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Abstract. In this paper, we study the discontinuous Galerkin method with a class of generalized7

numerical fluxes for one-dimensional scalar nonlinear conservation laws. The generalized local Lax--8

Friedrichs (GLLF) fluxes with two weights, which may not be monotone, are proposed and analyzed.9

Under a condition for the weights, we first show the monotonicity for the flux and thus the L2
10

stability of the scheme. Then, by constructing and analyzing a special piecewise global projection11

which commutes with the time derivative operator, we are able to show optimal error estimates for12

the DG scheme with GLLF fluxes. The result is sharp for monotone numerical fluxes, for which13

only suboptimal estimates can be proved in previous work. Moreover, optimal error estimates are14

still valid for fluxes that are not monotone, allowing us to choose some suitable weights to achieve15

less numerical dissipation and thus to better resolve shocks. Numerical experiments are provided to16

show the sharpness of theoretical results.17
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1. Introduction. In this paper, we concentrate on discontinuous Galerkin (DG)22

methods with generalized local Lax--Friedrichs (GLLF) fluxes for one-dimensional23

scalar nonlinear hyperbolic conservation laws24

ut + f(u)x = 0, (x, t) \in I \times (0, T ],(1.1a)25

u(x, 0) = u0(x), x \in I,(1.1b)26
27

where u0(x) is a smooth function and I = [a, b]. The nonlinear function f(u) is28

assumed to be sufficiently smooth with respect to u. Note that the GLLF flux is29

in a more general setting of the local Lax--Friedrichs (LLF) flux, which is not even30

monotone and can be regarded as an extension of upwind-biased fluxes when f(u) is31

linear [20]. The L2 stability and optimal error estimates are obtained for the GLLF32

fluxes with two suitable weights. The periodic boundary conditions are considered.33

The DG method discussed in this paper is a class of finite element methods, which34

was first introduced by Reed and Hill [23] for solving a steady-state linear hyperbolic35
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equation and was developed by Cockburn and Shu [12] for time-dependent nonlinear36

conservation laws. For the time discretization, the explicit total variation diminishing37

(TVD) Runge--Kutta method [15] is usually adopted. We refer to the survey paper38

[25] for recent development of DG methods for time-dependent problems.39

As is well known, the numerical flux is the most important ingredient in designing40

DG schemes, since it determines many features of DG methods such as the stability41

and accuracy. Typically, for nonlinear scalar conservation laws, the numerical fluxes42

are chosen as monotone fluxes, and L2 stability [16] and a suboptimal error estimate43

of order k + 1
2 are obtained for the fully discrete scheme combined with third order44

TVD Runge--Kutta methods in [26]. Moreover, when upwind numerical flux is used,45

the optimal error estimate of order k + 1 is proved [26]. For general stabilized finite46

element methods for linear symmetric hyperbolic systems, a suboptimal error estimate47

of order k + 1
2 is obtained for the space-time methods [13] and for the Runge--Kutta48

DG methods [4]. Throughout the paper, k is the highest polynomial degree of the49

discontinuous finite element space.50

To provide more flexibility in numerical viscosity with potential applications to51

complex systems, the numerical fluxes are recently chosen in a general pattern. Specif-52

ically, for DG approximation to linear spatial derivative terms, some generalized nu-53

merical fluxes containing one weight are used. For example, the upwind-biased fluxes54

are considered for linear hyperbolic equations [20], and the central flux for nonlinear55

convection term in combination with generalized alternating fluxes for linear diffu-56

sion term are used for the Burgers--Poisson equation [18]. Moreover, the general-57

ized numerical fluxes with two independent weights are given in [9] for solving linear58

convection-diffusion equations. It is worth emphasizing that, for generalized numer-59

ical fluxes, optimal error estimates can be derived by virtue of some special global60

projections, which is motivated by the work of [2]. There is some other work related61

to DG methods with generalized fluxes; see, for example, superconvergence of DG62

methods with upwind-biased fluxes for one-dimensional linear hyperbolic equations63

[5], and the local error estimate of local DG methods with generalized alternating64

fluxes for singularly perturbed problems [10]. In addition, motivated by [1], a class65

of \alpha \beta -fluxes can be proved to be of order k + 1 for one-dimensional two-way wave66

equations in [8] and for linear high order equations in [14] by constructing some local67

and global projections. The generalized numerical fluxes for direct DG methods for68

diffusion problems can be found in [7, 19].69

How to extend the optimal error analysis of generalized numerical fluxes from70

linear derivative terms to nonlinear ones is of current interest. It thus would be71

meaningful to investigate a class of generalized fluxes for nonlinear conservation laws72

in terms of the GLLF flux, which is a modification of LLF fluxes with two weights73

representing different numerical viscosities; see (2.2a) and (2.2b) below. Following74

the idea of piecewise global projections for degenerate variable coefficient hyperbolic75

equations in [17], to minimize the leading term of projection error terms for nonlin-76

ear conservation laws we construct a special piecewise global projection depending77

only on two weights and u. The resulting projection is a linear operator for u and78

thus commutes with the time derivative operator. Although the wind direction can79

be changed, the piecewise global projection allows us to establish the optimal ap-80

proximation property and we need only to pay attention to regions with fixed wind81

direction, as in the cell on which f \prime (u) does change its sign, f \prime (u) itself is of order h.82

Therefore, by a linearization approach for nonlinear flux functions [26, 21], optimal83

error estimates are obtained for GLLF fluxes.84
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To the best of our knowledge, this is the first proof of optimal error estimates of the85

DG scheme with LLF type and generalized numerical flux when nonlinear conservation86

laws are considered. In this work, the theoretical results not only provide a sharp error87

estimate for monotone fluxes but also establish optimal error estimates for fluxes that88

are not monotone. In addition to the improvement of theoretical analysis, the GLLF89

flux contributes a lot in practical computation for its better solution in resolving90

shocks (see Example 4.1).91

The organization of this paper is as follows. In section 2, the DG scheme with92

GLLF fluxes for one-dimensional nonlinear scalar conservation laws is presented and93

the monotonicity is discussed. In section 3, by designing and analyzing a special94

piecewise global projection, optimal error estimates are obtained under the condition95

