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STRICTLY LOCALLY CONVEX HYPERSURFACES WITH

PRESCRIBED CURVATURE AND BOUNDARY IN SPACE

FORMS

ZHENAN SUI

Abstract. This paper is devoted to C2 a priori estimates for strictly locally
convex radial graphs with prescribed Weingarten curvature and boundary in
space forms. By constructing two-step continuity process and applying de-
gree theory arguments, existence results in space forms are established for

prescribed Gauss curvature equation under the assumption of a strictly locally
convex subsolution.

1. Introduction

In (n+1)-dimensional space formNn+1(K) with n ≥ 2, given a disjoint collection
Γ = {Γ1, . . . ,Γm} of smooth closed embedded (n − 1)-dimensional submanifolds,
and a smooth positive function ψ, we are concerned with the general Plateau type
problem for strictly locally convex hypersurfaces Σ determined by the curvature
equation

(1.1) σk(κ[Σ]) = ψ(V, ν)

as well as the boundary condition

(1.2) ∂Σ = Γ

where κ[Σ] = (κ1, . . . , κn) denotes the principal curvatures of Σ, V is a conformal
Killing field which will be specified later, ν is the unit outer normal field to Σ, and

σk(λ) =
∑

1≤i1<...<ik≤n

λi1 · · ·λik

is the k-th elementary symmetric function defined on k-th G̊arding’s cone

Γk = {(λ1, . . . , λn) ∈ R
n |σj(λ) > 0, j = 1, . . . , k}

σk(κ[Σ]) is called the k-th Weingarten curvature of Σ. In particular, the 1st, 2nd
and n-th Weingarten curvature are the well known mean curvature, scalar curvature
and Gauss curvature respectively. We say Σ is strictly locally convex if its principal
curvatures are all positive everywhere in Σ, and Σ is k-admissible if κ[Σ] ∈ Γk.

The space form Nn+1(K) with constant sectional curvature K = 0, 1 or −1 can
be modeled as follows (see for example [27]). In R

n+1, fix the origin 0 and let S
n

denote the unit sphere centered at 0. Choose the spherical coordinates (z, ρ) in
R

n+1 with z ∈ S
n. Define

ḡ := dρ2 + φ2(ρ)σ
1
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where σ is the standard metric on S
n induced from R

n+1 and

φ(ρ) =















ρ, on [ 0,∞)

sin(ρ), on [ 0,
π

2
)

sinh(ρ), on [ 0,∞)

Then (Rn+1, ḡ) is a model of Nn+1(K), which is R
n+1, Sn+1

+ or H
n+1 depending

on K = 0, 1 or −1. Let V = φ(ρ) ∂
∂ρ . It is well know that V is a conformal Killing

field in Nn+1(K). In Euclidean space R
n+1, it is just the position vector field.

For starshaped compact hypersurfaces, the early influential work includes [24, 4]
for Euclidean space, Jin-Li [17] for hyperbolic space, [1, 21] for elliptic space. If ψ is
allowed to depend arbitrarily on ν, the most current breakthrough is due to Guan-
Ren-Wang [16], where the authors studied Weingarten curvature in Euclidean space
(see also Spruck-Xiao [27] for scalar curvature in space forms and Chen-Li-Wang
[6] for Weingarten curvature in warped product spaces).

For Dirichlet problem in R
n+1, Caffarelli-Nirenberg-Spruck [5] initiated the study

of vertical graphs over strictly convex domains in R
n. Later, Guan-Spruck [13]

studied radial graphs in R
n+1 of constant Gauss-Kronecker curvature, where they

removed the convexity assumption of the domain, but instead proposed a subsolu-
tion condition. This subsolution assumption is later widely used when discussing
Dirichlet boundary value problems for general curvature equations (as well as Hes-
sian type equations), see for instance [10, 11, 14, 28, 7].

A strictly locally convex hypersurface with boundary may not be convex globally;
it locally lies on one side of its tangent plane at any point, which may be very
complicated in general. In this paper, we focus on those that can be represented as
radial graphs over some domain in S

n. Therefore we assume Γ to be the boundary
of a smooth positive radial graph ϕ defined on a smooth domain Ω ⊂ S

n, i.e.,
Γ = {(z, ϕ(z)) |z ∈ ∂Ω}. We seek a smooth strictly locally convex radial graph
Σ = {(z, ρ(z)) |z ∈ Ω} satisfying the Dirichlet problem

(1.3)

{

σk(κ[ρ]) = ψ(z, ρ,∇′ρ) in Ω

ρ = ϕ on ∂Ω

where ∇′ is the Levi-Civita connection on S
n with respect to σ and we use the same

ψ for the right hand side.
The first main result in this paper is the following C2 estimate, which is a crucial

step for proving existence and higher order regularity of solutions.

Theorem 1.4. In space form Nn+1(K), suppose that

(1.5) Ω does not contain any hemisphere

and Γ can span a positive radial graph ρ ∈ C2(Ω) in Nn+1(K) which is strictly

locally convex in a neighborhood of Γ. Then for any strictly locally convex radial

graph ρ ∈ C4(Ω) ∩ C2(Ω) satisfying (1.3) with ρ ≤ ρ in Ω, we have

‖ρ‖C2(Ω) ≤ C

where C depends only on n, k, Ω, ‖ψ‖C2, ‖ρ‖C1(Ω), ‖ϕ‖C4(Ω), inf ψ, inf∂Ω ρ and

the convexity of ρ.

When k = n, C2 estimates have been derived in R
n+1 by [28, 13, 10] and in S

n+1
+

by Lim [19], while for all k when ψ does not depend on ν in R
n+1 by Cruz [7]. In [16],
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Guan-Ren-Wang solved the longstanding problem on global C2 estimates for convex
hypersurfaces in R

n+1 subject to equation (1.1). They also removed the convexity
assumption and instead considered starshaped 2-admissible hypersurfaces in the
case k = 2, the proof of which was later simplified by Spruck-Xiao [27] in space
forms. On the other hand, [16] provides counterexamples to indicate that global
C2 estimates for general ψ depending on both V and ν do not hold for curvature
quotient equations. In this paper, we extend the estimates in [16] to space forms.
For C2 boundary estimates, it is necessary in Theorem 1.4 to assume ρ to be strictly
locally convex near its boundary, for otherwise there are topological obstructions
to the existence of strictly locally convex hypersurfaces spanning a given Γ (see
[25]); besides, the convexity assumption on the prescribed hypersurfaces can not be
weakened, even for the case k = 2, or when ψ does not depend on ν (see section 3).
The significance of Theorem 1.4 lies in the arbitrary dependence of ψ on ν for all
k as well as a unified approach in different space forms via change of variable for
Plateau type problems.

To establish existence results, we confine ourselves to prescribed Gauss curvature
equation, i.e. the case k = n, because for general Weingarten curvature equation, a
positive lower bound of principal curvatures may not be obtained and the convexity
may not be preserved during the continuity process. Applying Theorem 1.4, we can
prove the following existence results.

Theorem 1.6. Under condition (1.5), assume that there exists a positive strictly

locally convex radial graph ρ ∈ C2(Ω) in Nn+1(K) satisfying

(1.7)

{

σn(κ[ρ]) ≥ ψ(z, ρ,∇′ρ) in Ω

ρ = ϕ on ∂Ω

Then there exists a smooth strictly locally convex radial graph Σ = {(z, ρ(z)) | z ∈
Ω} ⊂ Nn+1(K) satisfying the Dirichlet problem (1.3) for k = n with ρ ≤ ρ in Ω
and uniformly bounded principal curvatures

0 < K−1
0 ≤ κi ≤ K0 on Σ,

where K0 is a uniform positive constant depending only on n, Ω, ‖ψ‖C2 , ‖ρ‖C1(Ω),

‖ϕ‖C4(Ω), inf ψ, inf∂Ω ρ and the convexity of ρ.

The existence results in R
n+1 are proved in [28, 13, 10]. The main issue in proving

existence for radial graphs is due to the nontrivial kernel of the linearized operator,
since continuity method can not be applied directly. In [13] for prescribed constant
Gauss curvature, the authors used monotone iteration approach to overcome this
difficulty and hence uniform C2 estimates for the monotone sequence are conducted.
Based on this result, in [10], more C2 estimates are derived for a wider class of
auxiliary equations in order to obtain existence results for general ψ. In contrast, Su
[28] provided a more efficient way by observing that there exist auxiliary equations
in R

n+1 with invertible linearized operators which can be found after a change of
variable. The author then constructed a two-step continuity process for applying
continuity method and degree theory.

In this paper, we generalize Su’s idea to H
n+1. In S

n+1
+ , however, there is no aux-

iliary equation with invertible linearized operator, neither can we apply monotone
iteration approach since global C2 estimates for the monotone sequence are too
cumbersome to derive. In this paper, we create a new continuity process starting
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from an auxiliary equation in R
n+1 with invertible linearized operator and ending

up with our concerned equation in S
n+1
+ . In more curved ambient spaces, this paper

is not the first to study the Dirichlet problem for prescribed curvature equations.
In fact, [22, 23] initiated the study in general Riemannian manifolds, where the
author assumed the subsolution to be part of a special closed convex hypersurface.
Theorem 1.6 is brand new in space forms in the sense that, the assumption of a
strictly locally convex subsolution is much weaker than [22, 23], and our proof is
completely different and global, which is based on the geometry of space forms and
the degree theory developed in [20].

This paper is organized as follows: in section 2, we reformulate equation (1.3) by
change of variable in two different ways: (2.8) is designed for deriving C2 boundary
estimates in section 3 while (2.17) is for proving existence in section 5 and 6. Section
4 is devoted to global curvature estimates.

