0. By using (4.10) and Itô’s formula
again, we get

dhε(r
i
t) ≤ 2

√
2λδ(r

i
t)h

′
ε(r

i
t)dB̃

i
t + 4λ2

δ(r
i
t)h

′′
ε(r

i
t)dt+ b0(r

i
t)h

′
ε(r

i
t)dt

+
1

N − 1
∥∇2

xyW∥∞h′
ε(r

i
t)

∑
j:j ̸=i,1≤j≤N

rjtdt+ h′
ε(r

i
t)I

i
tdt

= 2
√
2λδ(r

i
t)h

′
ε(r

i
t)dB̃

i
t + [4λ2

δ(r
i
t)h

′′(rit) + b0(r
i
t)h

′(rit)]dt+ εb0(r
i
t)dt

+
1

N − 1
∥∇2

xyW∥∞(h′(rit) + ε)
∑

j:j ̸=i,1≤j≤N

rjtdt+ (h′(rit) + ε)I itdt

≤ 2
√
2λδ(r

i
t)h

′
ε(r

i
t)dB̃

i
t + [1− λ2

δ(r
i
t)][r

i
t + b0(r

i
t)h

′(rit)]dt− (1− εM)ritdt

+
1

N − 1
∥∇2

xyW∥∞(∥h′∥∞ + ε)
∑

j:j ̸=i,1≤j≤N

rjtdt+ (∥h′∥∞ + ε)I itdt,

(4.11)
where the last inequality follows from (3.8), (3.10) and (2.23).

Taking expectation in the inequality above and using the fact that rit, 1 ≤ i ≤ N
have the same law, and setting

cε := 1− ∥∇2
xyW∥∞∥h′∥∞ − ε(M + ∥∇2

xyW∥∞),

we have

dEhε(r
1
t ) ≤ E[1− λδ(r

1
t )

2][r1t + b+0 (r
1
t )h

′(r1t )]dt+ (∥h′∥∞ + ε)EI1t dt− cεEr1t dt (4.12)
Proof of part (a). Choose ε = 0, c0 = 1 − ∥∇2

xyW∥∞∥h′∥∞. For any 1 ≤ k ≤ N , by
(4.12) we have

1

k
W1,dL1[0,T ]

(P[1,k],N

µ⊗N
0

|[0,T ],Q⊗k
µ0
|[0,T ]) ≤

1

k
E
∫ T

0

k∑
i=1

ritdt =

∫ T

0

Er1t dt

≤ 1

c0
∥h′∥∞

∫ T

0

EI1t dtdt+
1

c0
E
∫ T

0

[1− λδ(r
1
t )

2][r1t + b+0 (r
1
t )h

′(r1t )]dt.

Letting δ → 0+, the last term tends to zero. Hence
1

k
W1,dL1[0,T ]

(P[1,k],N

µ⊗N
0

|[0,T ],Q⊗k
µ0
|[0,T ]) ≤

∥h′∥∞
c0

∫ T

0

EI1t dt. (4.13)
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Next we estimate EI1t , which is the only new point w.r.t. the proofs in Theorems 2.1
and 2.6. Note that X̄j

t , 2 ≤ j ≤ N are independent copies of X̄1
t , and

E[∇xW (X̄1
t , X̄

j
t )|X̄1

t ] = ∇xW ~ µt(X̄
1
t ).

Thus by using Cauchy-Schwartz inequality, we get

EI1t ≤

(
E

{
E

[
|∇xW ~ µt(X̄

1
t )−

1

N − 1

∑
2≤j≤N

∇xW (X̄1
t , X̄

j
t )|2|X̄1

t

]}) 1
2

=

(
E

1

N − 1

∫
|∇xW (X̄1

t , y)−∇xW ∗ µt(X̄
1
t )|2dµt(y)

) 1
2

≤ 1√
N − 1

∥∇2
xyW∥∞

(∫
x∈Rd

|x− µt(X̄
1
t )|2µt(dx)

) 1
2

≤ 1√
N − 1

∥∇2
xyW∥∞ sup

t≥0
(E|Xt|2)

1
2 .

(4.14)

Plugging (4.14) into (4.13), we get
1

k
W1,dL1[0,T ]

(P[1,k],N

µ⊗N
0

|[0,T ],Q⊗k
µ0
|[0,T ]) ≤

T√
N − 1

∥∇2
xyW∥∞∥h′∥∞

1− ∥∇2
xyW∥∞∥h′∥∞

sup
t≥0

(E|Xt|2)
1
2 .

Then by using Lemma 4.1, we obtain the desired result (2.35).