\lambda > | \theta | . In section 4, numerical experiments are shown, which confirm the sharpness96

of optimal error estimates and verify the numerical stability of the DG scheme with97

nonmonotone GLLF fluxes. Concluding remarks are given in section 5.98

2. The DG scheme with GLLF fluxes. Let us start by presenting some99

notation for the mesh, function space, and norms.100

2.1. Basic notation. The usual notation of DG methods is adopted. The com-101

putational interval I = [a, b] is divided into N cells Ij = (xj - 1
2
, xj+1

2
) for j = 1, . . . , N ,102

where a = x 1
2
< x 3

2
< \cdot \cdot \cdot < xN+1

2
= b and cell center is xj =

1
2 (xj - 1

2
+ xj+1

2
), and the103

tessellation of I is denoted as \scrI h = \{ Ij\} Nj=1. Denote by hj = xj+1
2
 - xj - 1

2
the mesh104

size with h = maxj hj . \scrI h is assumed to be quasi-uniform in the sense that there105

holds \nu h \leq hj \leq h (j = 1, . . . , N) for a fixed positive constant \nu , as h goes to zero.106

The discontinuous finite element space is chosen as107

V k
h = \{ \omega : \omega | Ij \in P k(Ij), j = 1, . . . , N\} ,108

where P k(Ij) is the space of polynomials of degree up to k on Ij . Since \omega \in V k
h109

can be discontinuous at cell interfaces, we denote by \omega  - 
j+1

2
and \omega +

j+1
2
the values of110

\omega at xj+1
2
from the left cell Ij and the right cell Ij+1, respectively. Further, the111

jump and the mean value of \omega at cell boundaries are denoted as J\omega K = \omega +  - \omega  - and112

\{ \{ \omega \} \} = 1
2 (\omega 

+ + \omega  - ).113

We use W \ell ,p(\Omega ) (e.g., \Omega = Ij) to represent the standard Sobolev space on \Omega 114

equipped with norm \| \cdot \| W \ell ,p(\Omega ), where \ell \geq 0, 1 \leq p \leq \infty are integers. Then the115

broken Sobolev space on \scrI h is denoted as116

W \ell ,p(\scrI h) = \{ u \in L2(I) : u| Ij \in W \ell ,p(Ij), j = 1, . . . , N\} ,117

and the norms are denoted as \| u\| W \ell ,\infty (\scrI h) = max1\leq j\leq N \| u\| W \ell ,\infty (Ij), \| u\| W \ell ,p(\scrI h) =118

(
\sum N

j=1 \| u\| 
p
W \ell ,p(Ij)

)1/p for p \not = \infty . The notation H\ell (\scrI h) =W \ell ,2(\scrI h), L2(I) = H0(\scrI h),119

and L\infty (I) =W 0,\infty (\scrI h) is adopted. In addition, the boundary norms are denoted as120

\| u\| 2L2(\Gamma h)
=
\sum N

j=1 \| u\| 2L2(\partial Ij)
and \| u\| 2L2(\partial Ij)

= (u+j - 1
2
)2 + (u - j+1

2
)2.121

2.2. The DG scheme. For nonlinear conservation laws (1.1), the DG scheme122

is as follows: \forall t \in (0, T ], find uh(t) \in V k
h such that for any vh \in V k

h and j = 1, . . . , N123

there holds124

(2.1)

\int 
Ij

(uh)tvhdx - 
\int 
Ij

f(uh)(vh)xdx+ \^fj+ 1
2
(vh)

 - 
j+ 1

2

 - \^fj+ 1
2
(vh)

+
j - 1

2

= 0.125
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Instead of using monotone fluxes, we consider the following GLLF fluxes that may126

not be monotone127

(2.2a)

\^f(u - h , u
+
h ) =

\biggl( 
1

2
+ \theta 

\biggr) 
f(u - h ) +

\biggl( 
1

2
 - \theta 

\biggr) 
f(u+h ) - \lambda \alpha (u+h  - u - h ), \alpha = max

\omega \in [c,d]
| f \prime (\omega )| ,128

where c = min(u - h , u
+
h ), d = max(u - h , u

+
h ), and \theta , \lambda are two weights satisfying129

(2.2b) \lambda > | \theta | ,130

which comes from the application of flux (2.2a) to linear hyperbolic equations with131

upwind-biased numerical fluxes. Note that (2.2b) will guarantee provable linear sta-132

bility for the GLLF fluxes as well as uniqueness existence of the newly designed133

projection in (3.1) and thus optimal error estimates; for more details, see Remark 3.4.134

Indeed, the flux (2.2a) and (2.2b) will reduce to the upwind-biased fluxes [20] when135

f is linear and the standard LLF flux when \theta = 0, \lambda = 1
2 . Moreover, the weights \theta 136

and \lambda are chosen based on a balance of numerical viscosity between an E-flux [22] and137

the central flux, since, as shown in (3.18) below, the numerical viscosity coefficient is138

\theta f \prime (u)+\lambda \alpha depending on \lambda and \theta . Specifically, the adjustable coefficient is \theta f \prime (u)+\lambda \alpha 139

and will be close to that of an E-flux, which is beneficial for shocks (bigger \lambda  - | \theta | ),140

and to that of the central flux, which is useful for smooth solutions (smaller \lambda  - | \theta | ).141

2.3. Monotonicity of the GLLF flux. Note that the nonlinear L2 stability142

property cannot be proved for the DG scheme with (2.2b), although it is numerically143

stable. A rigorous proof of the L2 stability for GLLF fluxes with (2.2b) is more144

involved and will be studied in future work. Therefore, following [16], a much stronger145

condition is proposed which will lead to the monotonicity of the GLLF flux and thus146

L2 stability.147

Lemma 2.1. The GLLF flux (2.2) is monotone if148

(2.3) \lambda \geq 1

2
+ | \theta | .149

Proof. It suffices to show that \^f is a nondecreasing function of its first argu-150

ment and a nonincreasing function of its second argument in the sense that for \forall \omega \in 151

[min(u - h , u
+
h ),max(u - h , u

+
h )],

\^f(\omega , u+h ) - \^f(u - h , u
+
h ) \geq 0 and \^f(u - h , u

+
h ) - \^f(u - h , \omega ) \leq 0.152

Without loss of generality, we assume u - h < u+h . If \omega = u - h , then
\^f(\omega , u+h )  - 153