The author would like to thank Dr. Wei Sun for enlightening discussions. The
author also thanks the reviewer for careful reading and insightful comments and
suggestions, which resulted in improvement of Theorem 1.4. This work is supported
by the grant (no. AUGA5710000618) from Harbin Institute of Technology.

2. Strictly locally convex radial graphs in space forms

Throughout this paper, we focus on hypersurface Σ ⊂ Nn+1(K) that can be
represented as a radial graph over a smooth domain Ω ⊂ S

n, i.e. Σ can be expressed
as

Σ = {(z, ρ(z)) |z ∈ Ω ⊂ S
n}

The range for ρ = ρ(z) is (0, ρKU ) where

(2.1) ρKU =

{∞, if K = 0 or − 1
π

2
, if K = 1

First recall the related geometric objects on Σ. Let e1, . . . , en be a local orthonor-
mal frame on S

n, following the notations in [27], the induced metric, its inverse,
unit normal, and second fundamental form on Σ are given respectively by

(2.2) gij = φ2 δij + ρiρj

(2.3) gij =
1

φ2
(

δij −
ρiρj

φ2 + |∇′ρ|2
)

(2.4) ν =
−∇′ρ+ φ2 ∂

∂ρ
√

φ4 + φ2|∇′ρ|2

(2.5) hij =
φ

√

φ2 + |∇′ρ|2
(

−∇′
ijρ+

2φ′

φ
ρiρj + φφ′δij

)

where ρi = ρei = ∇′
eiρ = ∇′

iρ, ρij = ∇′
ej∇′

eiρ = ∇′
ejeiρ = ∇′

j iρ, etc. All other

covariant derivatives are interpreted in this manner. Thus ∇′ρ = ρk ek.
The principal curvatures κ1, . . . , κn of the radial graph ρ are the eigenvalues of

the symmetric matrix {aij}:
aij = γik hkl γ

lj
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where {γik} and its inverse {γik} are given respectively by

(2.6) γik =
1

φ
(δik − ρi ρk

√

φ2 + |∇′ρ|2(φ+
√

φ2 + |∇′ρ|2)
)

(2.7) γik = φ δik +
ρiρk

φ+
√

φ2 + |∇′ρ|2

In fact, {γik} is the square root of the metric, i.e., γikγkj = gij .
Obviously, Σ is strictly locally convex if and only if the symmetric matrix {aij}

or {hij} is positive definite everywhere in Ω. For simplicity, we say a C2 function
ρ is strictly locally convex if the hypersurface Σ represented by ρ is strictly locally
convex. Also, aij > 0 (or ≥ 0 ) means that the symmetric matrix {aij} is positive
definite (or positive semi-definite); and aij ≥ bij means that the symmetric matrices
{aij} and {bij} satisfy aij − bij ≥ 0.

2.1. Transformation for deriving a priori estimates.

Now we change ρ into u for deriving C2 boundary estimates in section 3. Set

(2.8) ρ = ζ(u) =























1

u
, if K = 0

arccotu, if K = 1

1

2
ln
(u+ 1

u− 1

)

, if K = −1

According to (2.1), the range for u is (uKL ,∞) where

(2.9) uKL =

{

0, if K = 0 or 1

1, if K = −1

The formulas (2.2), (2.3), (2.6), (2.7) and (2.5) can be expressed in terms of u,

(2.10) gij = φ2 δij + ζ′2(u)uiuj

(2.11) gij =
1

φ2

(

δij −
ζ′2(u)uiuj

φ2 + ζ′2(u)|∇′u|2
)

(2.12)

γik =
1

φ

(

δik −
ζ′2(u)uiuk

√

φ2 + ζ′2(u)|∇′u|2(φ+
√

φ2 + ζ′2(u)|∇′u|2)

)

=































u
(

δik − uiuk
√

u2 + |∇′u|2(u+
√

u2 + |∇′u|2)
)

, if K = 0

√

1 + u2
(

δik − uiuk
√

1 + u2 + |∇′u|2(
√
1 + u2 +

√

1 + u2 + |∇′u|2)
)

, if K = 1

√

u2 − 1
(

δik − uiuk
√

u2 − 1 + |∇′u|2(
√
u2 − 1 +

√

u2 − 1 + |∇′u|2)
)

, if K = −1

(2.13) γik = φ δik +
ζ′2(u)uiuk

φ+
√

φ2 + ζ′2(u)|∇′u|2
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(2.14)

hij =
−ζ′(u)φ

√

φ2 + ζ′2|∇′u|2
(∇′

iju+ u δij)

=



































1
√

u4 + u2|∇′u|2
(∇′

iju+ u δij), if K = 0

1
√

(1 + u2)2 + (1 + u2)|∇′u|2
(∇′

iju+ u δij), if K = 1

1
√

(u2 − 1)2 + (u2 − 1)|∇′u|2
(∇′

iju+ u δij), if K = −1

Hence

(2.15) aij =
−ζ′(u)φ

√

φ2 + ζ′2|∇′u|2
γik (∇′

klu+ u δkl) γ
lj

It is easy to see that Σ (or u) is strictly locally convex if and only if

(2.16) ∇′
iju+ u δij > 0 in Ω

2.2. Transformation for proving existence.

We further change u into v for proving existence in section 5 and 6. Set

(2.17) u = η(v) =











ev, if K = 0

sinh v, if K = 1

cosh v, if K = −1

According to (2.9), the range for v is (vKL ,∞) where

(2.18) vKL =

{ −∞, if K = 0

0, if K = 1 or − 1

The formula (2.12) and (2.14) become

(2.19) γik = η′(v)
(

δik −
vivk

√

1 + |∇′v|2(1 +
√

1 + |∇′v|2)
)

(2.20) hij =
1

η′2(v)
√

1 + |∇′v|2
(

η′(v)∇′
ijv + η(v)vivj + η(v) δij

)

Denoting

w =
√

1 + |∇′v|2 and γ̃ik = δik −
vivk

w(1 + w)
,

we have

(2.21)
aij =

1

w
γ̃ik
(

η′(v)∇′
klv + η(v)vkvl + η(v) δkl

)

γ̃lj

=
1

w

(

η(v) δij + η′(v) γ̃ik ∇′
klv γ̃

lj
)
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2.3. Reformulation of equation (1.3) under transformation (2.8).

Let f = σ
1/k
k . Note that f satisfies the following properties (see [3, 5]):

(2.22)
∂f

∂λi
> 0 in Γk, i = 1, . . . , n

(2.23) f is concave in Γk

(2.24) f > 0 in Γk and f = 0 on ∂Γk

Under transformation (2.8), the Dirichlet problem (1.3) is equivalent to

(2.25)

{

f(κ[u]) = ψ(z, u,∇′u) in Ω

u = ϕ on ∂Ω

where we use the same ψ for the function on the right hand side, and ϕ for the
boundary value. Denote A[u] = {aij} where aij is given by (2.15), F (A) = f(λ(A))
where λ(A) denotes the eigenvalues of A, and

G(r, p, u) = F (A(r, p, u))

where A(r, p, u) is obtained from A[u] with (r, p, u) in place of (∇′2u,∇′u, u). There-
fore, κ[u] = λ(A[u]) and equation (2.25) is equivalent to

(2.26)

{

G(∇′2u,∇′u, u) = ψ(z, u,∇′u) in Ω

u = ϕ on ∂Ω

We recall some properties of the function F and G (see [14] for instance). Denote

F ij(A) =
∂F

∂aij
(A), F ij,kl(A) =

∂2F

∂aij∂akl
(A),

Gij(r, p, u) =
∂G

∂rij
(r, p, u), Gi(r, p, u) =

∂G

∂pi
(r, p, u), Gu(r, p, u) =

∂G

∂u
(r, p, u),

ψu(z, u, p) =
∂ψ

∂u
(z, u, p), ψi(z, u, p) =

∂ψ

∂pi
(z, u, p)

The matrix {F ij(A)} is symmetric with eigenvalues f1, . . . , fn; by (2.22), F ij(A) >
0 whenever λ(A) ∈ Γk; by (2.23), F is a concave function of A, i.e., the symmetric
matrix F ij,kl(A) ≤ 0 whenever λ(A) ∈ Γk. The function G has similar properties.
In fact, from (2.15) we have

(2.27) Gij =
∂G

∂uij
=

∂F

∂akl

∂akl
∂uij

=
−φζ′(u)

√

φ2 + ζ′2(u)|∇′u|2
F klγikγjl

Thus the symmetric matrix Gij > 0 if and only if F ij > 0, which in particular
implies that equation (2.26) is elliptic for strictly locally convex solutions. Also by
(2.15) we can calculate

∂2G

∂uij∂ukl
=
∂apq
∂uij

∂2F

∂apq∂ars

∂ars
∂ukl

which implies that G is concave with respect to {uij} for strictly locally convex u.
We next compute Gs and Gu.
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Lemma 2.28. Denote w =
√

φ2 + ζ′2(u)|∇′u|2. Then

Gs = −2ζ′2(w γis uq + φγqsui)

w(φ + w)
F ijaqj −

ζ′2 us
w2

F ijaij

Gu = −2
(

φφ′ζ′giq +
ζ′ζ′′uiuq
w2

)

F ijaqj +
(φ′ζ′

φ
− φφ′ζ′

w2
+
φ2ζ′′

ζ′ w2

)

F ijaij −
φζ′

w
F ijgij

Proof.

