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Abstract. We construct a family of rotating vortex patches with fixed angular velocity
for the two-dimensional Euler equations in a disk. As the vorticity strength goes to in-
finity, the limit of these rotating vortex patches is a rotating point vortex whose motion
is described by the Kirchhoff-Routh equation. The construction is performed by solving
a variational problem for the vorticity which is based on an adaption of Arnold’s varia-
tional principle. We also prove nonlinear orbital stability of the set of maximizers in the
variational problem under Lp perturbation when p ∈ [3/2,+∞).

1. Introduction

The motion of an ideal fluid of unit density in the plane is governed by the well-known
Euler equations{

∂tv(x, t) + (v · ∇)v(x, t) = −∇P (x, t), x = (x1, x2) ∈ R2, t > 0,

∇ · v(x, t) = 0,
(1.1)

where v = (v1, v2) is the velocity field and P is the scalar pressure. By introducing the
scalar vorticity ω = curlv := ∂1v2 − ∂2v1 and applying the Biot-Savart law, we get the
following vorticity form of (1.1)(see [22] or [23]){

∂tω + v · ∇ω = 0,

v(x, t) = ω ∗ 1
2π

−x⊥

|x|2 :=
∫
R2 − 1

2π
(x−y)⊥

|x−y|2 ω(y, t)dy,
(1.2)

where x⊥ := (x2,−x1) denotes clockwise rotation through π/2. The vorticity equation
(1.2) means that the vorticity ω is transported by v, a velocity field determined by ω itself
via the Biot-Savart law.

The famous result of Yudovich asserts that for any initial vorticity ω0 ∈ L1 ∩ L∞(R2),
there is a unique weak solution ω ∈ L∞((0,+∞);L1∩L∞(R2)) to (1.2). An important type
of weak solutions appropriate for modeling an isolated region of vorticity with discontinuity
is the vortex patch solution, that is, the initial vorticity has the form

ω0(x) = λIA0 :=

{
λ, x ∈ A0,

0, x /∈ A0,
(1.3)

where λ ∈ R is a parameter representing the vorticity strength. Since the vorticity is
transported by the divergence-free velocity v, we conclude that the evolved solution ω(x, t)
still has the form ω(x, t) = λIAt with |At| = |A0|, where | · | denotes the two-dimensional
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Lebesgue measure. A very special example is when A0 is a disk. In this case, it is easy to
check that At = A0 for all t > 0. Another remarkable example discovered by Kirchhoff is
that A0 is an ellipse centered at the origin with semi-axis a and b. In this situation, it can
be proved that At is given by

At = eiΩtA0 := {eiΩtx | x ∈ A0}, (1.4)

where

eiΩtx := (|x| cos(θx + Ωt), |x| sin(θx + Ωt)) for each x = (|x| cos θx, |x| sin θx), (1.5)

and Ω ∈ R is the angular velocity determined by Ω = (λab)/(a+ b)2. See [22], Chapter 8.
An interesting question is that is there any other type of rotating vortex patches in

the plane? There are many works in this respect. Here we list some of the relevant and
significant ones. In 1978, Deem and Zabusky [16] firstly discovered that there exist sim-
ply connected rotating vortex patches with a m-fold symmetry for m ≥ 2 by numerical
methods. Later in [30] Zabusky conjectured that: for any steady (or rotating) system of
point vortices there exists a family of steady (or rotating) vortex patches shrinking to these
point vortices as the vorticity strength goes to infinity. Burbea in [5] partially answered
Zabusky’s question by using bifurcation theory. In 1988, Wan [27] studied Zabusky’s con-
jecture and proved that for any rotating system of point vortices with some non-degenerate
conditions, the conjecture is ture. Moreover, he also analyzed the linear stability of these
rotating vortex patches. Recently in [17] the authors proved existence of doubly connected
rotating vortex patches with a m-fold symmetry for some m ≥ 3. For active scaler equa-
tions, existence of corotating and counter-rotating vortex patches is proved in [19].

All of the results mentioned above are about the whole plane. Our aim in this paper is to
construct rotating vortex patches for domains with boundaries. We consider the simplest
domain, the unit disk centered at the origin, D = {x ∈ R2 | |x| < 1}. The Euler equations
in D with impermeability boundary condition is

∂tv(x, t) + (v · ∇)v(x, t) = −∇P (x, t) in D × (0,+∞),

∇ · v(x, t) = 0 in D × (0,+∞),

v(x, 0) = v0(x) in D,

v(x, t) · n⃗(x) = 0 on ∂D × (0,+∞),

(1.6)

where n⃗(x) is the outward unit normal at x ∈ ∂D. In this situation, we still have the
following vorticity equation{

∂tω(x, t) +∇ · (vω)(x, t) = 0 in D × (0,+∞),

ω(·, 0) = ω0 := curlv0 in D.
(1.7)

Since v is divergence-free and v · n⃗ = 0 on ∂D, v can be expressed in terms of ω

v = ∇⊥Gω = (∂2Gω,−∂1Gω), (1.8)
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where Gω(x, t) =
∫
D
G(x, y)ω(y, t)dy, and G is the Green’s function for −∆ in D with zero

Dirichlet boundary condition in D, that is,

G(x, y) = − 1

2π
ln |x− y| − h(x, y), x, y ∈ D, (1.9)

where h(x, y) = − 1
2π

ln |y| − 1
2π

ln
∣∣x− y

|y|2
∣∣ is the regular part of G(x, y).

From (1.7) and (1.8), by integration by parts we give the definition of weak solutions to
the vorticity equation (1.7).

Definition 1.1. Suppose p ∈ [4/3,+∞]. We call ω(x, t) ∈ L∞((0,+∞);Lp(D)) a weak
solution to (1.7) if∫

D

ω0(x)ξ(x, 0)dx+

∫ +∞

0

∫
D

ω(∂tξ +∇ξ · ∇⊥Gω)dxdt = 0 (1.10)

for all ξ ∈ C∞
c (D × [0,+∞)).

Note that for ω ∈ L∞((0,+∞);L4/3(D)), we have Gω ∈ L∞((0,+∞);W 2,4/3(D)) by
Lp estimate, thus ∇Gω ∈ L∞((0,+∞);L4(D)) by Sobolev embedding. So the integral in
(1.10) makes sense by Hölder’s inequality.