\^f(u - h , u
+
h ) = 0. If \forall \omega \in (u - h , u

+
h ], there holds \omega  - u - h > 0, and we divide \^f(\omega , u+h )  - 154

\^f(u - h , u
+
h ) by \omega  - u - h to obtain155

(2.4)
\^f(\omega , u+h ) - \^f(u - h , u

+
h )

\omega  - u - h
=

\biggl( 
1

2
+ \theta 

\biggr) 
f(\omega ) - f(u - h )

\omega  - u - h
+ \lambda \alpha .156

By the mean value theorem and the definition of \alpha , one has157 \bigm| \bigm| \bigm| f(\omega ) - f(u - h )

\omega  - u - h

\bigm| \bigm| \bigm| \leq \alpha .158

Thus, a substitution of the above estimate, the fact that \omega  - u - h > 0, and the condition159

\lambda \geq 1
2 + | \theta | into (2.4) lead to the desired result,160

\^f(\omega , u+h ) - \^f(u - h , u
+
h ) \geq 0.161
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Analogously, we can also prove \^f(u - h , u
+
h ) - \^f(u - h , \omega ) \leq 0. Therefore, the GLLF flux162

(2.2) with (2.3) is monotone.163

Monotonicity of the numerical flux (2.2a) with (2.3) would lead to L2 stability of164

the DG scheme [16, 24].165

Proposition 2.2. The DG scheme with flux (2.2a) and (2.3) is L2 stable.166

3. Optimal error estimates. This section is devoted to the analysis of optimal167

error estimates of DG methods with GLLF fluxes (2.2) for nonlinear conservation laws.168

We begin by presenting some preliminary results on projections and inverse properties169

that will be used later.170

3.1. Preliminaries.171

3.1.1. Projections. It is well known that design and analysis of some special172

projections are essential in deriving optimal error estimates, especially when general-173

ized numerical fluxes are considered. In particular, when generalized fluxes are used174

for nonlinear equations, the following three properties should be taken into account175

when designing projections.176

The first one is that the projection should eliminate terms involving projection177

errors as much as possible, namely to minimize the contribution of projection terms.178

This can be achieved by requiring the projection errors to be orthogonal to poly-179

nomials of degree up to k  - 1 and an exact collocation of the projection error at180

cell boundaries. For example, when upwind flux is applied, the locally defined Gauss--181

Radau (GR) projection can totally eliminate projection errors on the boundaries [6, 2].182

When generalized fluxes are used, the collocation requirement would make projection183

global (e.g., [20, 18]) and also eliminate projection errors at boundaries.184

The second one is that the unique existence and optimal approximation properties185

of the resulting projection are provable, which can be accomplished by analyzing a186

global projection [20, 9] for generalized fluxes when the wind direction does not change.187

However, when wind direction does change, existence and uniqueness of the projection188

cannot be established if simply constructing a global projection as before. Instead,189

the idea of introducing a piecewise global projection for different regions on which the190

wind direction keeps its sign is essential; see, e.g., [17], in which degenerate linear191

variable coefficient hyperbolic equations with upwind-biased fluxes are considered.192

The last one is that the projection should be linear of u without any time variable193

explicitly involved, so that the estimate to the time derivative of projection error is a194

trivial consequence of that of the projection error itself. In particular, the standard195

local GR projection naturally satisfies this property [6], and when generalized fluxes196

are adopted, this property also holds by defining projections to be dependent only on197

some weights but not on u [18, 20, 9, 17]. It is this property that we only consider198

the leading term of projection errors, and we fully make use of the relation that, at199

xj+1
2
, \alpha = | f \prime (uj+1

2
)| +\scrO (h), which is valid for LLF type fluxes.200

We are now ready to present the definition of a piecewise global projection that201

is linear for u and also for the time derivative operator. To do that, we first assume202

f \prime (u) has finite zeros on I. As h goes to zero, we can assume there exists at most203

one zero on any cell Ij for j = 1, . . . , N . Indeed, the zeros of f \prime (u) do not vary with204

respect to the time variable t, since the exact solution is assumed to be smooth and205

thus f \prime (u(x, t)) = f \prime (u0(x)), which is quite beneficial for us to construct a satisfactory206

projection. To clearly display the main idea in designing a piecewise global projection207

satisfying the three properties mentioned, let us mainly consider the case that f \prime (u)208

has only two zeros: the case with more zeros can be defined by combining [17] and209
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the technique discussed in this paper. We adopt the notation \BbbZ +
N = \{ 1, 2, . . . , N\} and210

define \gamma , \beta \in \BbbZ +
N as211

\gamma = \{ j
\bigm| \bigm| f \prime (uj - 1

2
) > 0 and f \prime (uj+1

2
) \leq 0 \forall j \in \BbbZ +

N\} ,212

\beta = \{ j
\bigm| \bigm| f \prime (uj - 1

2
) < 0 and f \prime (uj+1

2
) \geq 0 \forall j \in \BbbZ +

N\} .213
214

Note that \gamma and \beta are two fixed numbers determined by f \prime (u0(x)); for more details,215

see [17]. Similar to [17, section 3.1], we can use a unified notation for two index sets216

b+ = \{ \beta , . . . , \gamma  - 1\} , b - = \{ \gamma + 1, . . . , \beta  - 1\} ,217

for periodic boundary conditions, no matter which (\gamma or \beta ) is bigger.218

Then the piecewise global projection, denoted by \scrP hu, is defined as follows: for219

u \in H1(\scrI h), we define the projection \scrP hu \in V k
h satisfying220 \int 

Ij

(\scrP hu)\varphi dx =

\int 
Ij

u\varphi dx \forall \varphi \in P k - 1(Ij), j \in \BbbZ +
N ,(3.1a)221

(\scrP hu)
 - 
j+1

2
= u - j+1

2
at xj+1

2
, j = \gamma ,(3.1b)222

(\widehat \scrP hu
p

)j+1
2
= \^up

j+1
2

at xj+1
2
, j \in b+,(3.1c)223

(\widehat \scrP hu
n

)j - 1
2
= \^un

j - 1
2

at xj - 1
2
, j \in b - ,(3.1d)224

225

where the superscript p (n) refers to the index set of a region on which f \prime (uj+1
2
) is226

positive (negative), and \forall z \in H1(\scrI h)227

\^zp=

\biggl( 
1

2
+(\lambda + \theta )

