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Abstract. Let K be the Calderón-Zygmund convolution kernel on Rd(d ≥ 2). Christ and

Journé defined the commutator associated with K and a ∈ L∞(Rd) by

Taf(x) = p.v.

∫
Rd

K(x− y)mx,ya · f(y)dy,

which is an extension of the classical Calderón commutator. In this paper, we show that Ta is

weighted weak type (1,1) bounded with A1 weight for d ≥ 2.

1. Introduction

Assume that K is the Calderón-Zygmund convolution kernel on Rd \ {0} (d ≥ 2), which

means that K satisfies the following three conditions:

(1.1) |K(x)| ≤ C|x|−d,

(1.2)

∫
R<|x|<2R

K(x)dx = 0, for all R > 0,

(1.3) |∇K(x)| ≤ C

|x|d+1
.

In 1987, Christ and Journé [2] introduced a higher dimensional commutator associated with

K and a ∈ L∞(Rd) by

Taf(x) = p.v.

∫
Rd
K(x− y)mx,ya · f(y)dy, f ∈ S(Rd),

where S(Rd) denotes the Schwartz class and

mx,ya =

∫ 1

0
a((1− t)x+ ty)dt =

∫ 1

0
a(tx+ (1− t)y)dt.

Note that Ta can be seen as a higher dimensional generalization of the Calderón commutator in

[1]. In fact, when d = 1, let A(x) be a Lipschitz function in R and denote a(x) = A′(x) ∈ L∞(R).

By using mean value formula, the Calderón commutator can be written as

p.v.

∫
R

A(x)−A(y)

x− y
f(y)

x− y
dy = p.v.

∫
R

1

x− y

∫ 1

0
a(tx+ (1− t)y)dt · f(y)dy.
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Obviously, the right hand side of the equality above is just the Christ-Journé type commutator

when d = 1.

Notice that for d ≥ 2, the kernel K(x − y) is smooth but mx,ya has no smoothness about

variable x and y if a ∈ L∞(Rd). Therefore the standard Calderón-Zygmund theory cannot be

applied directly. Christ and Journé [2] proved that Ta is bounded on Lp(Rd) for 1 < p < ∞.

In 1995, Hofmann [11] gave the weighted Lp (1 < p < ∞) boundedness of Ta when the kernel

K(x) = Ω(x/|x|)|x|−d with Ω ∈ L∞(Sn−1). In 2012, Grafakos and Honźık [9] proved that Ta is

of weak type (1, 1) for d = 2. Later, Seeger [13] showed that Ta is still weak type (1, 1) bounded

for all d ≥ 2. In [3], we showed that Ta is bounded on Lp(w) with w ∈ Ap(1 < p <∞) for d ≥ 2

and Ta is weighted weak type (1,1) with power weight |x|−α(−2 < α < 0) in dimension d = 2.

In this paper, our goal is to show Ta is also weighted weak type (1,1) bounded in dimension

d ≥ 2. In the sequel, for 1 ≤ p ≤ ∞, Ap(Rd) denotes the Muckenhoupt weight class and Lp(w)

denotes the weighted Lp(Rd) space with norm ‖ · ‖p,w. We also denote w(E) =
∫
E w(x)dx for a

measurable set E in Rd.

Theorem 1.1. Suppose K satisfies (1.1), (1.2) and (1.3) for d ≥ 2. Let a ∈ L∞(Rd) and

w ∈ A1(Rd). Then there exists a constant C > 0 such that

w
(
{x ∈ Rd : |Taf(x)| > λ}

)
≤ Cλ−1‖a‖∞‖f‖1,w

for all λ > 0 and f ∈ L1(w).

Remark 1.2. In dimension d = 2, Grafakos and Honźık [9] used the TT ∗ method to obtain weak

type (1,1) bound. In [3], we followed the idea in [9], using the weighted TT ∗ method to prove

weighted weak (1,1) boundedness of Ta with power weight. The key point in [3] is to show the

smoothness of the kernel of (T ∗j Tj)w. However, the method in [3] can not be used to prove that

Ta is of weighted weak type (1,1) for the general A1 weight even when d ≥ 2. Indeed, the reason

why the smoothness of the kernel of (T ∗j Tj)w could be established in [3] is based on the fact that

the power weight is smooth, but the general A1 weight does not have smoothness.

The method presented in this paper is different from [3]. We will use some interpolation

argument, which allows us to get weighted weak type (1,1) boundedness for the general A1

weight. More precisely, we will obtain an unweighted weak type estimate with nice decay

bound (see Lemma 2.3 below) and a weighted weak type estimate without decay bound (see

(2.3) below). Interpolating these two estimate together, we may get a weighted weak type

estimate with enough decay property. This kind of idea was first used to prove the weighted Lp

boundedness. For more details, we refer to see [6], [16], [15] and [7].

Remark 1.3. In this paper, we have to get the unweighted weak type estimate with enough

decay (i.e. Lemma 2.3 below). However, by using the original argument in [13], one may obtain

n−2 log n as the decay bound in Lemma 2.3. This bound is not sufficient to prove weighted

bound for A1 weight. To obtain a enough decay bound, we should modify the whole progress of

Seeger’s argument and it is not trivial. Recall in [13], in proving the weak type (1,1) estimate
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of Ta, Seeger used a microlocal decomposition for the kernel and the Fourier transform of the

function a, which involves the Littlewood-Paley decomposition and direction decomposition of

the function a (see the proof of Proposition 2.3 in [13]). In this paper, we will follow some

nice idea from Seeger [13] but there are some difference. First, we do not use this kind of

decompositions on the function a because we observe that mx,ya has some smoothness in some

sense. In fact, if writing mx,ya as

1

|x− y|

∫ |x−y|
0

a
(
y + s

x− y
|x− y|

)
ds =

1

r

∫ r

0
a(y + sθ)ds

by making a polar transform x − y = rθ, then even a ∈ L∞(Rd), mx,ya has some smoothness

about r for a fixed y and θ. The proof of Lemma 2.3 is based on this observation. Secondly, we

adopt a different method to use the cancelation of bad function (see subsection 5.3). It seems

to be more direct though complicated. Here we also use some ideas from [12], [4] and [5].

This paper is organized as follows. In Section 2, we complete the proof of Theorem 1.1 based

on Lemma 2.3. In Section 3, we prove Lemma 2.3 based on some lemmas, their proofs will be

given in Section 4 and Section 5, respectively. Throughout this paper, the letter C stands for

a positive constant which is independent of the essential variables and not necessarily the same

one in each occurrence. A . B means A ≤ CB for some constant C and A ≈ B means that

A . B and B . A. For a set E ⊂ Rd, we denote by |E| the Lebesgue measure of E. Ff and f̂

denote the Fourier transform of f defined by

Ff(ξ) =

∫
Rd
e−i〈x,ξ〉f(x)dx.