(2.29) Gs =
∂F

∂aij

∂aij
∂us

= F ij
(

2
∂γik

∂us
hkl γ

lj + γik
∂hkl
∂us

γlj
)

where

(2.30)
∂γik

∂us
= −γip ∂γpq

∂us
γqk

From (2.13) and (2.12),

(2.31)
∂γpq
∂us

=
ζ′2(u)(δpsuq + δqsup)

φ+ w
− ζ′4(u)upuqus

(φ+ w)2w
=
ζ′2(u)(δpsuq + φupγ

qs)

φ+ w

(2.32) γip up =
ui
w

From (2.14) and (2.15),

(2.33) γik
∂hkl
∂us

γlj = −ζ
′2(u)us
w2

aij

Taking (2.30)–(2.33) into (2.29), we proved the first formula.
For the second formula,

(2.34) Gu =
∂F

∂aij

∂aij
∂u

= F ij
(

2
∂γik

∂u
hkl γ

lj + γik
∂hkl
∂u

γlj
)

where
∂γik

∂u
= −γip ∂γpq

∂u
γqk

From (2.13),

∂γik
∂u

=φ′ζ′δik +
2ζ′ζ′′uiuk
φ+ w

− ζ′2(u)uiuk
(φ+ w)2

(

φ′ζ′(u) +
φφ′ζ′ + ζ′ζ′′|∇′u|2

w

)

=φ′ζ′δik +
ζ′uiuk
φ+ w

(

2ζ′′ − ζ′

φ+ w

(

φ′ζ′ +
φφ′ζ′ + ζ′ζ′′|∇′u|2

w

) )

=φ′ζ′δik +
ζ′uiuk
φ+ w

(

2ζ′′ − ζ′2ζ′′|∇′u|2
(φ+ w)w

− φ′ζ′2

w

)

=φ′ζ′δik +
ζ′uiuk
φ+ w

(w + φ

w
ζ′′ − φ′ζ′2

w

)

In view of (2.12), the above formula becomes

(2.35)
∂γik
∂u

= φφ′ζ′γik +
ζ′ζ′′uiuk

w

Direct calculation from (2.14) yields

(2.36)
∂hij
∂u

= (−φ
′ζ′2

w
+
φ2φ′ζ′2

w3
− φ3ζ′′

w3
)(∇′

iju+ uδij)−
φ ζ′

w
δij
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Inserting (2.35), (2.36) into (2.34) and in view of (2.15), (2.32) we proved the second
formula. �

Corollary 2.37. Suppose that we have the C1 bounds for strictly locally convex

solutions u of (2.25): uKL < C−1
0 ≤ u ≤ C0 and |∇′u| ≤ C1 in Ω. Then

|Gs| ≤ C and |Gu| ≤ C(1 +
∑

Gii)

Proof. Note that {F ij(A)} and A can be diagonalized simultaneously by an or-
thonormal transformation. Consequently, the eigenvalues of the matrix {F ij(A)}A,
which is not necessarily symmetric, are given by

λ({F ij(A)}A) = (f1κ1, . . . , fnκn)

In particular we have

F ij aij =
∑

fiκi

In addition, for a bounded matrix B = {bij}, i.e. |bij | ≤ C for all 1 ≤ i, j ≤ n we
have

|bikF ijakj | ≤ C
∑

fiκi

Thus by Lemma 2.28 we have

|Gs| ≤ C
∑

fiκi and |Gu| ≤ C(
∑

fiκi +
∑

fi)

Finally, by the concavity of f and f(0) = 0 we can derive that
∑

fiκi ≤ ψ ≤ C.
Also, in view of (2.27) we have

∑

fi ≤ C
∑

Gii. Hence the corollary is proved. �

2.4. Reformulation of equation (2.25) under transformation (2.17).

Under transformation (2.17), the Dirichlet problem (2.25) has the following form

(2.38)

{

f(κ[v]) = ψ(z, v,∇′v) in Ω

v = ϕ on ∂Ω

where κ[v] = λ(A[v]) and A[v] = {aij} with aij given by (2.21). Define G by

G(r, p, v) = F (A(r, p, v))

where A(r, p, v) is obtained from A[v] with (r, p, v) in place of (∇′2v,∇′v, v). There-
fore equation (2.38) is equivalent to

(2.39)

{

G(∇′2v,∇′v, v) = ψ(z, v,∇′v) in Ω

v = ϕ on ∂Ω

The function G has similar properties as F . Denote

Gij(r, p, v) =
∂G
∂rij

(r, p, v), Gi(r, p, v) =
∂G
∂pi

(r, p, v), Gv(r, p, v) =
∂G
∂v

(r, p, v)

By (2.21), we can see that equation (2.39) is elliptic for strictly locally convex v,
and G is concave with respect to ∇′2v for strictly locally convex v.
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3. A priori estimates

In this section we derive a priori C2 estimates for strictly locally convex solution
u to the Dirichlet problem (2.26) with u ≥ u in Ω.

(3.1) ‖u‖C2(Ω) ≤ C

The C1 bound follows directly from the convexity of the radial graph u with
u ≥ u in Ω and u = u on ∂Ω. In section 4, we will derive global curvature
estimates, which is equivalent to the global bound for |∇′2u| on Ω from its bound
on ∂Ω. Therefore in this section we focus on the boundary estimate

(3.2) |∇′2u| ≤ C on ∂Ω

3.1. C1 estimates. The C1 estimate for the case K = 0 is established in [13]. The
method turns out to work in space forms. For the sake of completeness, we provide
the proof.

Lemma 3.3. Under assumption (1.5), for any strictly locally convex function u
with u ≥ u in Ω and u = u on ∂Ω we have

(3.4) uKL < C−1
0 ≤ u ≤ C0, |∇′u| ≤ C1 in Ω

where C0 depends only on Ω, sup∂Ω u and infΩ u; C1 depends in addition on

sup∂Ω |∇′u|.
Proof. Assume that u achieves its maximum at P ∈ Ω. Then there exists Q ∈ ∂Ω
and a geodesic in Ω joining from P to Q, with a total length l ≤ π

2 − ǫ for some
ǫ > 0. Since u is strictly locally convex, i.e. u satisfies (2.16), we have on the
geodesic

u′′ + u > 0

if we use arc length s as the parameter. It follows that
(

( u

cos s

)′
cos2 s

)′

= (u′′ + u) cos s > 0 for 0 ≤ s ≤ l

Hence
( u

cos s

)′
cos2 s ≥ u′(0) = 0

and therefore

u(P ) ≤ u(Q)

cos l
≤ sup∂Ω u

cos(π2 − ǫ)
=

sup∂Ω u

cos(π2 − ǫ)

A lower bound for u can be seen directly from

u ≥ u ≥ inf
Ω
u > uKL in Ω

For the gradient estimate, note that by (2.16) we have

(3.5) ∆′ u+ nu > 0 in Ω

where ∆′ is the Laplace-Beltrami operator on S
n. Let ū be the solution of

{

∆′ ū+ nC0 = 0 in Ω,

ū = u on ∂Ω
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By comparison principle, we have u ≤ u ≤ u in Ω. Since the tangential derivatives
of u on ∂Ω are known, we obtain

(3.6) |∇′u| ≤ C1 on ∂Ω

Now we estimate the gradient ∇′u on Ω. Consider the test function

w =
√

u2 + |∇′u|2
Assume w attains its maximum at z0 ∈ Ω. Choose a local orthonormal frame
e1, . . . , en around z0. At z0, there holds

wwi = (uik + u δik)uk = 0, i = 1, . . . , n

By (2.16) we have ∇′u(z0) = 0 and hence

sup
Ω

|∇′u| ≤ w(z0) ≤ sup
Ω

u

We thus obtain the estimate

(3.7) |∇′u| ≤ C1 in Ω

�

3.2. Boundary estimates for second derivatives.

Consider any fixed point z0 ∈ ∂Ω. Choose a local orthonormal frame field
e1, . . . , en around z0 on Ω, which is obtained by parallel translation of a local
orthonormal frame field on ∂Ω and the interior, unit, normal vector field to ∂Ω,
along the geodesics perpendicular to ∂Ω on Ω. Assume that en is the parallel
translation of the unit normal field on ∂Ω.

Since u = ϕ on ∂Ω,

∇′
αβ(u− ϕ) = −∇′

n(u − ϕ) Γn
αβ , α, β < n on ∂Ω

where Γk
ij are the Christoffel symbols of ∇′ with respect to the frame e1, . . . , en on

S
n. We thus obtain

(3.8) |∇′
αβu(z0)| ≤ C, α, β < n

In what follows, the Greek letters α, β, . . . indicate the indices from 1 to n− 1.
Let ρ(z) and d(z) denote the distances from z ∈ Ω to z0 and ∂Ω on S

n, respec-
tively. Set

Ωδ = {z ∈ Ω : ρ(z) < δ}
Choose δ0 > 0 sufficiently small such that ρ and d are smooth in Ωδ0 , on which, we
have

|∇′d| = 1, −C I ≤ ∇′2 d ≤ C I, |∇′ρ| = 1, I ≤ ∇′2 ρ2 ≤ 3I

where C depends only on δ0 and the geometric quantities of ∂Ω, and

∇′2u+ u I ≥ 4 c0 I

for some constant c0 > 0 because of the strict local convexity of u near ∂Ω.
We will need the following barrier function

Ψ = Av +Bρ2

with

v = u− u+ ǫ d− N

2
d2
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and the linearized operator associated with equation (2.26)

(3.9) L = Gij ∇′
ij + (Gi − ψi)∇′

i

to estimate the mixed tangential normal and pure normal second derivatives at z0.
By direct calculation and Corollary 2.37 we have

(3.10)