The existence and uniqueness result for the vorticity equation when p = +∞ is firstly
proved by Yudovich [29]. For general p > 4/3, by using an approximation procedure and
the DiPerna-Lions theory of linear transport equations [18], Burton [9] proved the following
theorem.

Theorem A. Suppose 4/3 < p < +∞ and ω0 ∈ Lp(D). Then there exists a weak solution
ω(x, t) ∈ L∞((0,+∞);Lp(D)) to the vorticity equation (1.7). Moreover,

(i) all L∞((0,+∞);Lp(D)) solutions belong to C([0,+∞);Lp(D));
(ii) for any weak solution ω(x, t) ∈ L∞((0,+∞);Lp(D)), we have ω(x, t) ∈ Rω0 for all

t ≥ 0, where Rω0 denotes the rearrangement class of ω0,

Rω0 := {v ∈ L1
loc(D) | |{v > a}| = |{ω0 > a}|,∀a ∈ R}; (1.11)

(iii) for any L∞((0,+∞);Lp(D)) solutions, the angular momentum is conserved, or
equivalently,

J(t) = J(0), ∀t ∈ [0,+∞), where J(t) :=
∫
D

∫
D

|x|2ω(x, t)dx;

(iv) if p ≥ 3/2, then the kinetic energy of the fluid is conserved, or equivalently,

E(t) = E(0), ∀t ∈ [0,+∞), where E(t) := 1

2

∫
D

∫
D

G(x, y)ω(x, t)ω(y, t)dxdy;

Inspired by the study of rotating vortex patches in the whole plane, our aim in this
paper is to construct a vortex patch solution ω(x, t) in D satisfying

ω(x, t) = w(e−iΩtx), w = λIA0 , (1.12)
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where Ω represents the angular velocity. By a simple calculation, it is easy to check w
satisfies

∇ ·
(
w∇⊥(Gw +

Ω

2
|x|2)

)
= 0. (1.13)

The weak form of (1.13) is∫
D

w(x)∇
(
Gw(x) +

Ω

2
|x|2

)
· ∇⊥ϕ(x)dx = 0 (1.14)

for all ϕ ∈ C∞
c (D).

To find a vortex patch solution satisfying (1.14), we use the vorticity method established
by Arnold [2], which asserts that a steady flow can be seen as a constrained critical point of
the kinetic energy, and the flow is stable if and only if this critical point is non-degenerate.
A good reference in this respect is [4]. The vorticity method was later developed by many
authors. See [6, 7, 8, 25, 26, 28]. The method used in this paper is closely related to [26].
In [26], Turkington solved a variational problem for the vorticity to obtain existence of
steady vortex patches in general bounded domains. Let D0 be a simply connected domain
with a smooth boundary, G0 be the Green’s function for −∆ in D0 with zero boundary
condition. Consider the maximization the kinetic energy

E(ω) :=
1

2

∫
D0

∫
D0

G0(x, y)ω(x)ω(x)dxdy

in the admissible class

Kλ(D0) := {ω ∈ L∞(D0) | 0 ≤ ω ≤ λ a.e. in D0,

∫
D0

ω(x)dx = 1}. (1.15)

Turkington proved that there exists a maximizer for E over Kλ(D0), and any maximizer
ωλ must be a steady vortex patch with the form ωλ = λIUλ . Moreover, he showed that as
λ → +∞, the vortex core Uλ shrinks to a global minimum point of the Robin function of
D0, and the scaled version of ∂Uλ converges to the unit circle in C1 sense.

Inspired by Turkington’s method, we consider the maximization of the following func-
tional

E(w) := 1

2

∫
D

∫
D

G(x, y)w(x)w(x)dxdy +
Ω

2

∫
D

|x|2w(x)dx (1.16)

in the admissible class Kλ(D)

Kλ(D) := {w ∈ L∞(D) | 0 ≤ w ≤ λ a.e. in D,

∫
D

w(x)dx = 1}. (1.17)

It is easy to prove that there exists a maximizer of E over Kλ(D) but with the form
wλ = λIAλ + 2ΩIBλ , where

Aλ = {x ∈ D | Gwλ(x) +
Ω

2
|x|2 > µλ} and Bλ = {x ∈ D | Gwλ(x) +

Ω

2
|x|2 = µλ}

for some µλ ∈ R depending on λ. If λ = 2Ω, then obviously wλ is still a vortex patch
solution. If λ ̸= 2Ω, we expect |Bλ| = 0, but it is hard to prove this by using Turkington’s



ROTATING VORTEX PATCHES FOR THE PLANAR EULER EQUATIONS IN A DISK 5

technique. To circumvent this difficulty, we use the strict convexity of the functional E to
conclude that the any maximizer wλ is in fact the unique maximizer of the functional

Q(w) :=

∫
D

(Gwλ(x) +
Ω

2
|x|2)w(x)dx (1.18)

in the admissible Kλ(D). From this fact, we can easily deduce that the measure of Bλ is
zero if λ ̸= 2Ω. See Proposition 2.4 in Section 2. The fact that any maximizer of E over
Kλ(D) is a vortex patch solution will be used to prove Theorem 1.6 below. In addition,
we also analyze the limiting behavior of wλ as λ→ +∞.

The first result of this paper is as follows.

Theorem 1.2. Let Ω, λ be two positive numbers with λ > |D|−1, and E , Kλ(D) be defined
by (1.16) and (1.17). Then E attains its maximum in Kλ(D) and any maximizer satisfies
(1.14). Moreover, any maximizer wλ has the following form

wλ = λIAλ + 2ΩIBλ , (1.19)

where

Aλ = {x ∈ D | Gωλ(x) +
Ω

2
|x|2 > µλ} and Bλ = {x ∈ D | Gωλ(x) +

Ω

2
|x|2 = µλ},

and µλ is the Lagrange multiplier depending on λ. If λ ̸= 2Ω, then |Bλ| = 0. Furthermore,
as λ→ +∞, the following estimates hold true:

(i) diam(Aλ) ≤ R0ε, where R0 > 1 does not depend on λ and ε = (πλ)−1/2;
(ii) up to a subsequence,

∫
D
xwλ(x)dx→ X∗ ∈ D, where X∗ is a global minimum point

of H(x)− Ω
2
|x|2, where H(x) := 1

2
h(x, x) is the Robin function of D;

(iii) λ−1wλ(Xλ + εy) → IB1(0) weakly star in L∞(BR0(0));
(iv) πψλ(Xλ + εy) → V ∗ in C1

loc(R2), where ψλ := Gwλ(x) + Ω
2
|x|2 − µλ and V ∗ is the

Rankine streamfunction defined by

V ∗(y) :=

{
1
4
(1− |y|2), 0 ≤ |y| ≤ 1,

1
2
ln(|y|−1), 1 < |y| <∞.