Z+ denotes the set of all nonnegative integers and Zd+ = Z+ × · · · × Z+︸ ︷︷ ︸
d

. [x] denotes the integer

part of x.

2. Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1 based on a lemma, its proof will be given

in Section 3. Let us begin with giving the definition of A1(Rd) weight.

Definition 2.1 (A1(Rd) weight). A nonnegative local integrable function w on Rd is said to be

a A1(Rd) weight if there is a constant C > 0 such that

Mw(x) ≤ Cw(x),

where M denotes the Hardy-Littlewood maximal operator defined by

Mf(x) = sup
r>0

1

|Q(x, r)|

∫
Q(x,r)

|f(y)|dy,

here Q(x, r) denotes the cube with center at x and side length r and its sides parallel to the

coordinate axes.
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Fix λ > 0 and f ∈ L1(w), the following Calderón-Zygmund decomposition of f ∈ L1(w) is

well known, see the proof of Theorem 3.5 in [10], for example.

Lemma 2.2. Let w ∈ A1(Rd) and f ∈ L1(w). Then for a ∈ L∞(Rd) and λ > 0, there exist

functions g and b such that

(i) f = g + b;

(ii) ‖g‖22,w . λ
‖a‖∞ ‖f‖1,w;

(iii) b =
∑
bn, suppbn ⊂ Qn, Qn’s are disjoint dyadic cubes, set Q = {Qn};

(iv)
∫
bn = 0, ‖bn‖1 . λ

‖a‖∞ |Qn|, ‖b‖1,w . ‖f‖1,w;

(v) Each Q satisfies |Q| . ‖a‖∞λ
∫
Q |f(z)|dz;

(vi) Set E =
⋃
Q∈Q

Q, then w(E) . ‖a‖∞λ ‖f‖1,w.

We only focus on the dimension d ≥ 2. By the property (i) in Lemma 2.2,

w
(
{x ∈ Rd : |Taf(x)| > λ}

)
≤ w

({
x ∈ Rd : |Tag(x)| > λ

2

})
+ w

({
x ∈ Rd : |Tab(x)| > λ

2

})
.

Since g ∈ L2(w), by [3, Theorem 1.2], we have ‖Tag‖2,w . ‖a‖∞‖g‖2,w. Hence, use Chebychev’s

inequality and the property (ii) in Lemma 2.2,

w({x ∈ Rd : |Tag(x)| > λ/2}) .
‖Tag‖22,w

λ2
. ‖a‖∞

‖f‖1,w
λ

.

For Q ∈ Q, denote by l(Q) the side length of cube Q. For t > 0, let tQ be the cube with the

same center of Q and l(tQ) = tl(Q). Let E∗ =
⋃
Q∈Q 2200Q. Then we have

w
(
{|Tab(x)| > λ/2}

)
≤ w(E∗) + w

(
{x ∈ (E∗)c : |Tab(x)| > λ/2}

)
.

Since w satisfies the doubling condition, by (vi) in Lemma 2.2, the set E∗ satisfies

w(E∗) . w(E) .
‖a‖∞
λ
‖f‖1,w.

Denote Qk = {Q ∈ Q : l(Q) = 2k} and let Bk =
∑

Q∈Qk
bQ. Then b can be rewritten as b =

∑
j∈Z

Bj .

Let ψ be a radial C∞(Rd) function such that ψ(ξ) = 1 for |ξ| ≤ 1, ψ(ξ) = 0 for |ξ| ≥ 2 and

0 ≤ ψ(ξ) ≤ 1 for all ξ ∈ Rd. Define φ(x) = ψ(x)−ψ(2x). Then supp φ ⊂ {x ∈ Rd : 1
2 ≤ |x| ≤ 2}

and
∑

j φj(x) = 1 for all x ∈ Rd\{0}, where φj(x) = φ(2−jx). Now we define the operator Tj as

(2.1) Tjf(x) =

∫
Rd
φj(x− y)K(x− y)mx,ya · f(y)dy.

Then Ta =
∑
j
Tj . For simplicity, we set Kj(x) = φj(x)K(x). We write

Tab(x) =
∑
n∈Z

∑
j∈Z

TjBj−n.

Note that TjBj−n(x) = 0, for x ∈ (E∗)c and n < 100. Therefore

w

({
x ∈ (E∗)c : |Tab(x)| > λ

2

})
= w

({
x ∈ (E∗)c :

∣∣∣∣ ∑
n≥100

∑
j∈Z

TjBj−n(x)

∣∣∣∣ > λ

2

})
.
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To finish the proof of Theorem 1.1, it is enough to show

(2.2) w

({
x ∈ Rd :

∣∣∣∣ ∑
n≥100

∑
j∈Z

TjBj−n(x)

∣∣∣∣ > λ

2

})
.

1

λ
‖a‖∞‖f‖1,w.

Fix n ≥ 100. By using Fubini’s theorem and (iv) in Lemma 2.2, for any nonnegative function

µ(x), we get∥∥∥∑
j

TjBj−n

∥∥∥
1,µ
. ‖a‖∞

∑
j

∫
|Bj−n(y)|

(∫
|Kj(x− y)|µ(x)dx

)
dy

. ‖a‖∞
∑
j

∑
Q∈Qj−n

∫
|bQ(y)| 1

2jn

∫
Q(y,2j+2)

µ(x)dxdy

. ‖a‖∞
∑
j

∑
Q∈Qj−n

∫
|bQ(y)| inf

z∈Q

1

2jn

∫
Q(z,2j+3)

µ(x)dxdy

. ‖a‖∞
∑
j

∑
Q∈Qj−n

∫
|bQ(y)| inf

z∈Q
M(µ)(z)dy

. λ
∑
Q∈Q
|Q| inf

Q
M(µ),

where in the third inequality we use the fact thatQ ∈ Qj−n has side length 2j−n and infQM(µ) =

infz∈QM(µ)(z). Then by Chebyshev’s inequality,

(2.3) µ
({
x ∈ Rd :

∣∣∣∑
j

TjBj−n(x)
∣∣∣ > λ

})
.
∑
Q

|Q| inf
Q∈Q

M(µ).

Here we should point out that the right side of (2.3) is bounded by ‖a‖∞λ ‖f‖1,w by using the

property (v) in Lemma 2.2 if we set µ = w ∈ A1(Rd). So to prove (2.2), we need to get a

estimate better than (2.3) with a decay bound like 2−nε with ε > 0. It may be difficult to obtain

this kind of estimate directly for higher dimension (in [3], we got similar estimates with enough

decay bounds directly when d = 2). However, we will use an interpolation arguments between

the estimate (2.3) and the following lemma.

Lemma 2.3. There exists an ε > 0 such that for any integer n ≥ 100,

(2.4)
∣∣∣{x ∈ Rd :

∣∣∣∑
j

TjBj−n(x)
∣∣∣ > λ

}∣∣∣ . n2−εn
∑
Q∈Q
|Q|.

The proof of Lemma 2.3 will be given in Section 3. We continue the interpolation arguments.