Lv =
(

Gij∇′
ij + (Gi − ψi)∇′

i

)(

u− u+ ǫ d− N

2
d2
)

= Gij∇′
ij

(

u− u− N

2
d2
)

+ ǫGij∇′
ijd+ (Gi − ψi)∇′

i

(

u− u+ ǫ d− N

2
d2
)

≤ Gij
(

∇′
iju−

(

∇′
ij(u+

N

2
d2)− 2c0δij

)

)

− 2c0
∑

Gii + Cǫ
∑

Gii + C(1 + ǫ+Nδ)

Since G(∇′2u,∇′u, u) is concave with respect to ∇′2u,

(3.11)
Gij
(

∇′
iju−

(

∇′
ij(u+

N

2
d2)− 2c0δij

)

)

≤ G(∇′2u,∇′u, u)−G
(

∇′2
(

u+
N

2
d2
)

− 2c0I,∇′u, u
)

Note that

∇′2
(

u+
N

2
d2
)

− 2c0I + uI

= ∇′2u+ u I +Nd∇′2d+N∇′d⊗∇′d− 2c0I + (u− u)I

≥ 2c0I − CNδI +N∇′d⊗∇′d := H

Denote g−
1

2 = {γik}. We thus have

(3.12)

G
(

∇′2
(

u+
N

2
d2
)

− 2c0I,∇′u, u
)

= F
( −φ ζ′(u)
√

φ2 + ζ′2|∇′u|2
g−1/2

(

∇′2(u+
N

2
d2)− 2c0I + uI

)

g−1/2
)

≥ F
( −φ ζ′(u)
√

φ2 + ζ′2|∇′u|2
g−1/2H g−1/2

)

= F
( −φ ζ′(u)
√

φ2 + ζ′2|∇′u|2
H1/2 g−1 H1/2

)

≥ F
( −φ ζ′(u)
√

φ2 + ζ′2|∇′u|2
H1/2 1

φ2 + ζ′2(u)|∇′u|2 IH
1/2
)

= F
( −φ ζ′(u)
(φ2 + ζ′2|∇′u|2)3/2 H

)

≥ F (c̃H)

where c̃ is a positive constant depending only on C0 and C1. Combining (3.10)–
(3.12) we have

(3.13) Lv ≤ −F (c̃H) + (Cǫ − 2c0)
∑

Gii + C(1 + ǫ +Nδ)
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where H = diag
(

2c0 − CNδ, . . . , 2c0 − CNδ, 2c0 − CNδ +N
)

. Choose N suffi-

ciently large and ǫ, δ sufficiently small with δ depending on N such that

Cǫ ≤ c0, CNδ ≤ c0, −F (c̃H) + C + 2c0 ≤ −1,

Therefore, (3.13) becomes

(3.14) Lv ≤ −c0
∑

Gii − 1

We then choose δ ≤ 2ǫ
N such that

v ≥ 0 in Ωδ

A direct consequence of (3.14) is

(3.15) LΨ = ALv + B L(ρ2) ≤ A(−c0
∑

Gii − 1) +BC(1 +
∑

Gii) in Ωδ

which will be used later. Besides, we also need to estimate L(∇′
ku). For this, we

first apply the formula

∇′
ij(∇′

ku) = ∇′
k∇′

iju+ Γl
ik∇′

jlu+ Γl
jk∇′

ilu+∇′
kΓ

l
ij ul

to obtain

(3.16)

L(∇′
ku) =Gij∇′

ij(∇′
ku) + (Gi − ψi)∇′

i(∇′
ku)

=
(

Gij∇′
k∇′

iju+ (Gi − ψi)∇′
iku
)

+GijΓl
ik∇′

jlu+GijΓl
jk∇′

ilu+Gij∇′
kΓ

l
ij ul + (Gi − ψi)Γl

ik ul

By (2.27) and (2.15) we have

GijΓl
ik(∇′

jlu+ u δjl) = F stγisγjtΓl
ik · γjp apq γql = (γisΓl

ikγql)F
st atq

The term GijΓl
jk∇′

ilu can be computed similarly. Taking the covariant derivative

of (2.26) and applying Corollary 2.37 we have

|Gij∇′
k∇′

iju+ (Gi − ψi)∇′
kiu| ≤ C + |(ψu −Gu)uk| ≤ C(1 +

∑

Gii)

From all these above, (3.16) can be estimated as

(3.17) |L(∇′
ku)| ≤ C(1 +

∑

Gii)

For fixed α < n, choose B sufficiently large such that

Ψ±∇′
α(u− ϕ) ≥ 0 on ∂Ωδ

From (3.15) and (3.17)

L(Ψ±∇′
α(u− ϕ)) ≤ A(−c0

∑

Gii − 1) +BC(1 +
∑

Gii)

Then choose A sufficiently large such that

L(Ψ±∇′
α(u− ϕ)) ≤ 0 in Ωδ

Applying the maximum principle we have

Ψ±∇′
α(u − ϕ) ≥ 0 in Ωδ

which implies

(3.18) |∇′
αnu(z0)| ≤ C
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It remains to estimate the double normal derivative∇′
nnu on ∂Ω. Since σ1(κ[u]) >

0, it suffices to derive an upper bound

∇′
nnu ≤ C on ∂Ω

In [7], the author gives a proof (see also [29, 12]). For the sake of consistency and
also to show some details, we provide a complete proof which is slightly different.
Let κ′ = (κ′1, . . . , κ

′
n−1) be the roots of

det(κ′ gαβ − hαβ) = 0, α, β < n

By definition of Γk, we can verify that the projection of Γk ⊂ R
n onto R

n−1 is
exactly

Γ′
k−1 := {λ′ = (λ1, . . . , λn−1) ∈ R

n−1 |σj(λ′) > 0, j = 1, . . . , k − 1}
Since u is k-admissible, i.e., κ[u] ∈ Γk, it follows that κ

′[u] ∈ Γ′
k−1. Note that κ′[u]

may not be (κ1, . . . , κn−1)[u]. For z ∈ ∂Ω, define

d̃(z) :=
w

−ζ′ φ dist(κ′[u](z), ∂Γ′
k−1)

where w =
√

φ2 + ζ′2|∇′u|2. We want to prove that d̃(z1) := min
z∈∂Ω

d̃(z) has a

positive uniform lower bound.
Let τ1, . . . , τn−1, en be a local frame field around z1 on Ω, obtained by parallel

translation of a local frame field τ1, . . . , τn−1 around z1 on ∂Ω satisfying

gαβ = δαβ , hαβ(z1) = κ′α(z1) δαβ , κ′1(z1) ≤ . . . ≤ κ′n−1(z1)

and the interior, unit, normal vector field en to ∂Ω, along the geodesics perpen-
dicular to ∂Ω on Ω. Note that τ1, . . . , τn−1 depend on ϕ and ∇′

e1ϕ, . . . ,∇′
en−1

ϕ on

∂Ω. This can be seen if we let τα =
∑

i<n ηαi ei and observe that

ηαi
(

φ2 δij + ζ′2(u)∇′
eiu∇′

eju
)

ηβj = δαβ on ∂Ω

which implies that all elements of the invertible matrix η = {ηαi} depend only on
ϕ and ∇′

e1ϕ, . . . ,∇′
en−1

ϕ on ∂Ω.

By Lemma 6.1 of [3], there exists γ′ = (γ1, . . . , γn−1) ∈ R
n−1 with γ1 ≥ . . . ≥

γn−1 ≥ 0 and
∑

γ2α = 1 such that Γ′
k−1 ⊂ {λ′ ∈ R

n−1| γ′ · λ′ > 0} and

(3.19) d̃(z1) =
w

−ζ′ φ
∑

α<n

γα κ
′
α(z1) =

∑

α<n

γα
(

∇′
ααu+ u σαα

)

(z1)

Note that γ′ depends on u and
∑

γα ≥ 1.
Since u is strictly locally convex near ∂Ω,

∑

α<n

γα
(

∇′
ααu+ u σαα

)

(z1) ≥ 2 c1

where c1 is a uniform positive constant. Hence,

∇′
n(u− u)(z1)

∑

α<n

γαΓ̃
n
αα(z1) =

∑

α<n

γα∇′
αα(u− u)(z1)

=
∑

α<n

γα
(

∇′
ααu+ u σαα

)

(z1)−
∑

α<n

γα
(

∇′
ααu+ u σαα

)

(z1)

≥ 2 c1 − d̃(z1)
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where Γ̃k
ij are the Christoffel symbols of∇′ with respect to the local frame τ1, . . . , τn−1, en

on S
n. We may assume d̃(z1) ≤ c1, for, otherwise we are done. Then

∇′
n(u− u)(z1)

∑

α<n

γαΓ̃
n
αα(z1) ≥ c1

Note that 0 < ∇′
n(u− u)(z1) ≤ C. Thus,

∑

α<n

γαΓ̃
n
αα(z1) ≥ 2 c2 > 0

A straightforward calculation shows that

(3.20) Γ̃n
αβ =

∑

i,j<n

ηαi ηβj Γ
n
ij , α, β < n

Thus by continuity of Γ̃n
αα(z) and 0 ≤ γα ≤ 1,

(3.21)
∑

α<n

γαΓ̃
n
αα(z) >

∑

α<n

γαΓ̃
n
αα(z1)− c2 ≥ c2

on Ωδ = {z ∈ Ω | distSn(z1, z) < δ} for some small uniform δ > 0 and a uniform
positive constant c2.