Proof of part (b). For any ε > 0, by (4.12) we have

dEhε(r
1
t ) ≤ E[1−λδ(r

1
t )

2][r1t+b+0 (r
1
t )h

′(r1t )]dt+(∥h′∥∞+ε)EI1t dt−cε·inf
r>0

r

h(r) + εr
Ehε(r

1
t )dt

(4.15)
Plugging (4.14) into (4.15), we obtain by Gronwall’s inequality that for any ε > 0 so

that β = cε · infr>0
r

h(r)+εr
> 0 (i.e. Kε > 0),

Ehε(|X̄1
t −X1,N

t |) ≤
∫ t

0

e−β(t−s) 1√
N − 1

(∥h′∥∞ + ε)EI1t ds

+

∫ t

0

e−β(t−s)E[1− λδ(r
1
s)

2][r1s + b+0 (r
1
s)h

′(r1s)]ds.

≤
∫ t

0

e−β(t−s) 1√
N − 1

(∥h′∥∞ + ε)∥∇2
xyW∥∞ sup

t≥0
(E|Xt|2)

1
2ds

+

∫ t

0

e−β(t−s)E[1− λδ(r
1
s)

2][r1s + b+0 (r
1
s)h

′(r1s)]ds.

(4.16)

By letting δ → 0+, the last term tends to zero. We obtain thus

E|X̄1
t −X1,N

t |) ≤ sup
r>0

r

hε(r)
· Ehε(|X̄1

t −X1,N
t |)

≤ sup
r>0

r

hε(r)
· 1

β
√
N − 1

(∥h′∥∞ + ε)∥∇2
xyW∥∞ sup

t≥0
(E|Xt|2)

1
2 .
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As the joint law of (X̄ i
t , 1 ≤ i ≤ k) is µ⊗k

t , we get for any 1 ≤ k ≤ N ,

W1,dl1
(µ⊗k

t , µ
[1,k],N
t ) ≤ lim sup

δ→0
E

k∑
i=1

|X̄ i
t −X i,N

t | = k · lim sup
δ→0

E|X̄1
t −X1,N

t |

≤k · sup
r>0

r

h(r) + εr

1

β
√
N − 1

(∥h′∥∞ + ε)∥∇2
xyW∥∞ sup

t≥0
(E|Xt|2)

1
2

=
k√

N − 1

Aε

Kε

∥∇2
xyW∥∞ sup

t≥0
(E|Xt|2)

1
2 ,

(4.17)
which completes the proof by using Lemma 4.1. �

The proof above yields

Proposition 4.3. Under the conditions of Theorem 2.11, we have

EW1

(
1

N

N∑
i=1

δXi,N
t

,
1

N

N∑
i=1

δX̄i
t

)
≤ 1√

N − 1

Aε

Kε

∥∇2
xyW∥∞ sup

t≥0
(E|Xt|2)

1
2 (4.18)

where (X̄ i
t)t≥0, i ≥ 1 are independent copies of the solution (Xt)t≥0 of the McKean-Vlasov

equation (1.2), and X i,N
t , 1 ≤ i ≤ N are defined as in (1.3).

Proof. Notice that

EW1

(
1

N

N∑
i=1

δXi,N
t

,
1

N

N∑
i=1

δX̄i
t

)
≤ E[

1

N

N∑
i=1

|X i,N
t − X̄ i

t |] = E
1

N

N∑
i=1

rit,

where rit, 1 ≤ i ≤ N are the same as defined in the proof of Theorem 2.11. And by
(4.17), we have

lim sup
δ→0

E
1

N

n∑
i=1

rit = lim sup
δ→0

Er1t ≤
1√

N − 1

Aε

Kε

∥∇2
xyW∥∞ sup

t≥0
(E|Xt|2)

1
2 .

Therefore we obtain (4.18). �

Remark 4.4. A consequence of Proposition 4.3 is on the bias of 1
N

∑N
i=1 f(X

i,N
t ) from

µt(f): if f is Lipschitzian on Rd,

biast(f) := |E 1

N

N∑
i=1

f(X i,N
t )− µt(f)| = |E 1

N

N∑
i=1

f(X i,N
t )− E

1

N

N∑
i=1

f(X̄ i
t)|

≤ ∥f∥LipEW1

(
1

N

N∑
i=1

δXi,N
t

,
1

N

N∑
i=1

δX̄i
t

)

≤ ∥f∥Lip√
N − 1

Aε

Kε

∥∇2
xyW∥∞ sup

t≥0
(E|Xt|2)

1
2 .