(1.20)

Remark 1.3. For D, the unit disk centered at the origin, the Robin function has an explicit
expression

H(x) = − 1

2π
ln(1− |x|2).

It is easy to check that when 0 < Ω ≤ 1/π, the unique minimum point of H − Ω
2
|x|2 in

D is the origin. When Ω > 1/π, H − Ω
2
|x|2 attains its minimum in D \ {0} and all the

minimum points are on the circle {x ∈ D | |x| = (1− (πΩ)−1)1/2}.

Remark 1.4. By (i) and (ii) in Theorem 1.2, as λ→ +∞, the limit of wλ is a Dirac measure
with unit strength at X∗ in the distributional sense. By Remark 1.3, X∗ ̸= 0 if and only
if Ω > 1/π. This is consistent with the point vortex model. In fact, according to the
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point vortex model(see [21]), the motion of a point vortex is described by the following
Kirchhoff-Routh equation

dx(t)

dt
= −∇⊥H(x(t)). (1.21)

It is easy to check that the angular velocity of the point vortex at X∗ is 1/(π(1−|X∗|2)) ∈
(1/π,+∞).

Remark 1.5. It is easy to see that the function u(x) := Gwλ(x) + Ω
2
|x|2 − Ω

2
satisfies the

following semilinear elliptic equation{
−∆u = f(u), in D,

u = 0, on ∂D,
(1.22)

where f(u) = λI{x∈D|u(x)>µλ−Ω/2} − 2Ω. In fact, one can construct steady Euler flows by
solving (1.22) directly. See [1, 11, 12, 24] for example. It is worth mentioning that in [24]
Smets and Schaftingen proved existence of a rotating Euler flow in a disk. However, the
flow they constructed is smooth.

Since we have constructed a solution wλ satisfying (1.14), it is easy to verify that
ωλ(x, t) := wλ(e−iΩtx) is a weak solution to the vorticity equation (1.7), rotating in D
with angular velocity Ω. Moreover, for any fixed time t > 0, the support of ωλ(x, t)
“shrinks” to a point X(t) as λ→ +∞ in the following sense:

diam(supp(ωλ(·, t))) ≤ R0ε,∫
D

xwλ(x)dx→ X(t) (up to a subsequence),

where X(t) is the solution to the following Kirchhoff-Routh equation
dX(t)

dt
= −∇⊥H(X(t)), X(0) = X∗.

The second result of this paper is concerned with the orbital stability of the set of
maximizers of E in Kλ. Define

Sλ := {ω ∈ Kλ(D) | E(ω) = sup
Kλ(D)

E}. (1.23)

According to Theorem 1.2, Sλ is not empty, moreover, any element in Sλ is a vortex patch.
By energy and angular momentum conservation in Theorem A, it is also easy to see that
for any ω0 ∈ Sλ, we have ωt ∈ Sλ for all t > 0, where ωt is a weak solution to the vorticity
equation with initial vorticity ω0. An interesting question is, for any given initial vorticity
ω0 that is sufficiently close to Sλ in some norm, will it be close to Sλ for all t > 0 in the
same norm? If it is true, Sλ is said to be orbitally stable.

There are many results concerning the stability of planar vortex flows in the past few
decades. See [9, 10, 14, 15, 25, 27, 28] and the references listed therein. The type of
stability we consider here is nonlinear stability, which is usually a very difficult problem
in hydrodynamics. A very effective method to prove nonlinear stability for smooth planar
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Euler flows is established by Arnold [3], which was later extended to non-smooth flows, for
example, vortex patches. See [14, 15, 25, 28]. In [9], Burton proved a very general stability
criterion for vortex flows in bounded domains, asserting that any steady vortex flow as the
strict local maximizer of the kinetic energy on some given rearrangement class is stable in
Lp norm. Based on the similar idea, nonlinear orbital stability for vortex pairs in the whole
plane was proved in [10]. The method used in this paper is mostly inspired by [9, 10].

The orbital stability of Sλ is stated as follows.

Theorem 1.6. Let 3
2
≤ p < +∞, λ > |D|−1, and Sλ be defined by (1.23). Then Sλ is

orbitally stable in Lp norm, or equivalently, for any ε > 0, there exists a δ > 0, such
that for any ω0 ∈ Lp(D) satisfying distp(ω0,Sλ) < δ, we have distp(ωt,Sλ) < ε for all
t > 0, where ωt is a weak solution to the vorticity equation with initial vorticity ω0, and
distp(ω0,Sλ) is defined by

distp(ω0,Sλ) := inf
ω∈Sλ

∥ω0 − ω∥Lp(D). (1.24)

To prove Theorem 1.6, the key point is compactness. In [10], compactness was obtained
by a Concentration-Compactness argument. In this paper, compactness comes from the
fact any maximizer must be a vortex patch(see Lemma 3.1 in Section 3). The same idea
was also used in [13] to prove nonlinear orbital stability for steady vortex patches.

2. Proof of Theorem 1.2

In this section we give the proof of Theorem 1.2. As mentioned in Section 1, we consider
the maximization of E in Kλ(D), where E and Kλ(D) are defined by (1.16) and (1.15).
Note that by Fubini’s theorem and integration by parts, we have for any w ∈ Kλ(D)

E(w) = 1

2

∫
D

∫
D

G(x, y)w(x)w(y)dxdy +
Ω

2

∫
D

|x|2w(x)dx

=
1

2

∫
D

Gw(x)w(x)dx+
Ω

2

∫
D

|x|2w(x)dx

=
1

2

∫
D

|∇Gw(x)|2dx+ Ω

2

∫
D

|x|2w(x)dx.

(2.1)

We also assume throughout this paper that λ > 1/|D| such that Kλ(D) is not empty.
An absolute maximizer for E over Kλ(D) can be easily found by the direct method.