On the other hand, by Lemma 6.2 of [3], for any z ∈ ∂Ω near z1,
∑

α<n

γα
(

∇′
ααu+ u σαα

)

(z) ≥ w

−ζ′ φ
∑

α<n

γα κ
′
α[u](z) ≥ d̃(z) ≥ d̃(z1)

and consequently,

(3.22)

∇′
n(u− ϕ)(z)

∑

α<n

γαΓ̃
n
αα(z) =

∑

α<n

γα∇′
αα(ϕ− u)(z)

=
∑

α<n

γα
(

∇′
ααϕ+ ϕσαα

)

(z)−
∑

α<n

γα
(

∇′
ααu+ u σαα

)

(z)

≤
∑

α<n

γα
(

∇′
ααϕ+ ϕσαα

)

(z)− d̃(z1)

In view of (3.21), we define in Ωδ,

Φ =
1

∑

α<n
γαΓ̃n

αα

(

∑

α<n

γα
(

∇′
ααϕ+ ϕσαα

)

− d̃(z1)

)

−∇′
n(u − ϕ)

By (3.22), Φ ≥ 0 on ∂Ω ∩ Ωδ. In view of (3.17) and (3.20), we have

L(Φ) ≤ C (1 +
∑

Gii)

Now choose B large such that Ψ+Φ ≥ 0 on ∂Ωδ. In view of (3.15), we then choose
A sufficiently large such that L(Ψ + Φ) ≤ 0 in Ωδ. By (3.19), (Ψ + Φ)(z1) = 0. It
follows that ∇′

n(Ψ + Φ)(z1) ≥ 0 and hence

∇′
nnu(z1) ≤ C.

Along with (3.8) and (3.18), we thus have a bound |∇′2u(z1)| ≤ C, equivalently by
(2.15), a bound for all the principal curvatures of the radial graph at z1. By (2.24),

dist(κ[u](z1), ∂Γk) ≥ c3
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and consequently on ∂Ω,

d̃(z) ≥ d̃(z1) =
w

−ζ′ φ dist(κ′[u](z1), ∂Γ
′
k−1) ≥ c4

where c3 and c4 are positive uniform constants. By a proof similar to Lemma 1.2 of
[3], we know that there exists R > 0 depending on the bounds in (3.8) and (3.18)
such that if ∇′

nnu(z0) ≥ R and z0 ∈ ∂Ω, then the principal curvatures (κ1, . . . , κn)
at z0 satisfy

κα = κ′α + o(1), α < n

κn =
hnn − g1nhn1 − . . .− gnn−1hnn−1

gnn − g21n − . . .− g2nn−1

(

1 +O
( gnn − g21n − . . .− g2nn−1

hnn − g1nhn1 − . . .− gnn−1hnn−1

)

)

in the local frame τ1, . . . , τn−1, en around z0. However, when R is sufficiently large,

G(∇′2u,∇′u, u)(z0) = f(κ[u])(z0) > ψ(z0, u,∇′u)

contradicting with equation (2.26). Hence ∇′
nnu ≤ C on ∂Ω and therefore we

proved (3.2).

4. Global curvature estimates

Our main result on global curvature estimates can be stated as follows. The
following proof is motivated by the work [16, 27].

Theorem 4.1. Let Σ = {(z, ρ(z)) | z ∈ Ω ⊂ S
n} be a strictly locally convex C4 hy-

persurface in Nn+1(K) satisfying (1.1) for some positive function ψ(V, ν) ∈ C2(Γ),
where Γ is an open neighborhood of the unit normal bundle of Σ in Nn+1(K)× S

n.

Suppose

0 < C−1
0 ≤ ρ(z) ≤ C0 < ρKU and |∇′ρ| ≤ C1 on Ω

where C0 and C1 are positive constants. Then there exists a positive constant C
depending only on n, k, C0, C1, inf ψ and ‖ψ‖C2 such that

sup
z∈Ω

i=1,...,n

κi(z) ≤ C (1 + sup
z∈∂Ω

i=1,...,n

κi(z))

Proof. It suffices to estimate from above for the largest principal curvature κmax =
max1≤i≤n κi of Σ. To construct a test function, we will make use of the following
ingredients:

Φ(ρ) =

∫ ρ

0

φ(r) dr

and the support function

τ = ḡ(V, ν) = 〈V, ν〉 =
〈

φ(ρ)
∂

∂ρ
,

−∇′ρ+ φ2 ∂
∂ρ

√

φ4 + φ2|∇′ρ|2
〉

Note that τ has a positive lower bound. Now define the test function

(4.2) Θ =
1

2
lnP (κ)−N ln τ + β Φ

where
P (κ) = κ21 + · · ·+ κ2n,
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β = uKL and N is a positive constant to be determined later.
Assume that Θ achieves its maximum value at x0 = (z0, ρ(z0)) ∈ Σ. Choose a

local orthonormal frame E1, . . . , En around x0 such that hij(x0) = κi δij , where
κ1, . . . , κn are the principal curvatures of Σ at x0 with κ1 ≥ . . . ≥ κn > 0. Let ∇
denote the Levi-Civita connection on Σ with respect to the metric g. Then, at x0,

(4.3)
1

P

∑

l

κl hlli −N
τi
τ
+ β Φi = 0

(4.4)
1

P
(
∑

pq

h2pqi +
∑

l

κlhllii)−
2

P 2
(
∑

l

κlhlli)
2 −N

τii
τ

+N
τ2i
τ2

+ β Φii ≤ 0

In space forms, the Codazzi equation is

(4.5) ∇lhij = ∇jhil

and by Gauss equation we have

(4.6) hiill = hllii + κlκ
2
i − κ2l κi +K(κi − κl)

Covariantly Differentiating (1.1) twice yields

(4.7) σii
k hiil = φ′ dV ψ(El) + κl dνψ(El)

(4.8) σii
k hiill + σpq, rs

k hpqlhrsl ≥ −C − Cκ2l +
∑

m

hmll dνψ(Em)

Note that we have used the property of the conformal Killing field V

∇El
V = φ′ El

By (4.3), (4.4), (4.5), (4.6), (4.8) as well as σii
k κi = k ψ and

−σpq,rs
k hpqlhrsl = −σpp,qq

k hpplhqql + σpp,qq
k h2pql

we have
(4.9)
1

P

∑

ipq

σii
k h

2
pqi −

2

P 2

∑

i

σii
k (
∑

l

κlhlli)
2 − 1

P

∑

pql

κlσ
pp,qq
k hpplhqql +

1

P

∑

pql

κlσ
pp,qq
k h2pql

−
∑

i

σii
k κ

2
i −

N

τ

∑

i

σii
k τii +

N

τ2

∑

i

σii
k τ

2
i + βσii

k Φii

+K
∑

i

σii
k +

N

τ

∑

m

τmdνψ(Em)− β
∑

m

Φm dνψ(Em)− C

P

∑

l

κl −
C

P

∑

l

κ3l ≤ 0

Applying (4.7) as well as the following equations which can be derived by straight
forward calculation (see Lemma 2.2 and Lemma 2.6 in [15] for the proof)

Φi = φ(ρ) ρi, Φii = φ′ − τ κi

τi = φ(ρ) ρi κi

τii = φ(ρ)
∑

m

ρm hiim + φ′(ρ)κi − τ κ2i

(4.9) becomes
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(4.10)
1

P

∑

ipq

σii
k h

2
pqi −

2

P 2

∑

i

σii
k (
∑

l

κlhlli)
2 − 1

P

∑

pql

κlσ
pp,qq
k hpplhqql +

1

P

∑

pql

κlσ
pp,qq
k h2pql

+ (N − 1)
∑

i

σii
k κ

2
i +N

φ2

τ2

∑

i

σii
k ρ

2
i κ

2
i −N

kψφ′

τ
− β τ k ψ + (βφ′ +K)

∑

i

σii
k

−N
φφ′

τ

∑

m

ρmdV ψ(Em)− β φ(ρ)
∑

m

ρm dνψ(Em)− C

P

∑

l

κl −
C

P

∑

l

κ3l ≤ 0

Now we apply a result from [16] (see Lemma 2.2 and Corollary 4.4 in [16]) for
tackling third order derivatives.

Lemma 4.11. There exists a positive constant A and a finite sequence of positive

numbers {δi}ki=1 such that if the inequality κi/κ1 ≤ δi holds for some 1 ≤ i ≤ k,
then

0 ≤ 1

P

[

∑

l

κl(A(σk)
2
l−σpp,qq

k hpplhqql+σ
pp,qq
k h2pql)+

∑

ipq

σii
k h

2
pqi

]

− 2

P 2

∑

i

σii
k (
∑

l

κlhlli)
2

Let A and {δi}ki=1 be given as in Lemma 4.11. We divide our discussion into two
cases.

Case (i): If there exists some 2 ≤ i ≤ k such that κi ≤ δi κ1, by (4.7) and Lemma
4.11, (4.10) reduces to

(N − 1)
∑

i

σii
k κ

2
i − CN − Cβ − C(A+ 1)

P

∑

l

κl −
C(A+ 1)

P

∑

l

κ3l ≤ 0

Here we have used the fact that the support function τ has a positive lower bound.
Note that

σ11
k κ1 ≥ k

n
σk

It follows that

((N − 1)
k

n
ψ − C)κ1 ≤ C N

Choose N sufficiently large we obtain κ1 ≤ C(N).
Case (ii): If case (i) does not hold, which means κk ≥ δk κ1, then

σk ≥ κ1κ2 · · ·κk ≥ δkkκ
k
1

and an upper bound of κ1 follows. �

Remark 4.12. After the proof of Theorem 4.1, the author noticed [6] for closed
hypersurfaces in warped product spaces, where global curvature estimates for con-
vex hypersurfaces are also derived. Though our test function appears the same as
[6], the choice of the coefficients is different. In space forms, the Gauss equation
and Codazzi equation are simpler and hence β can be chosen to be a fixed number
depending on the sectional curvature K. In particular, when K ≥ 0, β can be zero.
In [6], N is chosen to be large, and β is chosen to be further large.
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5. Existence in R
n+1 and H

n+1

In this section and the next section, we confine ourselves to prescribed Gauss
curvature equation (the case when k = n). We will use classical continuity method
and degree theory developed by Y. Y. Li [20] to prove the existence of solution to
the Dirichlet problem (2.39).