It is expected that the bias is of order O(1/N), which remains an open question.
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5. Quantitative Concentration inequalities: proofs of Theorems 2.5
and 2.10

This section is devoted to the concentration inequalities of the mean-field interaction
particle system (1.3) for more general observable (than those in Theorems 2.5 and 2.10).
This kind of concentration estimate are useful to numerical simulations and mean-field
limit.
5.1. Concentration for time average.
Proposition 5.1. Assume (H), (2.2) and (2.3). Given any T ∈ (0,+∞], let F be any
dL1[0,T ]-Lipschitzian continuous function on C([0, T ], (Rd)N), given by

F (X
(N)
[0,T ]) := G

(∫ T

0

g1(X
(N)
t )dt, · · · ,

∫ T

0

gn(X
(N)
t )dt

)
,

where G ∈ C2(Rn), gi ∈ C2((Rd)N ,R), 1 ≤ i ≤ n. Then for any convex function φ on
R and any starting point X(N)

0 = x ∈ (Rd)N , we have

Exφ
(
F (X

(N)
[0,T ])− ExF (X

(N)
[0,T ])

)
≤ Eφ

(√
NT∥F∥Lip(dL1[0,T ])

cLipξ
)
, (5.1)

where ξ is some standard real Gaussian random variable of law N (0, 1), and

cLip =
h′(0)

1− ∥∇2
xyW∥∞∥h′∥∞

.

Proof. Let {Ft}t≥0 be the filtration generated by the process (X
(N)
t )t≥0 and

Mt = E(F (X
(N)
[0,T ])|Ft), 0 ≤ t ≤ T.

Then by the martingale representation theorem, we have

F (X
(N)
[0,T ])− EF (X

(N)
[0,T ]) = MT −M0 =

N∑
i=1

∫ T

0

βi
tdB

i
t, (5.2)

where βi
t , 1 ≤ i ≤ N are adapted processes w.r.t. Ft, and Bi

t, 1 ≤ i ≤ N are N
independent standard Brownian motions on Rd.

Let Ak
t =

∫ t

0
gk(X

(N)
s )ds, 1 ≤ k ≤ n, and At = (A1

t , · · · , An
t ). Note that

Mt = ϕ(At, X
(N)
t )

where

ϕ(a, x) := E
(
G

(
a1 +

∫ T

t

g1(X
(N)
s )ds, · · · , an +

∫ T

t

gN(X
(N)
s )ds

)
|X(N)

t = x

)
,

for a = (a1, · · · , an) ∈ Rn, x ∈ (Rd)N . Since φ is C2 (for V,W are C2), we can apply
Itô’s formula to obtain that

βi
t = ∂xi

φ(At, X
(N)
t ).

For any x = (x1, · · · , xi, · · · , xN) ∈ (Rd)N , denote y = (x1, · · · , yi, · · · , xN) which
only differs from x at the i-th coordinate. Let (X

(N)
t )t≥0, (Y

(N)
t )t≥0 be an optimal

coupling of Px,Py for W1,dL1[0,T ]
(Px,Py) (this optimal coupling exists because dL1[0,T ] is
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lower semi-continuous from (C(R+, (Rd)N))2 to [0,+∞]). Then for any 0 ≤ t ≤ T and
i = 1, · · · , N, we have

|∂xi
ϕ(a, x)| ≤ lim sup

yi→xi

|ϕ(a, x)− ϕ(a, y)|
|xi − yi|

|

= lim sup
yi→xi

1

|xi − yi|
|E[G(a+

∫ T−t

0

g(X(N)
s ds)]− E[G(a+

∫ T−t

0

g(Y (N)
s ds)]|

≤ lim sup
yi→xi

∥F∥Lip(dL1[0,T ])

|xi − yi|
E
∫ ∞

0

dl1(X
(N)
s , Y (N)

s )ds

= ∥F∥Lip(dL1[0,T ])
lim sup
yi→xi

W1,dL1 (Px,Py)

|xi − yi|
≤ ∥F∥Lip(dL1[0,T ])

· cLip

(5.3)

where the last inequality follows by Theorem 2.1.
Since

∑N
i=1

∫ T

0
βi
tdB

i
t = ξτT where (ξt) is a real valued Brownian motion w.r.t. some

new filtration (F̃t) and τT =
∫ T

0

∑N
i=1 |βi

t|2dt ≤ ∥F∥2Lip(dL1[0,T ])
c2LipNT =: CNT is a

stopping time w.r.t. (F̃t), we obtain

Exφ
(
F (X

(N)
[0,T ])− EF (X

(N)
[0,T ])

)
= Eφ

(
N∑
i=1

∫ T

0

βi
tdB

i
t

)
= Eφ(ξτT )

= Eφ
(
E(ξCNT |F̃τT )

)
≤ Eφ (ξCNT ) (by Jensen’s inequality)

= Eφ
(√

NT∥F∥Lip(dL1[0,T ])
cLipξ1

)
(5.4)

the desired result. �
Next we give the proof of Theorem 2.5.