\biggr) 
z - +

\biggl( 
1

2
 - (\lambda + \theta )

\biggr) 
z+, \^zn=

\biggl( 
1

2
 - (\lambda  - \theta )

\biggr) 
z - +

\biggl( 
1

2
+ (\lambda  - \theta )

\biggr) 
z+.228

Remark 3.1. The piecewise global projection (3.1) defines a stronger (local) collo-229

cation at x\gamma + 1
2
. Moreover, a combination of (3.1d) with (3.1b) will lead to an inherent230

local collocation at x\gamma + 1
2
, namely231

(\scrP hu)
+
j - 1

2
= u+j - 1

2
, j = \gamma + 1.232

Therefore, the projection (3.1) can be decoupled starting from I\gamma or I\gamma +1, and this233

is why it is called a piecewise global projection. Note that when f \prime (u(x, t)) does not234

change its sign \forall (x, t) \in I \times (0, T ], the piecewise global projection defined above will235

reduce to some global projections as those in [20, 9].236

The optimal approximation property of \scrP hu is given in the following lemma.237

Lemma 3.2. Assume u is smooth and periodic, and f \prime (u) has finite zeros on I;238

then there exists a unique projection \scrP hu satisfying (3.1). Moreover, there holds the239

following optimal approximation property:240

(3.2) \| u - \scrP hu\| L2(I) + h
1
2 \| u - \scrP hu\| L2(\Gamma h) \leq Chk+1\| u\| Hk+1(\scrI h),241

where C is independent of the mesh size h.242

The proof of Lemma 3.2 is postponed to the appendix.243

As for the initial discretization, we would like to use the standard L2 projection244

\pi h, and we have245

(3.3) \| u0  - \pi hu0\| L2(I) \leq Chk+1\| u0\| Hk+1(\scrI h).246
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3.1.2. Inverse inequalities and the a priori assumption. The following247

inverse properties [3, 11] will be used for nonlinear equations. For all vh \in V k
h , there248

holds (i) \| (vh)x\| L2(I) \leq Ch - 1\| vh\| L2(I), (ii) \| vh\| L2(\Gamma h) \leq Ch - 
1
2 \| vh\| L2(I), (iii) \| vh\| L\infty (I)249

\leq Ch - 
1
2 \| vh\| L2(I).250

Denoting the error as e = u - uh and \eta = u - \scrP hu, \xi = \scrP hu - uh, the following a251

priori assumption is useful to deal with high order terms252

(3.4) \| \xi (t)\| L2(I) \leq h
3
2 \forall t \in (0, T ].253

By the triangle inequality, (3.4), and inverse property (iii), it is easy to show for k \geq 1254

(3.5) \| e(t)\| L\infty (I) \leq \| \eta (t)\| L\infty (I) + \| \xi (t)\| L\infty (I) \leq Ch \forall t \in (0, T ],255

where we have also used the estimate \| \eta (t)\| L\infty (I) \leq Chk+
1
2 implied by (3.2) and the256

Sobolev inequality. The a priori assumption (3.4) can be verified by the continuity257

of \| \xi (t)\| and optimal error estimate in (3.6) below, with the initial error estimate at258

t = 0 as a starting point; for more details, we refer to [21].259

3.2. The main result. We are now ready to state the optimal error estimates,260

which hold for GLLF fluxes that are not even monotone, as long as (2.2b) is satisfied.261

Theorem 3.3. Let u be the exact solution of (1.1), which is assumed to be suf-262

ficiently smooth, i.e., \| u\| Hk+1(\scrI h) and \| ut\| Hk+1(\scrI h) are bounded uniformly for any time263

t \in [0, T ]. Assume f is smooth, for example, f \in C2. Let uh be the DG solution with264

GLLF fluxes (2.2) for solving nonlinear conservation laws. If piecewise polynomials265

space V k
h of degree k \geq 1 is used, then for small enough h there holds the following266

optimal error estimate:267

(3.6) \| u(t) - uh(t)\| L2(I) \leq Chk+1 \forall t \in (0, T ],268

where C is independent of h.269

3.3. Proof of the main result. We will finish the proof with the following five270

steps.271

Step 1: Error equation and error decomposition. Since the exact solution272

u also satisfies the DG scheme (2.1), by Galerkin orthogonality, there holds the cell273

error equation274

(3.7)

\int 
Ij

etvhdx =

\int 
Ij

\bigl( 
f(u) - f(uh)

\bigr) 
(vh)xdx - (f  - \^f)v - h

\bigm| \bigm| 
j+1

2

+ (f  - \^f)v+h
\bigm| \bigm| 
j - 1

2

275

for any vh \in V k
h and j = 1, . . . , N , where e = u - uh. Typically, to deal with nonlinear276

flux functions, the following linearization technique based on Taylor expansion should277

be used.278

On any cell Ij , by the second order Taylor expansion, one has279

f(u) - f(uh) = f \prime (u)e - R0e
2,280

where R0 = 1
2

\int 1

0
f \prime \prime (u+ s(uh  - u))(1 - s)ds. Next, to deal with nonlinear boundary281

terms, namely f(uj+1
2
) - \^f((u - h )j+1

2
, (u+h )j+1

2
), we need to apply the second order Taylor282
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expansion to each nonlinear term in the GLLF flux (2.2); when omitting the subscript283

j + 1
2 , it reads284

f(u - h ) = f(u) - f \prime (u)e - +R1(e
 - )2, f(u+h ) = f(u) - f \prime (u)e+ +R2(e