Indeed, we have

Proposition 2.1. There exists wλ ∈ Kλ(D) such that
E(wλ) = sup

w∈Kλ(D)

E(w). (2.2)

Proof. Firstly we show that Kλ(D) is sequentially compact in L∞(D) in the weak star
topology. In fact, since Kλ(D) is a closed and convex subset of L2(D) in the strong
topology, we conclude from Mazur’s lemma that Kλ(D) is closed in the weak topology of
L2(D), which implies that Kλ(D) is closed in L∞(D) in the weak star topology.
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Now we prove that E is a sequentially weakly star continuous functional in L∞(D). Let
{wn} be a sequence in L∞(D) such that wn → w weakly star in L∞(D) as n→ +∞. Then
it is easy to see that wn → w weakly in Lp(D) for any 1 < p < +∞. By Lp estimate we
have Gwn → Gw in C1(D). Taking into account (2.1) we get limn→∞E(wn) = E(w).

Since G(x, y) ∈ L1(D × D), it follows that E is bounded from above in Kλ(D), that
is, supw∈Kλ(D) E(w) < +∞. Then we can take a sequence {wn} such that limn→ E(wn) =

supw∈Kλ(D) E(w). Without loss of generality, we assume that wn → wλ weakly star in
L∞(D) for some wλ ∈ Kλ(D) as n→ +∞. It follows easily from the above discussion that
E(wλ) = supw∈Kλ(D) E(w). □

In the following lemma, by choosing suitable test functions we study the profile of wλ.

Lemma 2.2. For any maximizer wλ obtained in Lemma 2.1, we have

wλ = λIAλ + 2ΩIBλ a.e. in D, (2.3)

where

Aλ = {x ∈ D | Gwλ(x) +
Ω

2
|x|2 > µλ} and Bλ = {x ∈ D | Gwλ(x) +

Ω

2
|x|2 = µλ}, (2.4)

and the Lagrange multiplier µλ > 0 is determined by wλ as follows

µλ = sup{x∈D|w(x)<λ}

(
Gw(x) +

Ω

2
|x|2

)
= inf{x∈D|w(x)>0}

(
Gw(x) +

Ω

2
|x|2

)
. (2.5)

Proof. Define a family of test functions ws = wλ+s(z0−z1), s > 0, where z0 and z1 satisfy
z0, z1 ∈ L∞(D), z0, z1 ≥ 0 a.e. in D,∫
D
z0(x)dx =

∫
D
z1(x)dx,

z0 = 0 in D \ {x ∈ D | wλ(x) ≤ λ− δ},
z1 = 0 in D \ {x ∈ D | wλ(x) ≥ δ}.

(2.6)

Here δ is a small positive number. It is easy to see that for fixed z0, z1 and δ, if s is
sufficiently small, ws belongs to Kλ(D). Since wλ is a maximizer, we have

0 ≥ dE(ws)

ds

∣∣∣∣
s=0+

=

∫
D

z0(x)

(
Gwλ(x) +

Ω

2
|x|2

)
dx−

∫
D

z1(x)

(
Gwλ(x) +

Ω

2
|x|2

)
dx.

By the choice of z0 and z1 we deduce that

sup
{x∈D|wλ(x)<λ}

(
Gwλ +

Ω

2
|x|2

)
≤ inf

{x∈D|wλ(x)>0}

(
Gwλ +

Ω

2
|x|2

)
. (2.7)

By the continuity of Gwλ + Ω
2
|x|2 , (2.7) is in fact an equality, that is,

sup
{x∈D|wλ(x)<λ}

(
Gwλ +

Ω

2
|x|2

)
= inf

{x∈D|wλ(x)>0}

(
Gwλ +

Ω

2
|x|2

)
. (2.8)
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Set
µλ := sup

{x∈D|wλ(x)<λ}

(
Gwλ +

Ω

2
|x|2

)
= inf

{x∈D|wλ(x)>0}

(
Gwλ +

Ω

2
|x|2

)
.

It is easy to check that{
wλ = 0 a.e. in {x ∈ D | Gwλ(x) + Ω

2
|x|2 < µλ},

wλ = λ a.e. in {x ∈ D | Gwλ(x) + Ω
2
|x|2 > µλ}.

(2.9)

On the level set {x ∈ D | Gwλ(x) + Ω
2
|x|2 = µλ}, by the property of Sobolev functions, we

have −∆(Gωλ + Ω
2
|x|2) = 0 a.e. on {x ∈ D | Gwλ(x) + Ω

2
|x|2 = µλ}, from which we obtain

wλ = 2Ω a.e. on {x ∈ D | Gwλ(x) + Ω
2
|x|2 = µλ}. The proof is completed.

□
Remark 2.3. In Lemma 2.2, we only show that for fixed wλ the Lagrange multiplier µλ is
unique, however, the mapping from λ to µλ may be multiple-valued.

Proposition 2.4. Suppose wλ is a maximizer and λ ̸= 2Ω, then |Bλ| = 0.

Proof. We divide the proof into three steps.
Step 1: For any w1, w2 ∈ Kλ(D), we have∫

D

∫
D

G(x, y)w1(x)w2(y)dxdy ≤ E(w1) + E(w2), (2.10)

where
E(w) :=

1

2

∫
D

∫
D

G(x, y)w(x)w(y)dxdy, w ∈ Kλ(D),

and the equality holds if and only if w1 = w2. In fact, we need only to observe that
E(w1 − w2) ≥ 0, and E(w1 − w2) = 0 if and only if w1 = w2. Combining the symmetry of
the Green’s function, we get (2.10).

Step 2: wλ is the unique maximizer of the following functional

Q(w) :=

∫
D

(Gwλ(x) +
Ω

2
|x|2)w(x)dx (2.11)

in the admissible Kλ(D). In fact, by Step 1 we have

Q(w) =

∫
D

Gwλ(x)w(x)dx+

∫
D

Ω

2
|x|2w(x)dx

≤ E(wλ) + E(w) +

∫
D

Ω

2
|x|2w(x)dx

≤ E(wλ) + E(wλ)

= Q(wλ).