Proof of Theorem 2.5. For any given λ, T > 0, let

F (X
(N)
[0,T ]) =

1

T

∫ T

0

UN(fm)(X
(N)
t )dt.

Since fm is 1-Lipschitzian w.r.t. the dl1-metric on (Rd)m, by an easy calculation we
have

∥F∥Lip(d
L1[0,T ]

)
≤ m

NT
.

Let g(x) = ExF, ∀x ∈ (Rd)N . For any fixed initial value x ∈ (Rd)N , by applying
Proposition 5.1 with φ(z) = eλz, we get

Ex exp

(
λ

[
1

T

∫ T

0

UN(fm)(X
(N)
t )dt− g(x)

])
≤E exp

(
mλ√
NT

cLipξ1

)
= exp

(
m2λ2c2Lip
2NT

)
.

(5.5)
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By the proof of Proposition 5.1,

∥g∥Lip(dl1 ) ≤ cLip∥F∥dL1[0,T ]
≤ mcLip

NT
.

By the condition (2.19) and its consequence (2.20), the product measure µ⊗N
0 satisfies∫

(Rd)N
eλ(g−µ⊗N

0 (g))dµ⊗N
0 ≤ exp

(
1

2
NcG(µ0)λ

2∥g∥2Lip(dl1 )
)

≤ exp

(
1

2NT 2
cG(µ0)λ

2m2c2Lip

)
.

(5.6)

Hence for the i.i.d. initial values X1,N
0 , · · · , XN,N

0 with the common law µ0, noting that

E
1

T

∫ T

0

UN(fm)(X
(N)
t )dt = µ⊗N

0 (g)

we have

E exp

(
λ

[
1

T

∫ T

0

UN(fm)(X
(N)
t )dt− E

1

T

∫ T

0

UN(fm)(X
(N)
t )dt

])
=

∫
(Rd)N

Ex

[
exp

(
λ

[
1

T

∫ T

0

UN(fm)(X
(N)
t )dt− g(x)

])]
eλ(g(x)−µ⊗N

0 (g))dµ⊗N
0 (x)

≤ exp

(
m2λ2c2Lip
2NT

)∫
(Rd)N

eλ(g(x)−µ⊗N
0 (g))dµ⊗N

0 (x)

≤ exp

(
m2λ2c2Lip
2NT

(
1 +

cG(µ0)

T

))
(5.7)

where the second inequality follows from (5.5), and the last inequality is a consequence
of (5.6). This gives us (2.21). Finally (2.22) follows from (2.21), by the standard
procedure of Chebyshev’s inequality and optimization over λ > 0. �

Remark 5.2. The time-particle average 1
NT

∫ T

0
f(X i,N

t )dt is used to approximate µ∞(f)
where µ∞ is the unique equilibrium state of the McKean-Vlasov equation (proved in
[18] under (H)). For applying Theorem 2.5, it remains to bound the bias

|Eµ⊗N
0

1

NT

∫ T

0

N∑
i=1

f(X i,N
t )dt− µ∞(f)|

≤ |Eµ⊗N
0

1

T

∫ T

0

[f(X1,N
t )− µt(f)]dt|+

1

T

∫ T

0

|µt(f)− µ∞(f)|dt

≤ 1

T

∫ T

0

|µ1,N
t (f)− µt(f)|dt+ ∥f∥Lip

1

T

∫ T

0

W1(µt, µ∞)dt

≤ ∥f∥Lip
(
sup
t≥0

W1(µ
1,N
t , µt) +

1

T

∫ T

0

W1(µt, µ∞)dt

)
≤ ∥f∥Lip

(
A√
N

+
B

T

)
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where in the last inequality, the first term comes from the uniform in time propagation
of chaos (2.37) in Theorem 2.11, and the second follows by (2.12) in Corollary 2.2. We
believe that the bias should be of order O(1/N + 1/T ), but we do not know how to
prove it.