Under the transformation ρ = ζ(u) and u = η(v), the subsolution condition (1.7)
becomes

(5.1)

{

G(∇′2v,∇′v, v) ≥ ψ(z, v,∇′v) in Ω

v = ϕ on ∂Ω

For convenience, denote G[v] = G(∇′2v,∇′v, v). Consider the following two auxil-
iary equations.

(5.2)







G[v] =
(

(1− t)
G[v]
ξ(v)

+ t ǫ
)

ξ(v) in Ω

v = v on ∂Ω

and

(5.3)

{

G[v] = (1− t) ǫ ξ(v) + t ψ(z, v,∇′v) in Ω

v = v on ∂Ω

where t ∈ [0, 1], ǫ is a small positive constant such that

(5.4) G[v] > ǫ ξ(v) in Ω

and ξ(v) = e2v if K = 0 while ξ(v) = sinh v if K = −1.
The existence result in R

n+1 was given in [28] where the author assumed the
existence of a strict subsolution. In this section, we will consider the cases when
K = 0 and K = −1 assuming a subsolution.

Lemma 5.5. Let ψ(z) be a positive function defined on Ω. For z ∈ Ω and a strictly

locally convex function v near z, if

G[v](z) = F (aij [v])(z) = f(κ[v])(z) = ψ(z) ξ(v)(z)

then

Gv[v](z)− ψ(z) ξ′(v)(z) < 0

Proof. From (2.21) we have

∂aij
∂v

=
1

w

(

η′(v) δij + η(v)γ̃ik∇′
klv γ̃

lj
)

=
η′2(v)− η2(v)

wη′(v)
δij +

η(v)

η′(v)
aij =

K

wη′(v)
δij +

η(v)

η′(v)
aij

Therefore

Gv =
K

wη′(v)

∑

fi +
η(v)

η′(v)
F ijaij =

K

wη′(v)

∑

fi +
η(v)

η′(v)

∑

fiκi

Since
∑

fiκi ≤ ψ(z) ξ(v) by the concavity of f and f(0) = 0,

Gv[v]− ψ(z) ξ′(v) ≤ K

wη′(v)

∑

fi + (
η(v)

η′(v)
− ξ′(v)

ξ(v)
)
∑

fiκi < 0

�
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Lemma 5.6. For any fixed t ∈ [0, 1], if V and v are respectively strictly locally

convex subsolution and solution to (5.2), then v ≥ V . Thus the Dirichlet problem

(5.2) has at most one strictly locally convex solution.

Proof. If not, then V − v achieves a positive maximum at some z0 ∈ Ω. We have

(5.7) V (z0) > v(z0), ∇′V (z0) = ∇′v(z0), ∇′2V (z0) ≤ ∇′2v(z0)

Consider the deformation v[s] := (1− s) v+ s V for s ∈ [0, 1]. In view of (2.21), we
can verify that v[s] is strictly locally convex near z0 for any s ∈ [0, 1]. In fact, at
z0,

η(v[s]) δij + η′(v[s]) γ̃ik ∇′
klv[s] γ̃

lj ≥ η(v[s]) δij + η′(v[s]) γ̃ik ∇′
klV γ̃lj

= η′(v[s])
( η(v[s])

η′(v[s])
− η(V )

η′(V )

)

δij +
η′(v[s])

η′(V )

(

η(V ) δij + η′(V ) γ̃ik ∇′
klV γ̃lj

)

> 0

where the last inequality is true since
( η

η′

)′

(v) ≤ 0.

Now we define a differentiable function of s ∈ [0, 1],

a(s) := G
[

v[s]
]

−
(

(1− t)
G[v]
ξ(v)

+ t ǫ
)

ξ(v[s])
∣

∣

∣

z0

Since

a(0) = G[v] −
(

(1− t)
G[v]
ξ(v)

+ t ǫ
)

ξ(v) = 0

and

a(1) = G[V ] −
(

(1− t)
G[v]
ξ(v)

+ t ǫ
)

ξ(V ) ≥ 0,

there exists s0 ∈ [0, 1] such that a(s0) = 0 and a′(s0) ≥ 0, that is,

(5.8) G
[

v[s0]
]

(z0) =
(

(1− t)
G[v]
ξ(v)

+ t ǫ
)

ξ(v[s0])(z0)

and

(5.9)

Gij
[

v[s0]
]

∇′
ij(V − v)(z0) + Gi

[

v[s0]
]

∇′
i(V − v)(z0)

+

(

Gv

[

v[s0]
]

−
(

(1− t)
G[v]
ξ(v)

+ t ǫ
)

ξ′(v[s0])

)

(V − v)(z0) ≥ 0

However, by (5.7), (5.8) and Lemma 5.5, the above expression should be strictly
less than 0, which is a contradiction. �

Theorem 5.10. For any t ∈ [0, 1], the Dirichlet problem (5.2) has a unique strictly

locally convex solution v, which satisfies v ≥ v in Ω.

Proof. Uniqueness is proved in Lemma 5.6. We prove the existence using standard
continuity method. Recall that u and v are related by transformation (2.17). Hence
the C2 estimate (3.1) established in section 3 and 4 implies the C2 bound for strictly
locally convex solutions v of (5.2) with v ≥ v, which in turn gives an upper bound
for all principal curvatures of the radial graph. Since f = 0 on ∂Γn, the principal
curvatures admit a uniform positive lower bound, which implies that equation (5.2)
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is uniformly elliptic for strictly locally convex solutions v with v ≥ v. We can then
apply Evans-Krylov theory [8, 18] to obtain

(5.11) ‖v‖C2,α(Ω) ≤ C

where C is independent of t.
Now we consider

C2,α
0 (Ω) := {w ∈ C2,α(Ω) |w = 0 on ∂Ω},

which is a subspace of C2,α(Ω). Obviously,

U :=
{

w ∈ C2,α
0 (Ω)

∣

∣

∣
v + w is stricly locally convex

}

is an open subset of C2,α
0 (Ω). Construct a map L : U × [0, 1] → Cα(Ω),

L(w, t) = G[v + w] −
(

(1− t)
G[v]
ξ(v)

+ t ǫ
)

ξ(v + w)

Set

S = {t ∈ [0, 1] | L(w, t) = 0 has a solution in U }
First note that

L(0, 0) = G[v] − G[v]
ξ(v)

ξ(v) = 0

hence 0 ∈ S and S 6= ∅.
S is open in [0, 1]. In fact, for any t0 ∈ S, there exists w0 ∈ U such that

L(w0, t0) = 0. The Fréchet derivative of L with respect to w at (w0, t0) is a linear

elliptic operator from C2,α
0 (Ω) to Cα(Ω),

Lw

∣

∣

(w0,t0)
(h) = Gij [v + w0]∇′

ijh+ Gi[v + w0]∇′
ih

+

(

Gv[v + w0]−
(

(1− t0)
G[v]
ξ(v)

+ t0 ǫ
)

ξ′(v + w0)

)

h

By Lemma 5.5, Lw

∣

∣

(w0,t0)
is invertible. Hence by implicit function theorem, a

neighborhood of t0 is also contained in S.
S is closed in [0, 1]. Let ti be a sequence in S converging to t0 ∈ [0, 1] and wi ∈ U

be the unique solution associated with ti (the uniqueness is guaranteed by Lemma
5.6), i.e. L(wi, ti) = 0. Since v is a subsolution of (5.2) in view of (5.4), by Lemma
5.6, wi ≥ 0. Then by (5.11) we see that vi := v + wi is a bounded sequence in
C2,α(Ω). Possibly passing to a subsequence vi converges to a strictly locally convex
solution v0 of (5.2) as i→ ∞. Obviously w0 := v0− v ∈ U and L(w0, t0) = 0. Thus
t0 ∈ S. �

Now we assume that v is not a solution of (2.39), for otherwise we are done.

Lemma 5.12. Let v be a strictly locally convex solution of (5.3). If v ≥ v in Ω,
then v > v in Ω and n(v − v) > 0 on ∂Ω, where n is the interior unit normal to

∂Ω.

The proof of Lemma 5.12 is in the Appendix since it is long.