For convenience, define

Enλ =
{
x ∈ Rd :

∣∣∣∑
j

TjBj−n(x)
∣∣∣ > λ

}
.

Lemma 2.4. For any constant u > 0 and nonnegative function µ(x),

(2.5)

∫
Enλ

min{µ(x), u}dx .
∑
Q∈Q
|Q|min{un2−εn, inf

Q
M(µ)},

where ε is determined by Lemma 2.3.
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Proof. For u > 0, we set

Cu = {Q ∈ Q : inf
Q
M(µ) < un2−εn}

and Ccu = Q \ Cu. For each j, split Bj into two parts Bj = B
′
j + B

′′
j , where

B′j =
∑

l(Q)=2j ,Q∈Cu

bQ and B
′′
j =

∑
l(Q)=2j ,Q∈Ccu

bQ.

Define

En
′

λ =
{
x ∈ Rd :

∣∣∣∑
j

TjB
′
j−n(x)

∣∣∣ > λ
}
,

En
′′

λ =
{
x ∈ Rd :

∣∣∣∑
j

TjB
′′
j−n(x)

∣∣∣ > λ
}
.

By the linearity of Tj , E
n
λ ⊂ En

′

λ/2

⋃
En
′′

λ/2. Therefore∫
Enλ

min{µ(x), u}dx ≤
(∫

En
′

λ/2

+

∫
En
′′

λ/2

)
min{µ(x), u}dx

≤
∫
En
′

λ/2

µ(x)dx+

∫
En
′′

λ/2

udx

=: I + II.

By using (2.3) and Lemma 2.3, we get the estimates of I and II, respectively,

I .
∑
Q∈Cu

|Q| inf
Q
M(w) =

∑
Q∈Cu

|Q|min{un2−εn, inf M(µ)},

II . un2−εn
∑
Q∈Ccu

|Q| =
∑
Q∈Ccu

|Q|min{un2−εn, inf
Q
M(µ)}.

Combining these estimates for I and II, we finish the proof. �

Now we return to the proof of Theorem 1.1. Multiply both sides of the inequality (2.5) by

u−1+θ(θ ∈ (0, 1)), and integrate them on (0,∞) with respect to the measure du/u. Using the

following formula ∫ ∞
0

min{A, u}u−1+θ du

u
= CθA

θ,

then by Fubini’s theorem , we could get∫
Enλ

µ(x)θdx .
∑
Q∈Q
|Q|(n2−εn)1−θ inf

Q
M(µ)θ

. λ−1(n2−εn)1−θ‖a‖∞
∑
Q∈Q

inf
Q
M(µ)θ

∫
Q
|f(x)|dx

≤ λ−1(n2−εn)1−θ‖a‖∞
∫
Rd
|f(x)|M(µ)θ(x)dx

(2.6)

where the second inequality follows from the property (v) in Lemma 2.2. Since w ∈ A1(Rd)
which means w(x) is nonnegative, we can substitute w1/θ for µ in (2.6). So we obtain

w(Enλ ) =

∫
Enλ

w(x)dx . λ−1(n2−εn)1−θ‖a‖∞
∫
Rd
|f(x)|M 1

θ
(w)(x)dx,
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where Mq is the Hardy-Littlewood maximal operator of order q defined by

Mqf(x) = sup
s>0

(
1

|Q(x, s)|

∫
Q(x,s)

|f(y)|qdy
)1/q

.

Choose σ > 1 and Cσ > 0 such that Cσ
∑

n≥100 n
−σ = 1

2 . Then we have

(2.7) w(En
Cσn−σ

λ
2

) . nσ+1−θ2−nε(1−θ)λ−1‖a‖∞‖f‖1,M 1
θ

(w).

By using the pigeonhole principle, it is easy to see that

(2.8)
{
x :
∑
i

fi(x) >
∑
i

λi

}
⊆
⋃
i

{
x : fi(x) > λi

}
.

Since
∑

n≥100Cσn
−σ = 1

2 , we may get{
x ∈ Rd :

∑
n≥100

∣∣∣∑
j∈Z

TjBj−n(x)
∣∣∣ > λ

2

}
⊂

⋃
n≥100

EnCσn−σλ.

By (2.7), we obtain

(2.9) w
({
x ∈ Rd :

∑
n≥100

∣∣∣∑
j∈Z

TjBj−n

∣∣∣ > λ
})
≤
∑
n≥100

w(EnCσn−σλ) .
1

λ
‖a‖∞‖f‖1,M 1

θ
(w).

Since w is an A1(Rd) weight, there exists r > 1 such that wr ∈ A1(Rd) (see [8, Theorem 7.2.5]).

Thus, we take θ = 1
r in (2.9). By the definition of A1(Rd) weight, we have Mr(w)(x) . w(x).

Hence we get (2.2) by (2.9) and finish the proof of Theorem 1.1 once we show Lemma 2.3.

3. Proof of Lemma 2.3

To prove Lemma 2.3, we will make a series of decomposition of Tj . Some important estimates

play a key role in the proof. We present them by some lemmas, which will be proved in Section 4

and Section 5, respectively. The first estimate tells us that the operator Tj can be approximated

by an operator Tnj in measure, which is defined below.

Let lτ (n) = τn + 2, where 0 < τ < 1 will be chosen later. Let η be a nonnegative,

radial C∞c (Rd) function which is supported in {|x| ≤ 1} and satisfies
∫
Rd η(x)dx = 1. Set

ηi(x) = 2−idη(2−ix). Define

Kn
j (x) = ηj−lτ (n) ∗Kj(x).

Since Kj(x) is supported in {2j−1 ≤ |x| ≤ 2j+1} and ηj−lτ (n)(x) is supported in {|x| ≤
2j−lτ (n)}, we see that Kn

j (x) is supported in {2j−2 ≤ |x| ≤ 2j+2}. Therefore

(3.1) |Kn
j (x)| . 2−jdχ{2j−2≤|x|≤2j+2}

and similarly for multi-indices α

(3.2) |∂αKn
j (x)| . 2−jd+(lτ (n)−j)|α|χ{2j−2≤|x|≤2j+2}.
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Let ρn be a smooth, nonnegative function defined on R such that ρn(s) = 1 on [2−τn, 1 −
2−τn], supp ρn ⊂ (2−τn−1, 1− 2−τn−1), and the derivatives of ρn satisfy the natural estimates∣∣∣∣ dk

dsk
ρn(s)

∣∣∣∣ . 2kτn for all k ∈ Z+.

Let

mn
x,ya =

∫ 1

0
ρn(s)a(sx+ (1− s)y)ds.

Define the operator Tnj by

Tnj h(x) =

∫
Rd
Kn
j (x− y)mn

x,ya · h(y)dy.

Lemma 3.1. With the definitions above, for n ≥ 100,∣∣∣{x ∈ Rd :
∣∣∣∑

j

(
TjBj−n(x)− Tnj Bj−n(x)

)∣∣∣ > λ

4

}∣∣∣ . 2−nτ
∑
Q

|Q|.