(2.12)

Moreover, the equality holds if and only if w = wλ, which is the desired result.
Step 3: If λ ̸= 2Ω, then |Bλ| = 0. In fact, if λ < 2Ω, the conclusion is obvious. So we

need only to prove the case λ > 2Ω. Suppose |Bλ| ̸= 0. We define w̄ = λIAλ + 2−1(λ +
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2Ω)ICλ , where Cλ satisfying Cλ ⊂ Bλ and |Cλ| = 4Ω(λ + 2Ω)−1|Bλ|. Then it is easy to
check that w̄ ∈ Kλ(D) and w̄ ̸= wλ. But we have

Q(w̄) =

∫
D

(Gwλ(x) +
Ω

2
|x|2)w(x)dx

= λ

∫
Aλ

(Gwλ(x) +
Ω

2
|x|2)dx+ (λ+ 2Ω)

2

∫
Cλ

(Gwλ(x) +
Ω

2
|x|2)dx

= λ

∫
Aλ

(Gwλ(x) +
Ω

2
|x|2)dx+ (λ+ 2Ω)

2
|Cλ|µλ

= λ

∫
Aλ

(Gwλ(x) +
Ω

2
|x|2)dx+ 2Ω|Bλ|µλ

= λ

∫
Aλ

(Gwλ(x) +
Ω

2
|x|2)dx+ 2Ω

∫
Bλ

(Gwλ(x) +
Ω

2
|x|2)dx

= Q(wλ),

(2.13)

which is a contradiction to Step 2.
□

From Lemma 2.2 and Proposition 2.4, we can easily deduce the following

Corollary 2.5. For any λ > |D|−1, any maximizer wλ has the from wλ = λÃλ a.e. for
some Ãλ ⊂ D.

In the following we analyze the limiting behavior of wλ as λ → +∞. For simplicity, we
will use C to denote various positive numbers independent of λ.

Lemma 2.6. E(wλ) = −(4π)−1 ln ε+O(1), where ε satisfies λπε2 = 1.

Proof. Choose a test function ŵ ∈ Kλ(D) defined by

ŵ = λIBε(0). (2.14)

Since wλ is a maximizer, we have E(wλ) ≥ E(ŵ). By a simple calculation, we obtain

E(ŵ) = 1

2

∫
D

∫
D

G(x, y)ŵ(x)ŵ(y)dxdy +
Ω

2

∫
D

|x|2ŵ(x)dx

≥ 1

2

∫
D

∫
D

− 1

2π
ln |x− y|ŵ(x)ŵ(y)dxdy − C

=
λ2

2

∫
Bε(0)

∫
Bε(0)

− 1

2π
ln |x− y|dxdy − C

≥ λ2

2

∫
Bε(0)

∫
Bε(0)

− 1

2π
ln(2ε)dxdy − C

= −(4π)−1 ln ε− C,
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where we used the fact∫
D

∫
D

h(x, y)ŵ(x)ŵ(y)dxdy → h(0, 0) as λ→ +∞.

On the other hand,

E(wλ) =
1

2

∫
D

∫
D

G(x, y)wλ(x)wλ(y)dxdy +
Ω

2

∫
D

|x|2wλ(x)dx

≤ 1

2

∫
D

∫
D

− 1

2π
ln |x− y|ŵ(x)ŵ(y)dxdy + C

≤ −(4π)−1 ln ε+ C,

where we used Riesz’s rearrangement inequality(see [20], 3.7) and the fact that h(x, y) is
bounded from below in D ×D. The proof is completed. □

Now we estimate the energy of the “vortex core”. Define ψλ = Gwλ + Ω
2
|x|2 − µλ. The

kinetic energy of the “vortex core” is defined as follows:

T (wλ) =
1

2

∫
D

|∇ψλ
+(x)|2dx, (2.15)

where ψλ
+ = max{ψλ, 0}.

Lemma 2.7. T (wλ) ≤ C.

Proof. Firstly it is easy to check that ψλ satisfies the following elliptic equation{
−∆ψλ = wλ − 2Ω in D,

ψλ = Ω
2
− µλ on ∂D.

(2.16)

Set γλ := max(Ω/2 − µλ, 0) ∈ [0,Ω/2]. Let us multiply both sides by ψλ
+ − γλ ∈ H1

0 (D).
By integration by parts we have

2T (wλ) =

∫
D

|∇ψλ
+(x)|2dx

=

∫
D

(wλ(x)− 2Ω)ψλ
+(x)dx− γλ

∫
D

(wλ(x)− 2Ω)dx

≤
∫
D

wλ(ψλ
+(x)− γλ)dx+ C

≤ λ|{x ∈ D | ψλ(x) > γλ}|1/2
(∫

D

(ψλ
+(x)− γλ)2dx

)1/2

+ C

≤ Cλ|{x ∈ D | ψλ(x) > 0}|1/2
∫
D

|∇ψλ
+(x)|dx+ C

≤ Cλ|{x ∈ D | ψλ(x) > 0}|
(∫

D

|∇ψλ
+(x)|2dx

)1/2

+ C

≤ C(T (wλ))1/2 + C,

(2.17)
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where we used Hölder’s inequality and Sobolev inequality. From (2.17) we conclude the
desired result. □

We are now ready to estimate the Lagrange multiplier µλ.

Lemma 2.8. µλ = −(2π)−1 ln ε+O(1), as λ→ +∞.

Proof. Set γλ := max(Ω/2− µλ, 0). By (2.17) we have as λ→ +∞

2T (wλ) =

∫
D

wλ(x)ψλ
+(x)dx− 2Ω

∫
D

ψλ
+(x)dx+O(1)

=

∫
D

wλ(x)ψλ(x)dx− 2Ω

∫
D

ψλ
+(x)dx+O(1)

=

∫
D

wλ(x)(Gwλ(x) +
Ω

2
|x|2 − µλ)dx− Ω

2

∫
D

wλ(x)|x|2dx− 2Ω

∫
D

ψλ
+(x)dx+O(1)

= 2E(wλ)− µλ − 2Ω

∫
D

(ψλ
+(x)− γλ)dx+O(1)

= 2E(wλ)− µλ +O(1).
(2.18)

Here we used
∫
D
|ψ+ − γλ|dx ≤ C(

∫
D
|∇ψ+|2dx) 1

2 ≤ C. From Lemma 2.6 and Lemma 2.7
we get the desired result. □

In the next lemma we show that the diameter of support of wλ is of order ε.

Lemma 2.9. There is a constant R0 > 1 independent of λ, such that diam(supp(wλ)) ≤
R0ε, with ε satisfying λπε2 = 1.