+)2,285

where R1 = 1
2

\int 1

0
f \prime \prime (u+ s(u - h  - u))(1 - s)ds, R2 = 1

2

\int 1

0
f \prime \prime (u+ s(u+h  - u))(1 - s)ds.286

Therefore, at each boundary point xj+1
2
, by JuhK = Juh  - uK =  - J\eta K  - J\xi K since u is287

continuous across cell interfaces, one has, after some simple algebraic calculations288

f(u) - \^f(u - h , u
+
h ) =

\widehat f \prime \eta lin

+ \widehat f \prime \xi lin

 - \widehat Re2nlr

,289

where290

\widehat f \prime \eta lin

=

\biggl( \biggl( 
1

2
+ \theta 

\biggr) 
f \prime (u) + \lambda \alpha 

\biggr) 
\eta  - +

\biggl( \biggl( 
1

2
 - \theta 

\biggr) 
f \prime (u) - \lambda \alpha 

\biggr) 
\eta +,(3.8a)291

\widehat f \prime \xi lin

=

\biggl( \biggl( 
1

2
+ \theta 

\biggr) 
f \prime (u) + \lambda \alpha 

\biggr) 
\xi  - +

\biggl( \biggl( 
1

2
 - \theta 

\biggr) 
f \prime (u) - \lambda \alpha 

\biggr) 
\xi +,(3.8b)292

\widehat Re2nlr

=

\biggl( 
1

2
+ \theta 

\biggr) 
R1(e

 - )2 +

\biggl( 
1

2
 - \theta 

\biggr) 
R2(e

+)2.(3.8c)293

294

For notational convenience, we use the following DG spatial discretization oper-295

ator: \forall \rho , \phi \in H1(\scrI h),296

\scrH j(\rho , \phi ; \^\rho ) =

\int 
Ij

\rho \phi xdx - \^\rho \phi  - 
\bigm| \bigm| 
j+1

2

+ \^\rho \phi +
\bigm| \bigm| 
j - 1

2

,297

and \scrH (\rho , \phi ; \^\rho ) =
\sum N

j=1 \scrH j(\rho , \phi ; \^\rho ). Taking vh = \xi in (3.7) and summing up over all298

j, the error equation can be written as299

(3.9)
1

2

d

dt
\| \xi \| 2L2(I)+

\int 
I

\eta t\xi dx = \scrH (f \prime (u)\eta , \xi ; \widehat f \prime \eta lin

)+\scrH (f \prime (u)\xi , \xi ; \widehat f \prime \xi lin

) - \scrH (R0e
2, \xi ;\widehat Re2nlr

),300

where
\int 
I
\eta t\xi dx =

\sum N
j=1

\int 
Ij
\eta t\xi dx. The components on the right-hand side of (3.9) are301

referred to as ``\eta terms,"" ``\xi terms,"" and ``higher order terms,"" which are estimated302

in the subsequent three steps.303

Step 2: Estimate of \bfiteta terms. Note that304

(3.10) \scrH (f \prime (u)\eta , \xi ; \widehat f \prime \eta lin

) =

N\sum 
j=1

\int 
Ij

f \prime (u)\eta \xi xdx+

N\sum 
j=1

\bigl( \widehat f \prime \eta lin

J\xi K
\bigr) 
j+1

2

\triangleq S1 + S2.305

The estimate of S1 can be obtained by using the local linearization f \prime (u) = f \prime (uj) +306

f \prime (u) - f \prime (uj) and the orthogonality property of \scrP h in (3.1a); it reads307

S1 =

N\sum 
j=1

\int 
Ij

\bigl( 
f \prime (uj) + f \prime (u) - f \prime (uj)

\bigr) 
\eta \xi xdx308

\leq Ch\| \eta \| L2(I)\| \xi x\| L2(I) \leq C\| \eta \| L2(I)\| \xi \| L2(I) \leq Chk+1\| \xi \| L2(I),(3.11)309
310

where we have also used the inverse property (i) and the fact that | f \prime (u) - f \prime (uj)| \leq Ch311

implied by smoothness of f and u.312
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We now turn to the estimate of S2. If we simply define a projection by asking for313 \widehat f \prime \eta lin

= 0 at each cell interface except at x\beta  - 1
2
, namely314

(3.12) \widehat f \prime \eta lin

=

\biggl( \biggl( 
1

2
+ \theta 

\biggr) 
f \prime (u) + \lambda \alpha 

\biggr) 
\eta  - +

\biggl( \biggl( 
1

2
 - \theta 

\biggr) 
f \prime (u) - \lambda \alpha 

\biggr) 
\eta +315

to be zero except at x\beta  - 1
2
, we can see that the proposed projection would be dependent316

on f \prime (u) as well as \alpha and thus on t, indicating that it is almost impossible to prove317

(\scrP hu)t = \scrP h(ut) which will be used to estimate \| \eta t\| L2(I).318

Fortunately, since \alpha is chosen locally for values between u - h and u+h at each cell319

interface for the GLLF flux, it follows from the smoothness of f and u that320

(3.13) \alpha = max
\omega \in [c,d]

| f \prime (\omega )| = | f \prime (u)| + \varepsilon , at xj+1
2
,321

where | \varepsilon | \leq C\| e\| L\infty (I) \leq Ch by the estimate (3.5) implied by (3.4). At each cell322

interface xj+1
2
, a substitution of (3.13) into (3.12) leads to323

\widehat f \prime \eta lin

=

\biggl( \biggl( 
1

2
+ \lambda + \theta 

\biggr) 
f \prime (u) + \lambda \varepsilon 

\biggr) 
\eta  - +

\biggl( \biggl( 
1

2
 - \lambda  - \theta 

\biggr) 
f \prime (u) - \lambda \varepsilon 

\biggr) 
\eta +, f \prime (u) > 0,

\widehat f \prime \eta lin

=

\biggl( \biggl( 
1

2
 - \lambda + \theta 

\biggr) 
f \prime (u) + \lambda \varepsilon 

\biggr) 
\eta  - +

\biggl( \biggl( 
1

2
+ \lambda  - \theta 

\biggr) 
f \prime (u) - \lambda \varepsilon 

\biggr) 
\eta +, f \prime (u) \leq 0,

324

325

which is326

\widehat f \prime \eta lin

= f \prime (u)

\biggl( \biggl( 
1

2
+ (\lambda + \theta )

\biggr) 
\eta  - +

\biggl( 
1

2
 - (\lambda + \theta )

\biggr) 
\eta +
\biggr) 
 - \lambda \varepsilon J\eta K, f \prime (u) > 0,

(3.14a)

327

\widehat f \prime \eta lin

= f \prime (u)

\biggl( \biggl( 
1

2
 - (\lambda  - \theta )

\biggr) 
\eta  - +

\biggl( 
1

2
+ (\lambda  - \theta )

\biggr) 
\eta +
\biggr) 
 - \lambda \varepsilon J\eta K, f \prime (u) \leq 0,

(3.14b)

328

329

at the cell boundaries xj+1
2
. By the definition of the special piecewise global projection330