By Lemma 3.1, it is easy to see that the proof of Lemma 2.3 now is reduced to find ε > 0

such that

(3.3)

∣∣∣∣{x ∈ Rd :

∣∣∣∣∑
j∈Z

Tnj Bj−n(x)

∣∣∣∣ > λ

4

}∣∣∣∣ . n2−nε
∑
Q

|Q|.

In the following, we need to make a microlocal decomposition of the kernel. To do this,

we give a partition of unity on the unit surface Sd−1. Choose n ≥ 100. Let Θn = {env}v be a

collection of unit vectors on Sd−1 which satisfies the following two conditions:

(a) |env − env′ | ≥ 2−nγ−4, if v 6= v′;

(b) If θ ∈ Sd−1, there exists an env such that |env − θ| ≤ 2−nγ−4.

The constant γ in (a) and (b) satisfying τ < γ < 1 will be chosen later. In fact, we may simply

take a maximal collection {env}v for which (a) holds. Notice that there are C2nγ(d−1) elements in

the collection {env}v. For every θ ∈ Sd−1, there only exists finite env such that |env − θ| ≤ 2−nγ−4.

Now we can construct an associated partition of unity on the unit surface Sd−1. Let ζ be a

smooth, nonnegative, radial function on Rd with ζ(u) = 1 for |u| ≤ 1
2 and ζ(u) = 0 for |u| > 1.

Set

Γ̃nv (ξ) = ζ
(

2nγ(
ξ

|ξ|
− env )

)
and define

Γnv (ξ) = Γ̃nv (ξ)
( ∑
env∈Θn

Γ̃nv (ξ)
)−1

.

Then it is easy to see that Γnv is homogeneous of degree 0 with
∑
v

Γnv (ξ) = 1, for all ξ 6= 0 and

all n. In addition, the following estimate holds for multi-indices α and ξ 6= 0,

(3.4) |∂αξ Γnv (ξ)| . 2nγ|α||ξ|−|α|.

Now we define operator Tn,vj by

(3.5) Tn,vj h(x) =

∫
Rd
Kn,v
j (x− y)mn

x,ya · h(y)dy,
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where Kn,v
j (x) = Kn

j (x)Γnv (x). Therefore, we have

Tnj =
∑
v

Tn,vj .

In the sequel, we need to separate the phase into different directions. Hence we define a

multiplier operator by

Ĝn,vh(ξ) = Φ(2nγ〈env , ξ/|ξ|〉)ĥ(ξ),

where h is a Schwartz function and Φ is a smooth, nonnegative, radial function such that

0 ≤ Φ(x) ≤ 1 and Φ(x) = 1 on |x| ≤ 2, Φ(x) = 0 on |x| > 4. Now we can split Tn,vj into two

parts:

Tn,vj = Gn,vT
n,v
j + (I −Gn,v)Tn,vj ,

where I denotes the identity operator. The following lemma gives the L2 estimate involving

Gn,vT
n,v
j , which will be proved in next section.

Lemma 3.2. With the definitions above, for n ≥ 100,∥∥∥∑
j

∑
v

Gn,vT
n,v
j Bj−n

∥∥∥2

2
. 2−nγλ2

∑
Q

|Q|.

The estimates of the terms involving (I −Gn,v)Tn,vj are more complicated. In Section 5, we

shall prove the following lemma.

Lemma 3.3. For any n ≥ 100, there exists a ε > 0 such that∣∣∣{x ∈ Rd :
∣∣∣∑

j

∑
v

(I −Gn,v)Tn,vj Bj−n(x)
∣∣∣ > λ

}∣∣∣ . n2−nε
∑
Q

|Q|.

Now we can finish the proof of Lemma 2.3. It suffices to consider (3.3). By Chebychev’s

inequality,∣∣∣{x ∈ Rd :
∣∣∣∑

j

Tnj Bj−n(x)
∣∣∣ > λ

4

}∣∣∣
. λ−2

∥∥∥∑
j

∑
v

Gn,vT
n,v
j Bj−n

∥∥∥2

2
+
∣∣∣{x ∈ Rd :

∣∣∣∑
j

∑
v

(I −Gn,v)Tn,vj Bj−n(x)
∣∣∣ > λ

8

}∣∣∣
By Lemma 3.2 and Lemma 3.3, we can get the estimates for the first term and the second term

above, respectively. We hence complete the proof of Lemma 2.3 once Lemmas 3.1-3.3 hold.

4. proofs of Lemmas 3.1-3.2

4.1. Proof of Lemma 3.1.

We first focus on the proof of Lemma 3.1. By the definitions of Tj and Tnj , we see

‖Tjf − Tnj f‖1 =

∫
Rd

∣∣∣ ∫
Rd

(
Kj(x− y)mx,ya−Kn

j (x− y)mn
x,ya

)
f(y)dy

∣∣∣dx
≤ I + II,
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where

I =

∫
Rd

∣∣∣ ∫
Rd

(Kj(x− y)−Kn
j (x− y))mx,ya · f(y)dy

∣∣∣dx,
II =

∫
Rd

∣∣∣ ∫
Rd
Kn
j (x− y)(mx,ya−mn

x,ya)f(y)dy
∣∣∣dx.

Consider I firstly. By the definition of Kn
j (x), we see

Kj(x− y)−Kn
j (x− y) =

∫
Rd
ηj−lτ (n)(z)(Kj(x− y)−Kj(x− y − z))dz.

Notice that

|Kj(x− y)−Kj(x− y − z)| ≤ |φj(x− y)(K(x− y)−K(x− y − z))|

+ |φj(x− y)− φj(x− y − z)||K(x− y − z)|.

Consider the first term. Note that |z| ≤ 2j−lτ (n) and 2j−1 ≤ |x − y| ≤ 2j+1, then we have

2|z| < |x− y|. By the regularity condition (1.3), the first term above is bounded by

|z|
|x− y|d+1

χ{2j−1≤|x−y|≤2j+1} . 2−τn2−jdχ{2j−1≤|x−y|≤2j+1}.

For the second term, by the fact |z| ≤ 2j−lτ (n) and the support of φj , we have |x−y| ≈ |x−z−y|
and 2j−2 ≤ |x− y| ≤ 2j+2. By (1.1), the second term is controlled by

2−j |z|
|x− z − y|d

χ{2j−2≤|x−y|≤2j+2} . 2−τn2−jdχ{2j−2≤|x−y|≤2j+2}.

Consider II, we get

|mx,ya−mn
x,ya| =

∣∣∣ ∫ 1

0
(1− ρn(s))a(sx+ (1− s)y)ds

∣∣∣ . 2−τn‖a‖∞.