Proof. For any x ∈ supp(wλ), we have ψλ(x) ≥ 0. Recalling the definition of ψλ, we deduce
that

µλ ≤ Gwλ(x) +
Ω

2
|x|2 = 1

2π

∫
D

ln |x− y|−1wλ(y)dy −
∫
D

h(x, y)wλ(y)dy +
Ω

2
|x|2.

Taking into account Lemma 2.8 we obtain

1

2π
ln

1

ε
− C ≤ 1

2π

∫
D

ln |x− y|−1wλ(y)dy,

That is to say,

−2πC ≤
∫
D

ln
ε

|x− y|
wλ(y)dy.
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Now by choosing R > 1 to be determined, we calculate as follows

−2πC ≤
∫
D

ln
ε

|x− y|
wλ(y)dy

≤
∫
D∩BRε(x)

ln
ε

|x− y|
wλ(y)dy +

∫
D\BRε(x)

ln
ε

|x− y|
wλ(y)dy

≤
∫
D∩Bε(x)

ln
ε

|x− y|
wλ(y)dy − lnR

∫
D\BRε(x)

wλ(y)dy

≤ λ

∫
Bε(0)

ln
ε

|y|
dy − lnR

∫
D\BRε(x)

wλ(y)dy

=
1

2
− lnR

∫
D\BRε(x)

wλ(y)dy.

(2.19)

From (2.19) we get ∫
D\BRε(x)

wλ(y)dy ≤ C(lnR)−1.

Taking R > 1 large enough such that C(lnR)−1 < 1/2, we obtain∫
D∩BRε(x)

wλ(y)dy >
1

2
. (2.20)

Now the lemma is proved by taking R0 = 2R. In fact, suppose diam(supp(wλ)) > 2Rε,
then there exist x1, x2 ∈ supp(wλ) such that BRε(x1) ∩BRε(x2) = ∅. By (2.20),

1 =

∫
D

wλ(y)dy ≥
∫
D∩BRε(x1)

wλ(y)dy +

∫
D∩BRε(x2)

wλ(y)dy > 1,

which leads to a contradiction. □
We proceed to study the limiting behavior of wλ as λ → +∞. Define the center of wλ

to be
Xλ =

∫
D

xwλ(x)dx. (2.21)

Since D̄ is a compact set, for the remainder of the discussion we may fix a sequence
λ = λj → +∞ such that

Xλ → X∗ ∈ D̄ as λ = λj → +∞. (2.22)

Lemma 2.10. Let X∗ be defined by (2.22), then

H(X∗)− Ω

2
|X∗|2 = min

x∈D
(H(x)− Ω

2
|x|2), (2.23)

or equivalently,

|X∗| =

{√
1− 1

πΩ
, if Ω > 1/π,

0, if Ω ≤ 1/π.
(2.24)
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Proof. For any x̂ ∈ D, we define a test function ŵλ = λIBε(x̂). For sufficiently large λ, we
have ŵλ ∈ Kλ(D). So we have by Riesz’s rearrangement inequality(see [20], 3.2) and the
fact that E(wλ) ≥ E(ŵλ),

1

2

∫
D

∫
D

h(x, y)wλ(x)wλ(y)dxdy − Ω

2

∫
D

|x|2wλ(x)dx

=
1

4π

∫
D

∫
D

ln |x− y|−1wλ(x)wλ(y)dxdy − E(wλ)

≤ 1

4π

∫
D

∫
D

ln |x− y|−1ŵλ(x)ŵλ(y)dxdy − E(ŵλ)

≤ 1

2

∫
D

∫
D

h(x, y)ŵλ(x)ŵλ(y)dxdy − Ω

2

∫
D

|x|2ŵλ(x)dx.

Letting λ→ +∞, we deduce that

H(X∗)− Ω

2
|X∗|2 ≤ H(x̂)− Ω

2
|x̂|2, ∀ x̂ ∈ D,

from which we obtain (2.23). Firstly by a simple calculation, it is easy to check that X∗

satisfies (2.24). □

We now turn to study the small scale asymptotics of the wλ. To begin with, we state a
result from potential theory which will be frequently used later.

Lemma 2.11. [[26], Lemma 4.2] Let R ∈ (1,+∞) be a constant. Define the class KR as
follows

KR = {ζ ∈ L∞(BR(0)) : 0 ≤ ζ ≤ 1,

∫
BR(0)

ζ(x)dx = π}

Let the functional F be defined by

F (ζ) =
1

4π

∫
BR(0)

∫
BR(0)

N(x, y)w(x)w(y)dxdy, (2.25)

where N(x, y) = (2π)−1 ln |x − y|−1. Then ζ∗ = IB1(0) is the unique maximizer of F over
KR satisfying ∫

BR(0)

xζ(x)dx = 0. (2.26)

Lemma 2.12. Let R0 be the positive number obtained in Lemma 2.9. Then as λ → +∞,
we have ζλ → ζ∗ := IB1(0) weakly star in L∞(BR0(0)), where

ζλ(y) =
1

λ
wλ(Xλ + εy) ∈ L∞(BR0(0)). (2.27)
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Proof. Firstly, it is easy to see that ζλ ∈ KR0 . Moreover, by the definition of Xλ, we have∫
BR0

(0)

yζλ(y)dy =λ−1

∫
BR0

(0)

yωλ(Xλ + εy)dy

=λ−1

∫
BR0ε

(Xλ)

ε−1(x−Xλ)ωλ(x)ε−2dx

=πε−1

∫
D

(x−Xλ)ωλ(x)dx

=0,

(2.28)

that is, the center of ζλ is 0 for sufficiently large λ.
Now for any ζ̃ ∈ KR0 , define ω̃ ∈ Kλ(D) as follows

ω̃(x) =

{
λζ̃(ε−1(x−Xλ)), x ∈ BR0ε(X

λ),

0, x ∈ D \BR0ε(X
λ).

(2.29)

Direct calculation shows that as λ→ +∞,

E(ω̃) =1

2

∫
D

∫
D

G(x, x′)ω̃(x)ω̃(x′)dxdx′ +
Ω

2

∫
D

|x|2ω̃(x)dx

=
1

4π

∫
D

∫
D

ln
1

|x− x′|
ω̃(x)ω̃(x′)dxdx′ − 1

2

∫
D

∫
D

h(x, x′)ω̃(x)ω̃(x′)dxdx′ +
Ω

2

∫
D

|x|2ω̃(x)dx

=
1

4π
ln

1

ε
+

1

π2
F (ζ̃)−H(X∗) +

Ω

2
|X∗|2 + o(1).