Theorem 5.13. For any t ∈ [0, 1], the Dirichlet problem (5.3) has a strictly locally

convex solution v satisfying v ≥ v in Ω. In particular, (2.39) has a strictly locally

convex solution v satisfying v ≥ v in Ω.
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Proof. Since f = 0 on ∂Γn, the C
2,α estimate for strictly locally convex solutions

v of (5.3) with v ≥ v can be established in view of (2.17) and (3.1), which in turn
yields C4,α estimate by classical Schauder theory

(5.14) ‖v‖C4,α(Ω) < C4

Besides, we have the estimate (see the expression in (2.21)),

(5.15) C−1
2 I < Ã[v] := {η′(v)∇′

ijv + η(v)vivj + η(v) δij} < C2I in Ω

where C2 and C4 are independent of t.
Let C 4,α

0 (Ω) be the subspace of C4,α(Ω) defined by

C4,α
0 (Ω) := {w ∈ C4,α(Ω) |w = 0 on ∂Ω}

and consider the bounded open subset

O :=







w ∈ C4,α
0 (Ω)

∣

∣

∣

∣

∣

∣

w > 0 in Ω, ∇′

n
w > 0 on ∂Ω,

C−1
2 I < Ã[v +w] < C2I in Ω

‖w‖
C4,α(Ω) < C4 + ‖v‖

C4,α(Ω)







Construct a map Mt(w) : O × [0, 1] → C2,α(Ω)

Mt(w) = G[v + w] − (1− t) ǫ ξ(v + w) − t ψ(z, v + w,∇′(v + w))

Let v0 be the unique solution of (5.2) at t = 1 (the existence and uniqueness are
guaranteed by Theorem 5.10). Note that v0 is also the solution of (5.3) when t = 0.
Set w0 = v0 − v. By Lemma 5.6, we have w0 ≥ 0 in Ω, which in turn implies that
w0 > 0 in Ω and ∇′

n
w0 > 0 on ∂Ω by Lemma 5.12. Also note that v0 satisfies

(5.14) and (5.15). Thus, w0 ∈ O. From Lemma 5.12, (5.14) and (5.15) we observe
that Mt(w) = 0 has no solution on ∂O for any t ∈ [0, 1]. Besides, Mt is uniformly
elliptic on O independent of t. Hence the degree of Mt on O at 0

deg(Mt,O, 0)
is well defined and independent of t. Therefore we only need to compute deg(M0,O, 0).

Note that M0(w) = 0 has a unique solution w0 ∈ O, and the Fréchet derivative

of M0 with respect to w at w0 is a linear elliptic operator from C4,α
0 (Ω) to C2,α(Ω),

M0,w|w0(h) = Gij [v0]∇′
ijh+ Gi[v0]∇′

ih+
(

Gv[v
0]− ǫ ξ′(v0)

)

h

By Lemma 5.5

Gv[v
0]− ǫ ξ′(v0) < 0 in Ω

Hence M0,w|w0 is invertible. By the degree theory in [20],

deg(M0,O, 0) = deg(M0,w|w0 , B1, 0) = ±1 6= 0

where B1 is the unit ball in C4,α
0 (Ω). Thus

deg(Mt,O, 0) 6= 0 for all t ∈ [0, 1]

which implies that the Dirichlet problem (5.3) has at least one strictly locally convex
solution for any t ∈ [0, 1]. In particular, t = 1 solves the Dirichlet problem (2.39).

�
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6. Existence in S
n+1
+

For any ǫ > 0, we want to prove the existence of a strictly locally convex solution
to the following Dirichlet problem when K = 1,

(6.1)

{

G[u] := G(∇′2u,∇′u, u) = ψ(z, u,∇′u)− ǫ in Ω

u = ϕ on ∂Ω

Then a strictly locally convex solution to (2.26) follows from the uniform (ǫ-independent)
C2 estimates (established in Section 3 and 4) and approximation.

As we have seen from last section, there does not exist an auxiliary equation in
S
n+1
+ with an invertible linearized operator. Hence we want to build a continuity

process starting from an auxiliary equation in R
n+1.

For this, we first consider a continuous version of (2.15). For t ∈ [0, 1], denote

atij =
−(ζt)′φt

√

(φt)2 + (ζt)′2|∇′u|2
(γt)ik (∇′

klu+ u δkl) (γ
t)lj

where

(γt)ik =
1

φt

(

δik −
(ζt)′2(u)uiuk

√

(φt)2 + (ζt)′2(u)|∇′u|2(φt +
√

(φt)2 + (ζt)′2(u)|∇′u|2)
)

and

φt(ρ) =
sin(tρ)

t
with ρ ∈

(

0,
π

2 t

)

ζt(u) =
1

t
arccot

u

t
with u ∈ (0,∞)

Note that these geometric quantities on Σ correspond to the background metric

ḡt = dρ2 + (φt)2(ρ)σ

Geometrically, (Rn+1, ḡt) is the upper hemisphere Sn+1
+ (1t ) with center 0 and radius

1
t . The corresponding sectional curvature is Kt = t2. As t varies from 0 to 1, ḡt

provides a deformation from R
n+1 to S

n+1
+ .

Define

Gt[u] = Gt(∇′2u,∇′u, u) = F (atij)

Hence G1 = G. The following property is true by direct calculation.

Proposition 6.2. Gt[u] is increasing with respect to t.

Proof.

atij =
(

1 +
|∇′u|2
u2 + t2

)− 1

2

γ̃ik
(

∇′
klu + u δkl

)

γ̃lj

where

γ̃ik = δik − ui uk
√

u2 + t2 + |∇′u|2
(√
u2 + t2 +

√

u2 + t2 + |∇′u|2
)

∂

∂t
Gt[u] =

(

1 +
|∇′u|2
u2 + t2

)−3/2

F ij ·
( t |∇′u|2
(u2 + t2)2

γ̃ik + 2
(

1 +
|∇′u|2
u2 + t2

)∂γ̃ik

∂t

)

(

∇′
klu+ uδkl

)

γ̃lj
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The inverse (γ̃ik) of (γ̃
ik) is given by

γ̃ik = δik +
ui uk

u2 + t2 +
√

(u2 + t2)2 + (u2 + t2)|∇′u|2

Since
∂γ̃ik

∂t
= −γ̃ip ∂γ̃pq

∂t
γ̃qk

∂γ̃pq
∂t

= − up uq t

(u2 + t2)3/2
√

u2 + t2 + |∇′u|2
and

γ̃ik uk =

√
u2 + t2

√

u2 + t2 + |∇′u|2
ui

therefore,

∂

∂t
Gt[u] =

t
√
u2 + t2

(

u2 + t2 + |∇′u|2
)3/2

F ij ·
(

|∇′u|2δiq + 2uiuq

)

γ̃qk
(

∇′
klu+ uδkl

)

γ̃lj ≥ 0

�

Likewise, we define

ψt[u] :=ψt(z, u,∇′u) = ψt(V t, νt)

=ψt

(

1√
u2 + t2

z,

√
u2 + t2

√

u2 + t2 + |∇′u|2
(

∇′u+ z
)

)

Note that z = ∂
∂ρ .

Recall that we have assumed a strictly locally convex subsolution.
{

G[u] ≥ ψ(z, u,∇′u) in Ω

u = ϕ on ∂Ω

Choose ǫ small such that

ǫ < min
{

min
Ω
G0[u],

1

2
min

[0,1]×Ω×[C−1

0
,C0]×{p∈Rn| |p|≤C1}

ψt
}

By continuity, for t ∈ [1 − δ1, 1] where δ1 is a sufficiently small positive constant
depending on ǫ, we have

(6.3)

{

Gt[u] > ψt[u]− ǫ

2
in Ω

u = ϕ on ∂Ω

Denote Gt[ v ] := Gt(∇′2v,∇′v, v) =: Gt[ ev ]. Consider the continuity process,

(6.4)

{

Gt[ v ] =
(

1− T (t)
)

δ2 e
2v + T (t)

(

ψt[ ev ]− ǫ
)

in Ω

v = lnϕ on ∂Ω

where δ2 is a small positive constant such that

δ2 max
Ω

u2 <
ǫ

2
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and T (t) is a smooth strictly increasing function with T (0) = 0, T (1) = 1 satisfying

min
Ω

G0[u] > 2 T (1− δ1) max
[0,1]×Ω

ψt[u]

Proposition 6.5. v = lnu is a strict subsolution of (6.4) for any t ∈ [0, 1].

Proof. For t ∈ [1− δ1, 1],

Gt[v] =Gt[u] > ψt[u]− ǫ

2
> δ2 u

2 +
(

ψt[u]− ǫ
)

≥
(

1− T (t)
)

δ2 e
2v + T (t)

(

ψt[ev]− ǫ
)

For t ∈ [0, 1− δ1],

Gt[v] =Gt[u] ≥ G0[u] >
ǫ

2
+ T (1− δ1)ψ

t[u]

≥
(

1− T (t)
)

δ2 u
2 + T (t)

(

ψt[u]− ǫ
)

=
(

1− T (t)
)

δ2 e
2v + T (t)

(

ψt[ev]− ǫ
)

�

Now we can obtain the existence results in S
n+1
+ .

Theorem 6.6. For any t ∈ [0, 1], the Dirichlet problem (6.4) has a strictly locally

convex solution v with v ≥ v in Ω. In particular, (6.1) has a strictly locally convex

solution u satisfying u ≥ u in Ω when K = 1.