Combining the above three estimates and applying Minkowski’s inequality, we obtain

‖Tjf − Tnj f‖1 . 2−τn‖a‖∞
∫
Rd

∫
2j−2≤|x−y|≤2j+2

2−jd
∫
Rd
ηj−lτ (n)(z)dz|f(y)|dydx

. 2−τn‖a‖∞2−jd
∫
Rd

∫
2j−2≤|x−y|≤2j+2

|f(y)|dydx . 2−τn‖a‖∞‖f‖1.
(4.1)

By Chebychev’s inequality, Minkowski’s inequality, (4.1) and the property (iv) in Lemma

2.2, we get the bound ∣∣∣{x ∈ Rd :
∣∣∣∑

j

TjBj−n(x)− Tnj Bj−n(x)
∣∣∣ > λ

4

}∣∣∣
. λ−1

∑
j

∥∥∥TjBj−n − Tnj Bj−n

∥∥∥
1

. λ−1‖a‖∞2−τn
∑
j

‖Bj−n‖1 . 2−nτ
∑
Q

|Q|,

which is the required estimate. �
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4.2. Proof of Lemma 3.2.

The proof of this part is similar to [13]. For completeness, we still give a proof here. As

usually, we adopt the TT ∗ method in the L2 estimate. Moreover, we also use some orthogonality

argument based on the following observation of the support of F(Gn,vT
n,v
j ): For a fixed n ≥ 100,

we have

(4.2) sup
ξ 6=0

∑
v

|Φ2(2nγ〈env , ξ/|ξ|〉)| . 2nγ(d−2).

In fact, by the homogeneousness of Φ, it suffices to take the supremum over the surface Sd−1.

For |ξ| = 1 and ξ ∈ supp Φ(2nγ〈env , ξ/|ξ|〉), denote by ξ⊥ the hyperplane perpendicular to ξ.

Thus

(4.3) dist(env , ξ
⊥) . 2−nγ .

Since the mutual distance of env ’s is bounded by 2−nγ−4, there are at most 2nγ(d−2) vectors satisfy

(4.3). We hence get (4.2).

By applying Plancherel’s theorem and Cauchy-Schwartz inequality, we have∥∥∥∑
v

∑
j

Gn,vT
n,v
j Bj−n

∥∥∥2

2
=
∥∥∥∑

v

Φ(2nγ〈env , ξ/|ξ|〉)F
(∑

j

Tn,vj Bj−n

)
(ξ)
∥∥∥2

2

. 2nγ(d−2)
∥∥∥∑

v

∣∣∣F(∑
j

Tn,vj Bj−n

)∣∣∣2∥∥∥
1

. 2nγ(d−2)
∑
v

∥∥∥∑
j

Tn,vj Bj−n

∥∥∥2

2
.

(4.4)

Once it is showed that for a fixed env ,

(4.5)
∥∥∥∑

j

Tn,vj Bj−n

∥∥∥2

2
. 2−2nγ(d−1)λ‖a‖∞

∑
j

‖Bj−n‖1,

then by card(Θn) . 2nγ(d−1), and applying (4.4), (4.5) and the property (iv) in Lemma 2.2 we

get ∥∥∥∑
v

∑
j

Gn,vT
n,v
j Bj−n

∥∥∥2

2
. 2−nγλ‖a‖∞

∑
j

‖Bj−n‖1 . 2−nγλ2
∑
Q

|Q|,

which is just desired bound of Lemma 3.2. Thus, to finish the proof of Lemma 3.2, it is enough

to prove (4.5). By applying (3.1) and the support of Γnv ,

|Tn,vj Bj−n(x)| . ‖a‖∞
∫
Rd

Γnv (x− y)|Kn
j (x, y)||Bj−n(y)|dy

. ‖a‖∞Hn,v
j ∗ |Bj−n|(x),

where Hn,v
j (x) := 2−jdχEn,vj (x) and χEn,vj (x) is a characteristic function of the set

En,vj :=
{
x ∈ Rd : |〈x, env 〉| ≤ 2j+2 and |x− 〈x, env 〉env | ≤ 2j+2−nγ}.
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For a fixed env , we write∥∥∥∑
j

Tn,vj Bj−n

∥∥∥2

2
. ‖a‖2∞

∑
j

∫
Rd
Hn,v
j ∗Hn,v

j ∗ |Bj−n|(x) · |Bj−n(x)|dx

+ ‖a‖2∞
∑
j

j−1∑
i=−∞

∫
Rd
Hn,v
j ∗Hn,v

i ∗ |Bi−n|(x) · |Bj−n(x)|dx.
(4.6)

Observe that ‖Hn,v
i ‖1 . 2−idm(En,vi ) . 2−nγ(d−1), therefore for any i ≤ j,

Hn,v
j ∗Hn,v

i (x) ≤ 2−nγ(d−1)2−jdχ
Ẽn,vj

,

where Ẽn,vj = En,vj + En,vj . Hence for a fixed j, n, env and x, we get

Hn,v
j ∗Hn,v

j ∗ |Bj−n|(x) +

j−1∑
i=−∞

Hn,v
j ∗Hn,v

i ∗ |Bi−n|(x)

. 2−nγ(d−1)2−jd
∑
i≤j

∫
x+Ẽn,vj

|Bi−n(y)|dy

. 2−nγ(d−1)2−jd
∑
i≤j

∑
Q∈Qi−n

Q∩{x+Ẽn,v
j
}6=∅

∫
Rd
|bQ(y)|dy

. 2−nγ(d−1)2−jd
∑
i≤j

∑
Q∈Qi−n

Q∩{x+Ẽn,v
j
}6=∅

λ

‖a‖∞
|Q|

. 2−nγ(d−1)2−jd2jd−nγ(d−1) λ

‖a‖∞

.
λ

‖a‖∞
2−2nγ(d−1),

(4.7)

where in the third inequality above, we use
∫
|bQ(y)|dy . λ|Q|/‖a‖∞ (see the property (iv) in

Lemma 2.2) and in the fourth inequality we use fact that the cubes in Q are disjoint (see the

property (iii) in Lemma 2.2). By (4.6) and (4.7), we obtain (4.5) and complete the proof of

Lemma 3.2. �

5. Proof of Lemma 3.3

To prove Lemma 3.3, we have to deal with some oscillatory integrals which come from

(I −Gn,v)Tn,vj . We first introduce Mihlin multiplier theorem, which can be found in [8].

Lemma 5.1. Let m be a complex-value bounded function on Rd \ {0} that satisfies

|∂αξm(ξ)| ≤ A|ξ|−|α|

for all multi indices |α| ≤ [d2 ] + 1, then the operator Tm defined by

T̂mf(ξ) = m(ξ)f̂(ξ)
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can be extended to a weak type (1,1) bounded operator with bound Cd(A+ ‖m‖∞).