(2.30)

By a similar calculation for ωλ and ζλ, we also have

E(ωλ) =
1

4π
ln

1

ε
+

1

π2
F (ζλ)−H(X∗) +

Ω

2
|X∗|2 + o(1),

as λ→ +∞. Since E(ω̃) ≤ E(ωλ), we obtain as λ→ +∞

F (ζ̃) ≤ F (ζλ) + o(1).

On the other hand, since ||ζλ||L∞(BR0
(0)) ≤ 1, there exists ζ ∈ KR0 such that up to subse-

quence
ζλ → ζ weakly star in L∞(BR0(0))

as λ → +∞. By the continuity of F , we deduce that F (ζ) = limm→+∞ F (ζλ) ≥ F (ζ̃).
Since ζ̃ ∈ KR0 is arbitrary and taking into account the fact that∫

BR0
(0)

yζ(y)dy = lim
m→+∞

∫
BR0

(0)

yζλ(y)dy = 0,

we deduce from Lemma 2.11 that ζ = ζ∗ = IB1(0). Finally, since the maximizer of F (ζ)
over KR0 is unique, the convergence is independent of the choice of any subsequence, which
completes the proof. □
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To study the limiting behavior of ψλ, we define
V λ(y) := πψλ(Xλ + εy), y ∈ Dλ := {y ∈ R2 : Xλ + ϵy ∈ D}. (2.31)

By Lp estimate, for any fixed R1 > R0, if λ is sufficiently large, we have V λ ∈ C1,α(BR1(0))
for each 0 < α < 1.

Lemma 2.13. As λ → +∞, we have V λ → V ∗ in C1(BR1(0)), where V ∗ is defined by
(1.20).

Proof. Firstly, define Ṽ λ(y) ∈ C1(R2) by setting

Ṽ λ(y) =
1

2π

∫
R2

ln |y − y′|−1ζλ(y′)dy′.

Since supp(ζλ) ⊂ BR0(0) and 0 ≤ ζλ ≤ 1 in BR0(0), by standard elliptic theory, we have,
−∆Ṽ λ(y) = ζλ(y), y ∈ BR1(0),

|∇Ṽ λ(y)| ≤ C, y ∈ BR1(0),

|∇Ṽ λ(y)−∇Ṽ λ(y′)| ≤ C|y − y′| ln(1 + 2R1

|y−y′|), y, y′ ∈ BR1(0).

(2.32)

So we know that {Ṽ λ(y)} and {∇Ṽ λ(y)} are both equicontinuous in BR1(0). Since ζλ ⇀ ζ∗

weakly star in L∞(BR1(0)), we have Ṽ λ(y) → V ∗(y) and ∇Ṽ λ(y) → ∇V ∗(y) a.e. in BR1(0).
By Arzela-Ascoli’s theorem,

Ṽ λ → V ∗ in C1(BR1(0)), (2.33)
as λ→ +∞. On the other hand, by a simple calculation we know that V λ satisfies,{

−∆V λ = ζλ − 2Ω
λ

in Dλ,

V λ = π
(
Ω
2
− µλ

)
on ∂Dλ.

(2.34)

Recall that we have obtained the following estimate for µλ in Lemma 2.8

µλ =
1

2π
ln

1

ε
+O(1), as λ→ +∞.

Set d = 1
2
dist(X∗, ∂D) > 0. Then for sufficiently large λ, d < dist(Xλ, ∂D), which implies

d/ε ≤ |y| ≤ 2/ε for any y ∈ ∂Dλ. Therefore for any y ∈ ∂Dλ

V λ(y) = π(
Ω

2
− µλ) = −1

2
ln

1

ε
+O(1) = −1

2
ln |y|+O(1).

Meanwhile, for any y ∈ ∂Dλ,

Ṽ λ(y) =
1

2π

∫
R2

ln |y − y′|−1ζλ(y′)dy′

=
1

2π

∫
BR0

(0)

ln |y|−1ζλ(y′)dy′ +O(1)

=
1

2
ln |y|−1 +O(1).

(2.35)
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Hence |V λ − Ṽ λ| ≤ C on ∂Dλ. Therefore, according to (2.34), we get{
∆(V λ − Ṽ λ) = 2Ω

λ
in Dλ,

|V λ − Ṽ λ| ≤ C on ∂Dλ,
(2.36)

which implies  ∆
(
V λ − Ṽ λ − πΩ

2
|Xλ + εy|2

)
= 0 in Dλ,∣∣∣V λ − Ṽ λ − πΩ

2
|Xλ + εy|2

∣∣∣ ≤ C on ∂Dλ,
(2.37)

where we used πΩ
2
|Xλ + εy|2 ≤ C for any y ∈ ∂Dλ. By the interior gradient estimate for

harmonic functions, we deduce that

sup
y∈BR1(0)

∣∣∣∣∇V λ(y)−∇Ṽ λ(y)−∇
(
πΩ

2
|Xλ + εy|2

)∣∣∣∣ ≤ Cε.

Note that |∇
(
πΩ
2
|Xλ + εy|2

)
| ≤ Cε for any y ∈ BR1(0), so we obtain

sup
y∈BR1(0)

∣∣∣∇V λ(y)−∇Ṽ λ(y)
∣∣∣ ≤ Cε.

Arzela-Ascoli’s theorem yields that (up to a subsequence) there exists some constant C∗

such that
V λ − Ṽ λ → C∗ in C1(BR1(0)),

which together with (2.33) gives

V λ → V ∗ + C∗ in C1(BR1(0)).

Recall that if λ > 2Ω, then λ|{x ∈ D | ψλ(x) > 0}| = 1, which yields |{y ∈ BR1(0) |
V λ(y) > 0}| = π, and thus C∗ = 0. We note that this conclusion is independent of the
choice of any subsequence, thus the proof is completed.