\scrP h in (3.1), the first term on the right side of (3.14a) and (3.14b) will be zero except331

at the point x\beta  - 1
2
, namely f \prime (u\beta  - 1

2
)\^\eta n

\beta  - 1
2

\not = 0. Consequently, for any j = 1, . . . , N332

\bigm| \bigm| \widehat f \prime \eta lin

j+1
2

\bigm| \bigm| \leq Ch(\| \eta \| L2(\partial I\beta  - 1) + \| \eta \| L2(\partial I\beta ) + \| \eta \| L2(\partial Ij) + \| \eta \| L2(\partial Ij+1)),333

since | f \prime (u\beta  - 1
2
)| \leq Ch and | \varepsilon | \leq Ch. Then the Cauchy--Schwarz inequality, inverse334

inequality (ii), and optimal approximation property (3.2) give us a bound of S2,335

(3.15) S2 \leq Ch\| \eta \| L2(\Gamma h)\| \xi \| L2(\Gamma h) \leq Chk+1\| \xi \| L2(I).336

A combination of (3.11) and (3.15) leads to the estimate to \eta terms337

(3.16) \scrH (f \prime (u)\eta , \xi ; \widehat f \prime \eta lin

) \leq Chk+1\| \xi \| L2(I),338

where C is independent of h.339
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Step 3: Estimate of \bfitxi terms. Using integration by parts, we have340

\scrH (f \prime (u)\xi , \xi ; \widehat f \prime \xi lin

)341

=

N\sum 
j=1

\int 
Ij

f \prime (u)\xi \xi xdx+

N\sum 
j=1

\bigl( \widehat f \prime \xi lin

J\xi K
\bigr) 
j+1

2

342

=

N\sum 
j=1

\Biggl( 
 - 1

2

\int 
Ij

\partial xf
\prime (u)\xi 2dx - (f \prime (u)\{ \{ \xi \} \} J\xi K)j+1

2

\Biggr) 
343

+

N\sum 
j=1

\Biggl( \biggl( \biggl( 
1

2
+ \theta 

\biggr) 
f \prime (u) + \lambda \alpha 

\biggr) 
\xi  - +

\biggl( \biggl( 
1

2
 - \theta 

\biggr) 
f \prime (u) - \lambda \alpha 

\biggr) 
\xi +

\Biggr) \Biggr) 
j+1

2

J\xi Kj+1
2

344

=

N\sum 
j=1

\Biggl( 
 - 1

2

\int 
Ij

\partial xf
\prime (u)\xi 2dx

\Biggr) 
 - 

N\sum 
j=1

(\theta f \prime (u) + \lambda \alpha )j+1
2

J\xi K2j+1
2

345

\leq C\| \xi \| 2L2(I) + Z,(3.17)346
347

where348

(3.18) Z =  - 
N\sum 
j=1

\bigl( 
\theta f \prime (u) + \lambda \alpha 

\bigr) 
j+1

2

J\xi K2j+1
2
.349

To estimate Z, let us split the sum with respect to j into three parts based on values350

of | f \prime (uj+ 1
2
)| , namely for a given constant \~C = \lambda C/(\lambda  - | \theta | ) > 0 with C satisfying351

| \varepsilon | \leq Ch352

(3.19) Z = Z1 + Z2 + Z3,353

where354

Z1 =  - 
\sum 

f \prime (u
j+1

2
)=0

\bigl( 
\theta f \prime (u) + \lambda \alpha 

\bigr) 
j+1

2

J\xi K2j+1
2
,355

Z2 =  - 
\sum 

| f \prime (u
j+1

2
)| \leq \~Ch

\bigl( 
\theta f \prime (u) + \lambda \alpha 

\bigr) 
j+1

2

J\xi K2j+1
2
,356

Z3 =  - 
\sum 

| f \prime (u
j+1

2
)| > \~Ch

\bigl( 
\theta f \prime (u) + \lambda \alpha 

\bigr) 
j+1

2

J\xi K2j+1
2
.357

358

For Z1, it is easy to show that359

(3.20a) Z1 =  - 
\sum 

f \prime (u
j+1

2
)=0

\lambda \alpha j+1
2
J\xi K2j+1

2
\leq 0.360

For the index set satisfying | f \prime (uj+ 1
2
)| \leq \~Ch, by (3.13), we have361

| \theta f \prime (uj+1
2
) + \lambda \alpha j+1

2
| \leq Ch.362

Then, by the inverse property (ii), we get363

(3.20b) Z2 \leq Ch\| \xi \| 2L2(\Gamma h)
\leq C\| \xi \| 2L2(I).364

Administrator
附注
An extra right parenthesis was given here, which needs to be removed. Thank you for your careful reading.
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As to the index set satisfying | f \prime (uj+ 1
2
)| > \~Ch, by (3.13) and the choice of \~C, we365

deduce that366

\theta f \prime (uj+1
2
) + \lambda \alpha j+1

2
\geq (\lambda  - | \theta | )| f \prime (uj+1

2
)|  - \lambda | \varepsilon | \geq 0,367

since | \varepsilon | \leq Ch. Thus368

(3.20c) Z3 \leq 0.369

Substituting (3.20a)--(3.20c) into (3.17), we arrive at the estimate of \xi terms,370

(3.21) \scrH (f \prime (u)\xi , \xi ; \widehat f \prime \xi lin

) \leq C\| \xi \| 2L2(I),371

where C is independent of h.372

Remark 3.4. We can see that the condition (2.2b), namely \lambda > | \theta | , is crucial373

for the estimate of \scrH (f \prime (u)\xi , \xi ; \widehat f \prime \xi lin

), especially in driving (3.20c). Moreover, the374

nonnegative number \theta f \prime (uj+1
2
) + \lambda \alpha j+1

2
can be regarded as the numerical viscosity375

coefficient for the GLLF fluxes (2.2), which allows us to choose suitable \lambda and \theta 376

(closer \lambda and | \theta | ) such that the numerical viscosity coefficient is smaller than that377

of purely upwind fluxes. This is useful for resolving shocks even without nonlinear378

limiters; see, e.g., Figures 1 and 2 below.379

Step 4: Estimate of higher order terms. For higher order terms, it follows380

from the Cauchy--Schwarz inequality, the inverse properties (i)--(iii), and the optimal381

approximation property (3.2) that382

\scrH (R0e
2, \xi ;\widehat Re2nlr

) \leq 
N\sum 
j=1

\bigm| \bigm| \bigm| \bigm| \int 
Ij

R0e
2\xi xdx+

\bigl( \widehat Re2nlr

J\xi K
\bigr) 
j+1

2

\bigm| \bigm| \bigm| \bigm| 383

\leq C\| e\| L\infty (I)