Before stating the proof of Lemma 3.3, let us give some notations. We first introduce the

Littlewood-Paley decomposition. Let ψ be a radial C∞(Rd) function such that ψ(ξ) = 1 for

|ξ| ≤ 1, ψ(ξ) = 0 for |ξ| ≥ 2 and 0 ≤ ψ(ξ) ≤ 1 for all ξ ∈ Rd. Define ψk(ξ) = ψ(2kξ) and

βk(ξ) = ψk(ξ) − ψk+1(ξ), then βk is supported in {ξ : 2−k−1 ≤ |ξ| ≤ 2−k+1} and
∑

k βk(ξ) = 1

for ξ ∈ Rd \ {0}. Define the convolution operators Vk and Λk with Fourier multipliers ψk(·) and

βk, respectively. That is,

V̂kf(ξ) = ψk(ξ)f̂(ξ)

and

Λ̂kf(ξ) = βk(ξ)f̂(ξ).

Then by the construction of βk and ψ, we have

I =
∑
k∈Z

Λk = Vm +
∑
k<m

Λk for every m ∈ Z.

Set An,vj,m = VmT
n,v
j and Dn,v

j,k = (I −Gn,v)ΛkTn,vj . Write

(I −Gn,v)Tn,vj = (I −Gn,v)VmTn,vj +
∑
k<m

(I −Gn,v)ΛkTn,vj

=: (I −Gn,v)An,vj,m +
∑
k<m

Dn,v
j,k ,

where m = j − [nε0], ε0 > 0 will be chosen later. To prove Lemma 3.3, we split the measure in

Lemma 3.3 into two parts,∣∣∣{x ∈ Rd :
∣∣∣∑

v

∑
j

(I −Gn,v)Tn,vj Bj−n(x)
∣∣∣ > λ

}∣∣∣
≤
∣∣∣{x ∈ Rd :

∣∣∣∑
v

(I −Gn,v)
(∑

j

An,vj,mBj−n
)
(x)
∣∣∣ > λ

2

}∣∣∣
+
∣∣∣{x ∈ Rd :

∣∣∣∑
v

∑
j

∑
k<m

Dn,v
j,kBj−n(x)

∣∣∣ > λ

2

}∣∣∣
=: I + II.

(5.1)

5.1. First step: basic estimates of I and II.

For I, notice that F [(I − Gn,v)f ](ξ) = (1 − Φ(2nγ〈env , ξ/|ξ|〉)) · f̂(ξ). It is easy to see that

(1− Φ(2nγ〈env , ξ/|ξ|〉)) is bounded and

|∂αξ (1− Φ(2nγ〈env , ξ/|ξ|〉))| . 2nγ([ d
2

]+1)|ξ|−|α|

for all multi indices |α| ≤ [d2 ]+1. Then by Lemma 5.1, I−Gn,v is of weak type (1,1) with bound

C2nγ([ d
2

]+1).
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Since card(Θn) ≈ 2nγ(d−1), then there exists Cγ,d such that
∑

env∈Θn

Cd2
−nγ(d−1) = 1

2 . Therefore

∣∣∣{x ∈ Rd :
∣∣∣∑

v

(I −Gn,v)
(∑

j

An,vj,mBj−n

)
(x)
∣∣∣ > λ

2

}∣∣∣
=
∣∣∣{x ∈ Rd :

∣∣∣∑
v

(I −Gn,v)
(∑

j

An,vj,mBj−n

)
(x)
∣∣∣ >∑

v

Cγ,d2
−nγ(d−1)λ

}∣∣∣
≤
∑
v

∣∣∣{x ∈ Rd :
∣∣∣(I −Gn,v)(∑

j

An,vj,mBj−n

)
(x)
∣∣∣ > Cγ,d2

−nγ(d−1)λ
}∣∣∣

≤
∑
j

∑
v

1

Cγ,dλ
2nγ(d−1)+nγ([ d

2
]+1)‖An,vj,mBj−n‖1

≤
∑
j

∑
v

∑
l(Q)=2j−n

1

Cγ,dλ
2nγ(d−1)+nγ([ d

2
]+1)‖An,vj,mbQ‖1,

(5.2)

where the second inequality follows from (2.8) and in the third inequality we use I − Gn,v is

weak type (1,1) bounded and Minkowski’s inequality.

For II, we use L1 estimate directly

II ≤ 2

λ

∑
v

∑
j

∑
k<m

‖Dn,v
j,kBj−n‖1 ≤

2

λ

∑
v

∑
j

∑
k<m

∑
l(Q)=2j−n

‖Dn,v
j,k bQ‖1(5.3)

Now the problem is reduced to estimate ‖An,vj,mbQ‖1 and ‖Dn,v
j,k bQ‖1. Recall in (3.5), the

kernel of operator Tn,vj is

Kn,v
j,y (x) = Γnv (x− y)Kn

j (x− y)mn
x,ya.

Now we see Kn,v
j,y (x) as a function of x for a fixed y ∈ Q. Thus, by Fubini’s theorem,

An,vj,mbQ(x) =

∫
Q
VmK

n,v
j,y (x) · bQ(y)dy =:

∫
Q
Am(x, y)bQ(y)dy

and

Dn,v
j,k bQ(x) =

∫
Q

(I −Gn,v)ΛkKn,v
j,y (x) · bQ(y)dy =:

∫
Q
Dk(x, y)bQ(y)dy.

5.2. L1 estimate of Dk.

Lemma 5.2. For a fixed y ∈ Q, there exists N > 0, such that

(5.4) ‖Dk(·, y)‖1 ≤ C2τn2−nγ(d−1)2(−j+k)+nγ(1+2N)‖a‖∞,

where C is independent of y.

Proof. Denote hk,n,v(ξ) = (1− Φ(2nγ〈env , ξ/|ξ|〉))βk(ξ), then

Dk(x, y) = (I −Gn,v)ΛkKn,v
j,y (x) =

1

(2π)d

∫
Rd
eix·ξhk,n,v(ξ)

∫
Rd
e−iξ·ωKn,v

j (ω − y)mn
ω,ya · dωdξ.

Next we make a polar transform ω − y = rθ. By Fubini’s theorem, the integral above can be

written as

(5.5)
1

(2π)d

∫
Sd−1

Γnv (θ)

{∫
Rd

∫ ∞
0

ei〈x−y−rθ,ξ〉hk,n,v(ξ)K
n
j (rθ)rd−1mn

y+rθ,ya · drdξ
}

dθ.
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Consider the support of Kn
j (x) in (3.1), we see 2j−2 ≤ r ≤ 2j+2. So integrate by parts with r

first. Then the integral involving r can be rewritten as∫ ∞
0

ei〈−rθ,ξ〉(i〈θ, ξ〉)−1∂r[K
n
j (rθ)rd−1mn

y+rθ,ya]dr.

Since θ ∈ supp Γnv , then |θ − env | ≤ 2−nγ . By the support of Φ, we see |〈env , ξ/|ξ|〉| ≥ 21−nr.

Thus,

(5.6) |〈θ, ξ/|ξ|〉| ≥ |〈env , ξ/|ξ|〉| − |〈env − θ, ξ/|ξ|〉| ≥ 2−nγ .