5.2. Uniform in time concentration inequality.

Proposition 5.3. Assume (H), (2.2) and (2.23). Let X(N)
t = (X1,N

t , · · · , XN,N
t ), ∀t ≥

0, then for any Lipschitzian function F on (Rd)N , we have for any lower bounded convex
function φ on R,

Exφ
(
F (X

(N)
T )− ExF (X

(N)
T )

)
≤ Eφ

(
αAε

√
N

2Kε

ξ

)
, ∀x ∈ (Rd)N , ∀T > 0 (5.8)

where ξ is some standard real Gaussian random variable of law N (0, 1), α := ∥F∥Lip(dl1 ) =
max1≤i≤N ∥∇iF∥∞, Aε and Kε are given in Theorem 2.6.

In particular for any initial distribution µ0 satisfying the Gaussian integrability as-
sumption on Rd, we have for any δ, T > 0

Pµ⊗N
0

{
F (X

(N)
T )− Eµ⊗N

0
F (X

(N)
T ) > δ

}
≤ exp

(
− Kεδ

2

Nα2A2
ε [1 + 2cG(µ0)Kεe−2KεT ]

)
.

(5.9)

Proof. Without loss of generality we may assume that α = max1≤i≤N ∥∇iF∥∞ = 1.
By approximation we may assume that F is C2-smooth with bounded derivatives

of the first and the second order. For any initial position x ∈ (Rd)N , let Mt =

Ex(F (X
(N)
T )|Ft), 0 ≤ t ≤ T . Then by applying Itô’s formula to u(t, x) = PT−tF (x), we

have

F (X
(N)
T )− ExF (X

(N)
T ) = MT −M0 =

N∑
i=1

∫ T

0

∇iPT−tF (X
(N)
t )dBi

t, (5.10)

Note that by Theorem 2.6, for any ε > 0 such that Kε > 0, we have

Wdl1
(P

(N)
t (x, ·), P (N)

t (y, ·)) ≤ Aεe
−Kεtdl1(x, y), ∀x, y ∈ (Rd)N , (5.11)

which implies that
|∇iPT−tF | ≤ Aεe

−Kε(T−t), 1 ≤ i ≤ N, (5.12)

where Aε and Kε are the same as given in Theorem 2.6.
Since Mt = ξτt where (ξt) is a real valued Brownian motion w.r.t. some new filtration

(F̃t) and

τt = ⟨M⟩t =
∫ t

0

N∑
i=1

|∇iPt−sF (X(N)
s )|2ds ≤ A2

ε

2Kε

N =: CN
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is a stopping time w.r.t. (F̃t), we obtain

Exφ
(
F (X

(N)
T )− ExF (X

(N)
T )

)
= Eφ (MT −M0) = Eφ(ξτT )

= Eφ
(
E(ξCN |F̃τT )

)
≤ Eφ (ξCN) (by Jensen’s inequality)

= Eφ

(
Aε

√
N

2Kε

ξ1

) (5.13)

the desired result (5.8).
Letting g(x) := ExF (X

(N)
T ), ∀x ∈ (Rd)N . By (5.12) we have

∥g∥Lip(dl1 ) = max
1≤i≤N

∥∇ig∥∞ ≤ Aεe
−KεT . (5.14)

Applying (5.8) to φ(z) = eλz (λ ∈ R), we get

Eµ⊗N
0

exp
(
λ[F (X

(N)
T )− Eµ⊗N

0
F (X

(N)
T )])

)
=

∫
(Rd)N

Ex exp
(
λ[F (X

(N)
T )− ExF (X

(N)
T )]

)
· exp

(
λ[g(x)− µ⊗N

0 (g)]
)
dµ⊗N

0 (x)

≤
∫
(Rd)N

E exp

(
λAε

√
N

2Kε

ξ1

)
· exp

(
λ[g(x)− µ⊗N

0 (g)]
)
dµ⊗N

0 (x)

≤ exp

(
NA2

ελ
2

4Kε

)
exp

(
λ2

2
NcG(µ0)∥g∥2Lip(dl1 )

)
≤ exp

(
Nλ2A2

ε

2

[
1

2Kε

+ cG(µ0)e
−2KεT

])
where the third and the last inequality follows from the Gaussian concentration condi-
tion on the initial distribution µ0 (see (2.20) in Remark 2.4) and (5.14) respectively.

Finally the concentration inequality (5.9) is derived from the above inequality by the
standard procedure of Chebyshev’s inequality and optimization over λ. �

Proof of Theorem 2.10. Let F (x) = 1
N

∑N
i=1 f(x

i) for x = (x1, · · · , xN) ∈ (Rd)N . We
have

α = ∥F∥Lip(dl1 ) =
1

N
∥f∥Lip =

1

N
.

Then the desired concentration inequality (2.31) follows by (5.9). �
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