\bigl( 
\| e\| L2(I)\| \xi x\| L2(I) + \| e\| L2(\Gamma h)\| \xi \| L2(\Gamma h)

\bigr) 
384

\leq Ch - 1\| e\| L\infty (I)

\bigl( 
\| \eta \| L2(I) + \| \xi \| L2(I) + h

1
2 \| \eta \| L2(\Gamma h)

\bigr) 
\| \xi \| L2(I)385

\leq Ch - 1\| e\| L\infty (I)

\bigl( 
\| \xi \| L2(I) + hk+1

\bigr) 
\| \xi \| L2(I),386

387

which, by (3.5) implied by the a priori assumption (3.4), is388

(3.22) \scrH (R0e
2, \xi ;\widehat Re2nlr

) \leq C\| \xi \| 2L2(I) + Chk+1\| \xi \| L2(I),389

where C is independent of h.390

Step 5: The final estimate of \| \bfitxi \| \bfitL \bftwo (\bfitI ). Collecting the estimates (3.16), (3.21),391

and (3.22) into (3.9) and using the Cauchy--Schwarz inequality, we arrive at the fol-392

lowing inequality for \| \xi \| L2(I):393

(3.23)
1

2

d

dt
\| \xi \| 2L2(I) \leq \| \eta t\| L2(I)\| \xi \| L2(I) + C\| \xi \| 2L2(I) + Chk+1\| \xi \| L2(I).394

By the definition of \scrP h in (3.1), we can see that \scrP h depends solely on u and two395

constants \lambda , \theta , indicating that \scrP h is a linear operator of u. Indeed, this can be seen396

clearly from the explicit formula of \scrP h depending only on the integrals and point values397

of u, following the argument in [17, section 4.1]. Thus, \eta t = ut - (\scrP hu)t = ut - \scrP h(ut).398

Therefore, by Lemma 3.2399

\| \eta t\| L2(I) \leq Chk+1\| ut\| Hk+1(\scrI h).400



12 J. LI, D. ZHANG, X. MENG, B. WU, AND Q. ZHANG

Substituting the above estimate into (3.23) and using Young's inequality, one has401

1

2

d

dt
\| \xi \| 2L2(I) \leq C\| \xi \| 2L2(I) + Ch2k+2.402

Application of Gronwall's inequality together with initial error estimate (3.3) leads to403

(3.24) \| \xi (t)\| L2(I) \leq Chk+1 \forall t \in (0, T ],404

where C is independent of h. The optimal error estimate (3.6) in Theorem 3.3 can405

thus be obtained by taking into account \| \eta (t)\| L2(I) \leq Chk+1.406

Remark 3.5. For the Dirichlet boundary conditions, the optimal error estimates407

conclusion of Theorem 3.3 is still valid. The Dirichlet boundary conditions have two408

cases that the signs of f \prime (u) at two end boundaries of I are the same or different. For409

such cases, numerical fluxes at x1/2 and xN+1/2 should be chosen as (3.25) or (3.26) of410

[17, section 3.5], respectively. As to the design and analysis for projections, following411

[17, 20], for the projection errors we can require an exact collocation at the outflow412

boundary while asking for another collocation with weights \lambda , \theta on which f \prime (uj+1/2)413

is sign definite. This yields a piecewise global projection similar to that in (3.1). The414

optimal error estimates can be obtained analogously, and a detailed proof is omitted.415

4. Numerical experiments. In this section, we present some numerical ex-416

amples mainly addressing the following two issues. One is the sharpness of optimal417

error estimates in Theorem 3.3, which hold not only for monotone GLLF fluxes under418

condition (2.3) but also for the GLLF flux that is not monotone when some suitable419

weights are chosen. Another issue is the excellent performance of GLLF fluxes in420

resolving shocks, especially for those which are not monotone.421

For all examples, the third order TVD Runge--Kutta time discretization is used422

with some suitable time steps. In Examples 4.1 and 4.2, \tau = CFLk \cdot hrk for P k
423

(1 \leq k \leq 4) polynomials with r1 = r2 = 1, r3 = 1.334 > 4/3, r4 = 1.667 > 5/3 and424

CFL1 = 0.1, CFL2 = CFL3 = CFL4 = 0.05. Uniform meshes are used.425

Example 4.1. Consider the Burgers equation426 \left\{     ut +
\Bigl( u2
2

\Bigr) 
x
= 0, (x, t) \in [ - 1, 1]\times (0, T ],

u(x, 0) = u0(x), x \in [ - 1, 1],

427

with periodic boundary conditions, where u0(x) =
1
2 sin(\pi x) +

1
4 for x \in [ - 1, 1].428

The numerical errors and orders for different weights at T = 0.3 for which the432

exact is still smooth are listed in Table 1. From the table, we conclude that optimal433

orders of k + 1 can always be observed for GLLF fluxes, no matter whether it is434

monotone or not.435

To demonstrate stability and especially for nonmonotone GLLF fluxes, we con-436

sider Example 4.1 with T = 12 that a shock has been developed. The cell averages of437

DG solutions at T = 12 with 80 cells are shown in Figure 1, from which we can see438

that the DG scheme with GLLF fluxes is always stable with potential advantages in439

resolving shocks; see subfigure (e). In Figure 2, we plot the pointwise values of DG440

solutions for the cells from No. 33 to No. 40 among the total 80 cells. It seems that441

the numerical solution for the weights in subfigure (f) is less oscillatory than that of442

the standard LLF flux in subfigure (b), especially for P 1 elements.443
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Table 1429

L2 errors and orders for Example 4.1 using Pk polynomials with different \lambda , \theta on uniform
mesh of N cells. T = 0.3.