Note that ξ is supported in {2−k−1 ≤ |ξ| ≤ 2−k+1}, so we can integrate by parts with ξ.

Therefore the integral in (5.5) can be rewritten as

1

(2π)d

∫
Sd−1

Γnv (θ)

∫
Rd
ei〈x−y−rθ,ξ〉

∫ ∞
0

∂r

(
Kn
j (rθ)rd−1mn

y+rθ,ya
)
×

(I − 2−2k∆ξ)
N

(1 + 2−2k|x− y − rθ|2)N

(
hk,n,v(ξ)(i〈θ, ξ〉)−1

)
drdξdθ.

(5.7)

In the following, we give an exploit estimate of the term in (5.7). By the definition of Kn
j (x)

and mn
y+rθ,ya,

|∂αxKn
j (x)| = 2−(j−lτ (n))|α|

∣∣∣ ∫ (∂αx η)j−lτ (n)(x− z)Kj(z)dz
∣∣∣

≤ 2−(j−lτ (n))|α|‖Kj(·, y)‖∞‖∂αx η‖1

. 2−(j−lτ (n))|α|−jd,

(5.8)

where the third inequality follows from (3.1) and

|∂r(mn
y+rθ,ya)| =

∣∣∣∂r(1

r

∫ r

0
ρn(

s

r
)a(y + sθ)ds

)∣∣∣ . 1

r
‖a‖∞.(5.9)

By using product rule, (5.8) and (5.9), and note that 2j−2 ≤ r ≤ 2j+2,

(5.10)
∣∣∣∂r(Kn

j (rθ)rd−1my+rθ,ya
)∣∣∣ . 2lτ (n)−2j‖a‖∞.

Now we turn to give an estimate of (I − 2−2k∆ξ)
N [〈θ, ξ〉−1hk,n,v(ξ)]. By (5.6), we get

|(−i〈θ, ξ〉)−1 · hk,n,v(ξ)| . |〈θ, ξ〉|−1 . 2nγ+k.

Now using product rule,

|∂ξihk,n,v(ξ)| =
∣∣− ∂ξi [Φ(2nγ〈env , ξ/|ξ|〉)] · βk(ξ) + ∂ξiβk(ξ) · (1− Φ(2nγ〈env , ξ/|ξ|〉))

∣∣ . 2nγ+k.

Therefore by induction, we have |∂αξ hk,n,v(ξ)| . 2(nγ+k)|α| for any multi-indices α ∈ Zn+. By

using product rule again and (5.6), we have∣∣∂2
ξi

(〈θ, ξ〉)−1hk,n,v(ξ))
∣∣

=
∣∣〈θ, ξ〉−3 · 2θ2

i · hk,n,v − 2〈θ, ξ〉−2 · θi∂ξihk,n,v(ξ) + 〈θ, ξ〉−1∂2
ξi
hk,n,v(ξ)

∣∣
. 23(nγ+k).



16 YONG DING AND XUDONG LAI

Hence

2−2k
∣∣∆ξ[(〈θ, ξ〉)−1hk,n,v(ξ)]

∣∣ . 2(nγ+k)+2nγ .

Proceeding by induction, we obtain

(5.11)
∣∣(I − 2−2k∆ξ)

N [〈θ, ξ〉−1hk,n,v(ξ)]
∣∣ . 2(nγ+k)+2nγN .

Now we choose N = [d/2] + 1. Since we need to get the L1 estimate of (5.5), by the support of

hk,n,v, ∫
supp(hk,n,v)

∫ (
1 + 2−2k|x− y − rθ|2

)−N
dxdξ ≤ C.

Integrating with r, we get a bound 2j . Then integrating with θ, we get a bound 2−nγ(d−1).

Combining (5.10), (5.11) and above estimates, (5.4) is bounded by

2τn2−nγ(d−1)2(−j+k)+nγ(1+2N)‖a‖∞.

Hence we complete the proof of Lemma 5.2 with N = [d2 ] + 1. �

5.3. L1 estimate of An,vj,m.

By using Fubini’s theorem, we can write Am(x, y) as

1

(2π)d

∫
Rd

∫
Rd
ei〈x−ω,ξ〉ψm(ξ)Kn,v

j (ω − y) ·mn
ω,ya dωdξ.

Integrating by part N = [d/2] + 1 times with ξ in the above integral and using Fubini’s theorem

again, the above integral is equal to

1

(2π)d

∫ 1

0
ρn(s)

{∫
Rd

∫
Rd
ei〈x−ω,ξ〉Kn,v

j (ω − y)a(sω + (1− s)y)

×
(I − 2−2m∆ξ)

N (ψm)(ξ)(
1 + 2−2m|x− ω|2

)N dξdω

}
ds.

By making a transform ω + 1−s
s y = z, the above integral is equal to

1

(2π)d

∫ 1

0
ρn(s)

∫
Rd
a(sz)

∫
Rd
ei〈x−z+

1−s
s
y,ξ〉Kn,v

j (z − y

s
)

×
(I − 2−2m∆ξ)

N (ψm)(ξ)(
1 + 2−2m|x− z + 1−s

s y|2
)N dξdzds.

Using the cancellation of bQ (see the property (iv) in Lemma 2.2), we get

An,vj,mbQ(x) =

∫
Q

(
Am(x, y)−Am(x, y0)

)
bQ(y)dy,

where y0 is the center of Q. Split Am(x, y)−Am(x, y0) into three parts:

Am(x, y)−Am(x, y0) =: Fm,1(x, y) + Fm,2(x, y) + Fm,3(x, y),
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where

Fm,1(x, y) =
1

(2π)d

∫ 1

0
ρn(s)

∫
Rd
a(sz)

∫
Rd

(
ei〈

1−s
s
y,ξ〉 − ei〈

1−s
s
y0,ξ〉)ei〈x−z,ξ〉

×Kn,v
j (z − y

s
)

(I − 2−2m∆ξ)
N (ψm)(ξ)(

1 + 2−2m|x− z + 1−s
s y|2

)N dξdzds,
Fm,2(x, y) =

1

(2π)d

∫ 1

0
ρn(s)

∫
Rd
a(sz)

∫
Rd
ei〈x−z+

1−s
s
y0,ξ〉 (I − 2−2m∆ξ)

N (ψm)(ξ)(
1 + 2−2m|x− z + 1−s

s y|2
)N

×
(
Kn,v
j (z − y

s
)−Kn,v

j (z − y0

s
)
)
dξdzds

and

Fm,3(x, y) =
1

(2π)d

∫ 1

0
ρn(s)

∫
Rd
a(sz)

∫
Rd
ei〈x−z+

1−s
s
y0,ξ〉

{
(I − 2−2m∆ξ)

N (ψm)(ξ)
}
Kn,v
j (z − y0

s
)

×
( 1(

1 + 2−2m|x− z − 1−s
s y|2

)N − 1(
1 + 2−2m|x− z − 1−s

s y0|2
)N )dξdzds.