Proof. The C2,α estimates for strictly locally convex solutions v of (6.4) with v ≥ v
is equivalent to the C2,α estimates for strictly locally convex solutions u with u ≥ u
to the Dirichlet problem

(6.7)

{

Gt[u ] =
(

1− T (t)
)

δ2 u
2 + T (t)

(

ψt[u]− ǫ
)

in Ω

u = ϕ on ∂Ω

which can be established by changing φ and ζ into φt and ζt in section 3, 4. Then
C4,α estimate follows by classical Schauder theory. Thus we have the t-independent
uniform estimates,

(6.8) ‖v‖C4,α(Ω) < C4 and C−1
2 I < {vij + vi vj + δij} < C2 I in Ω

Consider the subspace of C4,α(Ω) given by

C4,α
0 (Ω) := {w ∈ C4,α(Ω) |w = 0 on ∂Ω}

and the bounded open subset

O :=







w ∈ C4,α
0 (Ω)

∣

∣

∣

∣

∣

∣

w > 0 in Ω, ∇′

n
w > 0 on ∂Ω,

C−1
2 I < {(v + w)ij + (v +w)i (v + w)j + δij} < C2 I in Ω

‖w‖
C4,α(Ω) < C4 + ‖v‖

C4,α(Ω)







Construct a map Mt(w) : O × [0, 1] → C2,α(Ω),

Mt(w) = Gt[v + w] −
(

1− T (t)
)

δ2 e
2(v+w) − T (t)

(

ψt[ev+w]− ǫ
)

At t = 0, by Theorem 5.10 for the caseK = 0, there is a unique solution v0 to (6.4).
By Lemma 5.6 and Lemma 5.12 we have w0 := v0 − v > 0 in Ω and ∇′

n
w0 > 0

on ∂Ω. Moreover, v0 satisfies (6.8) and thus w0 ∈ O. Also, Lemma 5.12 and (6.8)
implies that Mt(w) = 0 has no solution on ∂O for any t ∈ [0, 1]. Besides, Mt is
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uniformly elliptic on O independent of t. Therefore, deg(Mt,O, 0), the degree of
Mt on O at 0, is well defined and independent of t. Hence it suffices to compute
deg(M0,O, 0).

Note that M0(w) = 0 has a unique solution w0 ∈ O. The Fréchet derivative of

M0 with respect to w at w0 is a linear elliptic operator from C4,α
0 (Ω) to C2,α(Ω),

M0,w|w0(h) = (G0)ij [v0]∇′
ijh+ (G0)i[v0]∇′

ih+
(

(G0)v[v
0]− 2 δ2 e

2v0)

h

By Lemma 5.5

(G0)v[v
0]− 2 δ2 e

2v0

< 0 in Ω

Thus M0,w|w0 is invertible. Applying the degree theory in [20],

deg(M0,O, 0) = deg(M0,w|w0 , B1, 0) = ±1 6= 0

where B1 is the unit ball in C4,α
0 (Ω). Thus

deg(Mt,O, 0) 6= 0 for all t ∈ [0, 1]

and this theorem is proved. �

7. Appendix: Proof of Lemma 5.12

Proof. Recall that we have assumed that v is not a solution of (2.39). By (5.1) and
(5.4) we know that v is a strict subsolution of (5.3) when t ∈ [0, 1), while it is a
subsolution but not a solution of (5.3) when t = 1. It is relatively easy to prove
the conclusion when t ∈ [0, 1), following the ideas in [28]. For the case t = 1:

{

G[v] = ψ(z, v,∇′v) in Ω

v = v on ∂Ω

we will make use of the maximum principle which was originally discovered in
[26], while more precisely stated for our purposes in [9] (see section 1.3, p. 212).
Because the maximum principle and Hopf lemma there are designed for domains
in Euclidean spaces, we need to rewrite the above equation in a local coordinate
system of Sn. For keeping the strict local convexity of the variations in our proof,
we first transform the above equation back under the transformation (2.17) into a
form as (2.26):

(7.1)

{

G(∇′2u,∇′u, u) = ψ(z, u,∇′u) in Ω

u = u on ∂Ω

Recall that G(∇′2u,∇′u, u) = F (A[u]) where A[u] = {γikhklγlj}. Since at this
time we do not use local orthonormal frame on S

n, but rather a local coordinate
system of Sn, γik and hkl will appear different from (2.12) and (2.14).

Meanwhile, the subsolution assumption (5.1) (i.e. (1.7)) can be rewritten as
{

G(∇′2u,∇′u, u) ≥ ψ(z, u,∇′u) in Ω

u = ϕ on ∂Ω

Note that u is not a solution of (7.1).
(i) We first show that if a strictly locally convex solution u of (7.1) satisfies

u ≥ u in Ω, then u > u in Ω. Let N /∈ Ω be the north pole of Sn. Take the radial
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projection of Sn \ {N} onto R
n × {−1} ⊂ R

n+1 and let Ω̃ be the image of Ω. We
thus have a coordinate system (x1, . . . , xn) on R

n ×{−1} ∼= R
n. The metric on S

n,
its inverse, and the Christoffel symbols are given respectively by

σij =
16

µ2
δij , µ = 4 +

∑

x2i , σij =
µ2

16
δij

Γk
ij = − 2

µ
(δikxj + δjkxi − δijxk)

Consequently, the metric on Σ, its inverse and the second fundamental form on Σ
are given respectively by (c.f. [27])

gij = φ2 σij + ζ′2(u)uiuj

gij =
1

φ2

(

σij − ζ′2(u)uiuj

φ2 + ζ′2(u)|∇′u|2
)

, ui = σikuk

hij =
−ζ′(u)φ

√

φ2 + ζ′2(u)|∇′u|2
(∇′

iju+ u σij)

The entries of the symmetric matrices {γik} and {γik} depend only on x1, . . . , xn,
u and the first derivatives of u.

Now, set ũ = µu. By straightforward calculation,

(7.2) ∇′
iju+ u σij =

1

µ
ũij +

2δij
µ2

(

ũ−
∑

k

xkũk

)

As a result, (7.1) can be transformed into the following form:






G̃(D2ũ, Dũ, ũ, x1, . . . , xn) = F
(

A
[ ũ

µ

])

= ψ̃(x1, . . . , xn, ũ, Dũ) in Ω̃

ũ =µu on ∂Ω̃

where ũi =
∂ũ
∂xi

, Dũ = (ũ1, . . . , ũn), ũij =
∂2ũ

∂xi∂xj
and D2ũ = {ũij}.

Meanwhile, ũ := µu satisfies
{

G̃(D2ũ, Dũ, ũ, x1, . . . , xn) ≥ ψ̃(x1, . . . , xn, ũ, Dũ) in Ω̃

ũ = µu on ∂Ω̃

Subtract the above two,

L
(

ũ− ũ
)

:= aij(x) (ũ − ũ)ij + bi(x) (ũ − ũ)i + c(x) (ũ − ũ) ≥ 0

where x := (x1, . . . , xn),

aij(x) =

∫ 1

0

G̃ij ds, bi(x) =

∫ 1

0

(

G̃i − ψ̃i
)

ds, c(x) =

∫ 1

0

(

G̃ũ − ψ̃ũ

)

ds,

G̃ij :=
∂G̃

∂ũij

(

D2ũ+ sD2(ũ− ũ), Dũ+ sD(ũ− ũ), ũ+ s (ũ− ũ), x1, . . . , xn

)

,

ψ̃i :=
∂ψ̃

∂ũi

(

x1, . . . , xn, ũ+ s (ũ− ũ), Dũ+ sD(ũ− ũ)
)

,

and G̃i =
∂G̃

∂ũi
, G̃ũ =

∂G̃

∂ũ
, ψ̃ũ =

∂ψ̃

∂ũ
can be defined similarly.
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In view of (7.2) and (2.27) we know that

G̃ij =
∂G̃

∂ũij
=

∂F

∂akl

∂akl
∂ũij

=
1

µ

∂G

∂uij

Hence the linearized operator L is uniformly elliptic. Besides, its coefficients are
uniformly bounded, which can be seen from the algebraic fact

(∂γ11

∂A
, . . . ,

∂γ1n

∂A
, . . . ,

∂γnn

∂A

)

=
(∂g11

∂A
, . . . ,

∂g1n

∂A
, . . . ,

∂gnn

∂A

)

(

I⊗g− 1

2 +g−
1

2 ⊗I
)−1

where g−
1

2 = {γik} and A can be ũ or ũi with i = 1, . . . , n.
Therefore, we can apply the Maximum Principle (see p. 212 of [9]) to conclude

that ũ > ũ in Ω̃, which immediately yields u > u in Ω.
(ii) To prove n(u − u) > 0 on ∂Ω, we pick an arbitrary point z0 ∈ ∂Ω and

assume z0 to be the north pole of Sn ⊂ R
n+1. We introduce a local coordinate

system about z0 by taking the radial projection of the upper hemisphere onto the
tangent hyperplane of S

n at z0 and identifying this hyperplane to R
n. Denote

the coordinates by (y1, . . . , yn) and assume that the positive yn-axis is the interior
normal direction to ∂Ω ⊂ S

n at z0. In this coordinate system, the metric on S
n, its

inverse, and the Christoffel symbols are given respectively by (see [24, 13])

σij =
1

µ2

(

δij −
yiyj
µ2

)

, µ =
√

1 +
∑

y2i

σij = µ2(δij + yiyj)

Γk
ij = −δikyj + δjkyi

µ2

The metric gij , its inverse g
ij and the second fundamental form hij on Σ have the

form as above. The entries of the symmetric matrices {γik} and {γik} depend only
on y1, . . . , yn, u and the first derivatives of u.

Now set ũ = µu. By straightforward calculation we have

(7.3) ∇′
iju+ u σij = µ−1ũij

Equation (7.1) can be transformed into an equation defined in an open neighbor-
hood of 0 on R

n, which is the radial projection of a neighborhood of z0 on S
n:

G̃(D2ũ, Dũ, ũ, y1, . . . , yn) = F
(

A
[ ũ

µ

])

= ψ̃(y1, . . . , yn, ũ, Dũ)

where ũi =
∂ũ
∂yi

, Dũ = (ũ1, . . . , ũn), ũij =
∂2ũ

∂yi∂yj
and D2ũ = {ũij}.

In view of (7.3) and (2.27) we know that

∂G̃

∂ũij
=

∂F

∂akl

∂akl
∂ũij

=
1

µ

∂G

∂uij

By (i) and applying Lemma H (see p. 212 of [9]) we find that (ũ− ũ)n(0) > 0 and
equivalently n(u− u)(z0) > 0.

�
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