□

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. It suffices to show that any maximizer wλ satisfies (1.14). For any
ϕ ∈ C∞

c (D) and x ∈ D, consider the following ordinary differential equation{
dΦs(x)

ds
= ∇⊥ϕ(Φs(x)) s ∈ R,

Φ0(x) = x.
(2.38)

Since ∇⊥ϕ ∈ C∞
c (D;R3), (2.38) has a unique global solution. It is easy to check that ∇⊥ϕ

is divergence-free, so Φs is a measure-preserving transformation from D to D, that is, for
any measurable set F ⊂ D, we have |{Φs(x) | x ∈ F}| = |F |. Now we define a family of
test functions {ws}t∈R by setting

ws(x) := wλ(Φs(x)). (2.39)
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It is easy to see that ws ∈ Kλ(D). So we obtain
dE(ws)

ds
|s=0 = 0. (2.40)

Expanding E(ωs) at s = 0, we have

E(ws) =
1

2

∫
D

∫
D

G(x, y)wλ(Φs(x))w
λ(Φs(y))dxdy +

Ω

2

∫
D

|x|2wλ(Φs(x))dx

=
1

2

∫
D

∫
D

G(Φ−s(x),Φ−s(y))w
λ(x)wλ(y)dxdy +

Ω

2

∫
D

|(Φ−s(x))|2wλ(x)dx

=E(wλ) + s

∫
D

wλ(x)∇⊥(Gwλ(x) +
Ω

2
|x|2) · ∇ϕ(x)dx+ o(s).

(2.41)

From (2.40) and (2.41) we get the desired result.
□

3. Proof of Theorem 1.6

In this section we prove Theorem 1.6. To this end, we need two lemmas first.

Lemma 3.1. Let {wn} be a maximizing sequence for E in Kλ(D), then up to a subsequence
there exists wλ ∈ Sλ such that as n→ +∞, wn → wλ in Lp(D) for any p ∈ [1,+∞).

Proof. Since {wn} is a bounded sequence in L∞(D), it suffices to show that wn → wλ in
L2(D). Firstly according to the proof of Proposition 2.1, for any maximizing sequence wn,
there must be a maximizer wλ ∈ Kλ(D) such that wn → wλ weakly star in L∞(D). Thus
wn → wλ weakly in L2(D), which implies

∥wλ∥L2(D) ≤ lim inf
n→+∞

∥wn∥L2(D). (3.1)

On the other hand, by Corollary 2.5, wλ must have the form wλ = λIÃλ with λ|Ãλ| = 1,
which gives

∥wλ∥L2(D) = λ|Ãλ|1/2 = λ1/2. (3.2)
But for any n,

∥wn∥L2(D) =

(∫
D

|wn(x)|2dx
)1/2

≤ λ1/2
(∫

D

|wn(x)|dx
)1/2

= λ1/2. (3.3)

Combining (3.2) and (3.3) we obtain
∥wλ∥L2(D) ≥ lim sup

n→+∞
∥wn∥L2(D). (3.4)

Now by (3.1) and (3.4) we have
∥wλ∥L2(D) = lim

n→+∞
∥wn∥L2(D). (3.5)

By the uniform convexity of L2(D) we conclude that wn → wλ in L2(D).
□
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Lemma 3.2. [[9], Lemma 11, Lemma 12] Let w(x, t) ∈ L∞
loc(R;Lp(D)) with 3/4 < p <

+∞. Let u = ∇⊥Gw, ζ0 ∈ Lp(D). Then there exists a unique weak solution ζ(x, t) ∈
L∞
loc(R;Lp(D)) ∩ C(R;Lp(D)) to the following linear transport equation{

∂tζ + u · ∇ζ = 0, t ∈ R,
ζ(·, 0) = ζ0.

(3.6)

Here by weak solution we mean∫
R

∫
D

∂tϕ(x, t)ζ(x, t) + ζ(x, t)(u · ∇ϕ)(x, t)dxdt = 0, ∀ ϕ ∈ C∞
c (D × R),

lim
t→0

∥ζ(·, t)− ζ0∥Lp(D) = 0.
(3.7)

Moreover, we have for any t ∈ R

|{x ∈ D | ζ(x, t) > a}| = |{x ∈ D | ζ0(x) > a}|, ∀ a ∈ R. (3.8)
As a consequence, we have for any t ∈ R

∥ζ(·, t)∥Lp(D) = ∥ζ0∥Lp(D). (3.9)

Now we are ready to prove Theorem 1.6.

Proof of Theorem 1.6. We give the proof by contradiction. Suppose that there exists a
δ0 > 0, tn > 0, vn0 ∈ Lp(D) satisfying distp(vn0 ,Sλ) → 0, but

distp(v
n
tn ,Sλ) > δ0. (3.10)

Here vnt is a weak solution to the vorticity equation with initial vn0 . Since 3/2 ≤ p < +∞,
by energy and angular momentum conservation in Theorem A it is easy to check that {vntn}
satisfies

lim
n→+∞

E(vntn) = sup
Kλ(D)

E . (3.11)

Case 1: If vn0 ∈ Kλ(D), then the proof is easy. In this case, we have vntn ∈ Kλ(D), so by
Lemma 3.1, up to a subsequence vntn → wλ in Lp(D) for some wλ ∈ Sλ, which contradicts
(3.10).

Case 2: For general vn0 ∈ Lp(D), we need Lemma 3.2. Since distp(vn0 ,Sλ) → 0, we can
choose wn

0 ∈ Sλ such that as n→ +∞

∥wn
0 − vn0 ∥Lp(D) → 0. (3.12)

Now for each n, let wn(x, t) be the solution of the following linear transport equation{
∂tw

n(x, t) +∇⊥Gvnt · ∇wn(x, t) = 0,

wn(x, 0) = wn
0 (x).

(3.13)

By Lemma 3.2, it is clear that wn(·, t) ∈ Kλ(D) for any t > 0, and as n→ +∞

∥wn(·, tn)− vntn∥Lp(D) = ∥wn
0 − vn0 ∥Lp(D) → 0. (3.14)
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Combining (3.11) and (3.14) we obtain
lim

n→+∞
E(wn(·, tn)) = sup

Kλ(D)

E . (3.15)

Then by Lemma 3.1 we conclude that there exists wλ ∈ Sλ such that ∥wn(·, tn)−wλ∥Lp(D) →
0, which gives

distp(w
n(·, tn),Sλ) → 0. (3.16)

Now (3.10),(3.14) and (3.16) together lead to a contradiction. Thus Theorem 1.6 is proved.
□
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