Hence

(5.12) ‖An,vj,mbQ‖1 ≤ sup
y∈Q

(‖Fm,1(·, y)‖1 + ‖Fm,2(·, y)‖1 + ‖Fm,3(·, y)‖1)‖bQ‖1.

For Fm,1(x, y) and Fm,3(x, y), we have the following similar estimates.

Lemma 5.3. For a fixed y ∈ Q,

‖Fm,1(·, y)‖1 ≤ Cn2−nγ(d−1)+j−n−m‖a‖∞,

where C is independent of y.

Proof. We use the same method in proving Lemma 5.2 but don’t apply integrating by parts.

Note that y ∈ Q and y0 is the center of Q, then |y − y0| . 2j−n. Therefore we see∣∣∣ei〈 1−ss y,ξ〉 − ei〈
1−s
s
y0,ξ〉

∣∣∣ . 1− s
s

2j−n−m.

It is easy to see that

|(I − 2−2m∆ξ)
N (ψm)(ξ)| ≤ C.

Since we need to get the L1 estimate of Fm,1(·, y), by the support of ψm(ξ), we obtain∫
|ξ|≤21−m

∫ (
1 + 2−2m|x− z +

1− s
s

y|2
)−N

dxdξ ≤ C.

The function a(sz) is bounded by ‖a‖∞. Note that

‖Kn,v
j ‖1 . 2−nγ(d−1),∣∣∣ ∫ 1

0
ρn(s)

1− s
s

ds
∣∣∣ . n.(5.13)

Combining these, we can get the required estimate for Fm,1(·, y). �
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Lemma 5.4. For a fixed y ∈ Q,

‖Fm,3(·, y)‖1 ≤ Cn2−nγ(d−1)+j−n−m‖a‖∞,

where C is independent of y.

Proof. For Fm,3(·, y), we can deal with it in the same way as Fm,1(·, y) once we have the following

observation ∣∣∣Ψ(s, y)−Ψ(s, y0)
∣∣∣ =

∣∣∣ ∫ 1

0

〈
y − y0,∇Ψ(s, ty + (1− t)y0)

〉
dt
∣∣∣

.
1− s
s
|y − y0|2−m

∫ 1

0

N2−m|x− z + 1−s
s (ty + (1− t)y0)|

(1 + 2−2m|x− z + 1−s
s (ty + (1− t)y0)|2)N+1

dt

where Ψ(s, y) =
(

1 + 2−2m|x− z + 1−s
s y|2

)−N
. It is easy to see

|(I − 2−2m∆ξ)
N (ψm)(ξ)| ≤ C.

Since we need to get the L1 estimate of Fm,3(·, y), by the support of ψm(ξ), we obtain∫
|ξ|≤21−m

∫
N2−m|x− z + 1−s

s (ty + (1− t)y0)|
(1 + 2−2m|x− z + 1−s

s (ty + (1− t)y0)|2)N+1
dxdξ ≤ C.

Since y ∈ Q and y0 is the center of Q, we have |y − y0| . 2j−n. The function a(sz) is

bounded by ‖a‖∞. Combining (5.13) and the above estimates, we can get the required estimate

for Fm,3(·, y). �

Lemma 5.5. For a fixed y ∈ Q, we get

‖Fm,2(·, y)‖1 ≤ Cn(2τn + 2γn)2−nγ(d−1)−n‖a‖∞,

where C is independent of y.

Proof. By the mean value formula, we can write Kn,v
j (z − y

s )−Kn,v
j (z − y0

s ) as∫ 1

0

〈y − y0

s
,∇Kn,v

j (z − ty + (1− t)y0

s
)
〉
dt.

Since y ∈ Q and y0 is the center of Q, we have |y − y0| . 2j−n. It is easy to check

|(I − 2−2m∆ξ)
N (ψm)(ξ)| ≤ C.

Since we need to get the L1 estimate of Fm,2(·, y), by the support of ψm(ξ), we obtain∫
|ξ|≤21−m

∫ (
1 + 2−2m|x− z +

1− s
s

y|2
)−N

dxdξ ≤ C.

The function a(sz) is bounded by ‖a‖∞. Notice that by (3.2) and (3.4), we see

‖∇Kn,v
j ‖1 .

(
2lτ (n)−j + 2nγ−j

)
2−nγ(d−1).

Combining with these estimates, the L1 norm of Fm,2(·, y) is bounded by

|y − y0| ·
∫ 1

0
ρn(s)

ds

s
· ‖∇Kn,v

j ‖1‖a‖∞ . n
(

2τn + 2nγ
)

2−nγ(d−1)−n‖a‖∞,
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which is the required bound. �

5.4. Proof of Lemma 3.3.

Let us come back to the proof of Lemma 3.3, it is sufficient to consider I and II in (5.1).

By (5.2), (5.3) and (5.12), we have

I + II ≤ 2

λ

∑
j

∑
v

∑
l(Q)=2j−n

[
C−1
γ,d2

nγ(d−1)+nγ([ d
2

]+1)‖An,vj,mbQ‖1 +
∑
k<m

‖Dn,v
j,k bQ‖1

]
≤ 2

λ

∑
j

∑
v

∑
l(Q)=2j−n

sup
y∈Q

[
C−1
γ,d2

nγ(d−1)+nγ([ d
2

]+1)
(
‖Fm,1(·, y)‖1

+ ‖Fm,2(·, y)‖1 + ‖Fm,3(·, y)‖1
)

+
∑
k<m

‖Dk(·, y)‖1
]
‖bQ‖1.

Notice m = j − [nε0] and card(Θn) . 2nγ(d−1). Now applying Lemma 5.2 with N = [d2 ] + 1,

then Lemma 5.3, Lemma 5.4, Lemma 5.5 and the fact [nε0] ≤ nε0 < [nε0] + 1 imply

I + II .
1

λ

∑
j

∑
l(Q)=2j−n

‖bQ‖1‖a‖∞
[
n(2s1n + 2s2n + 2s3n) + 2s4n

]
,

where

s1 = γ(d− 1) + γ
(
[
d

2
] + 1

)
− 1 + ε0,

s2 = γ(d− 1) + γ
(
[
d

2
] + 1

)
− 1 + τ,

s3 = γ(d− 1) + γ
(
[
d

2
] + 1

)
− 1 + γ,

s4 = −ε0 + γ + 2
(
[
d

2
] + 1

)
γ + τ.

Now we choose 0 < γ � ε0 � 1 and 0 < τ � ε0 such that

max{s1, s2, s3, s4} < 0.

Set ε = −max{s1, s2, s3, s4}. Then by the property (iv) in Lemma 2.2,

I + II .
‖a‖∞
λ

n2−nε
∑
Q

‖bQ‖1 . n2−nε
∑
Q

|Q|.

Hence we finish the proof of Lemma 3.3, thus we prove Theorem 1.1. �
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