430

431

N
\lambda = 0.5 \lambda = 0.5 \lambda = 0.5 \lambda = 1.25
\theta =  - 0.25 \theta = 0 \theta = 0.25 \theta = 0

L2 error Order L2 error Order L2 error Order L2 error Order

P 1

20 4.92E-03 -- 3.96E-03 -- 4.20E-03 -- 3.21E-03 --
40 1.37E-03 1.84 1.05E-03 1.91 1.17E-03 1.84 8.04E-03 2.00
80 3.70E-04 1.89 2.75E-04 1.94 3.17E-04 1.89 2.02E-04 1.99
160 9.71E-05 1.93 7.10E-05 1.96 8.35E-05 1.92 5.09E-05 1.99

P 2

20 2.40E-04 -- 2.49E-04 -- 2.63E-04 -- 3.01E-04 --
40 3.00E-05 3.00 3.38E-05 2.88 3.82E-05 2.78 4.81E-05 2.65
80 3.83E-06 2.97 4.52E-06 2.90 5.37E-06 2.83 7.34E-06 2.71
160 4.86E-07 2.98 5.89E-07 2.94 7.24E-07 2.89 1.05E-06 2.81

P 3

20 2.07E-05 -- 1.96E-05 -- 1.98E-05 -- 2.00E-05 --
40 1.64E-06 3.66 1.40E-06 3.91 1.34E-06 3.88 1.28E-06 3.97
80 1.23E-07 3.74 9.38E-08 3.90 8.64E-08 3.96 7.72E-08 4.05
160 8.70E-09 3.82 6.15E-09 3.93 5.61E-09 3.95 4.82E-09 4.00

P 4

20 2.45E-06 -- 2.17E-06 -- 2.09E-06 -- 2.08E-06 --
40 7.02E-08 5.12 7.25E-08 4.90 7.63E-08 4.78 8.52E-08 4.61
80 2.14E-09 5.04 2.44E-09 4.89 2.78E-09 4.78 3.49E-09 4.61
160 6.72E-11 4.99 7.97E-11 4.93 9.55E-11 4.86 1.32E-10 4.73

In order to show long time behavior of DG errors for GLLF fluxes, in what follows446

we consider two nonhomogeneous nonlinear hyperbolic equations with smooth exact447

solution. Note that the optimal error estimates may not be valid for such an equation.448

This is because the proposed special projection \scrP h does not work, as the characteristic449

lines may be curved and thus the zeros of f \prime (u(x, t)) can be dependent on t.450

Example 4.2. Consider the following nonhomogeneous nonlinear equation:451 \left\{     ut +
\Bigl( u2
2

\Bigr) 
x
= g(x, t), (x, t) \in [0, 2\pi ]\times (0, T ],

u(x, 0) = u0(x), x \in [0, 2\pi ],

452

with periodic boundary conditions, where u0(x) = sinx, g(x, t) = 1
2 sin(2x  - t) such453

that the exact solution is u(x, t) = sin(x - t
2 ) +

1
2 .454

The L2 numerical errors and orders with different \lambda , \theta at T = \pi are given in455

Table 2, from which we conclude that the DG scheme (2.1) with GLLF fluxes for the456

nonlinear equation in Example 4.2 also achieves optimal (k + 1)th order of accuracy.457

Moreover, when the final time T is large enough, the errors do not show growth;458

for instance, when T = 100, N = 160, (\lambda , \theta ) = (0.5, - 0.25), the L2 errors are still459

4.72E-07 for the P 2 case.460

Example 4.3. Consider the following equation with strong nonlinearity:464 \Biggl\{ 
ut +

\bigl( 
eu
\bigr) 
x
= g(x, t), (x, t) \in [0, 2\pi ]\times (0, T ],

u(x, 0) = u0(x), x \in [0, 2\pi ],
465

with periodic boundary conditions, where u0(x) = sinx, g(x, t) = cos(x - t)(esin(x - t) - 466

1) such that the exact solution is u(x, t) = sin(x - t).467

In this example, we only present numerical results for the P 2 and P 3 cases, and468

\tau = CFLk \cdot hrk for P k (k = 2, 3) polynomials with r2 = 1, r3 = 1.334 > 4/3 and469
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Fig. 1. Cell averages of DG solutions in Example 4.1 using Pk polynomials. N = 80, T = 12.444

CFL2 = CFL3 = 0.03. The L2 errors and orders with different \lambda , \theta at T = \pi are470

given in Table 3, from which we can also observe the expected optimal (k+1)th order471

of accuracy for the DG error.472

Numerical results of Examples 4.2 and 4.3 indicate that the DG scheme with476

GLLF fluxes maintains stability and exhibits excellent long time behaviors, even for477

conservation laws with strong nonlinearity. In addition, it seems that the DG scheme478

with smaller numerical viscosity coefficients (closer \lambda and | \theta | ) produces smaller mag-479

nitude of DG errors for even k, while it produces bigger magnitude of DG errors for480

odd k. This agrees with numerical results for the linear version of GLLF fluxes in481

[20], in which linear hyperbolic equations with upwind-biased fluxes are considered.482

5. Concluding remarks. In this paper, we study the DG scheme with GLLF483

fluxes for scalar nonlinear conservation laws. The stability of the DG scheme is484

established when \lambda \geq 1
2 + | \theta | , and optimal a priori error estimates are obtained485

under the condition \lambda > | \theta | , for which linear stability can be proved [20]. The main486

technicality is the construction and analysis of a piecewise global projection, which487

not only eliminates as many projection error terms as possible with provable optimal488
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Fig. 2. Pointwise values of DG solutions in Example 4.1 using Pk polynomials. N = 80, T = 12.445

approximation property, but also commutes with the time derivative operator. It is489

worth pointing out that the optimal error estimates are also valid for GLLF fluxes490

that are not monotone, and the numerical viscosity coefficients are adjustable, making491

it possible to better resolve shocks. Numerical experiments are given to validate492

the theoretical results. Future work includes a rigorous study of stability for non-493

monotone GLLF fluxes with | \theta | < \lambda < | \theta | + 1
2 and extension to two-dimensional494

nonlinear conservation laws.495

Appendix A. Proof of Lemma 3.2. First, let us introduce the standard locally496

defined GR projection P - 
h , whose definition is as follows. For u \in H1(\scrI h), P - 

h u \in V k
h497

is the unique piecewise polynomial satisfying498 \int 
Ij

(P - 
h u)\varphi dx =

\int 
Ij

u\varphi dx \forall \varphi \in P k - 1(Ij),(A.1a)499

(\scrP hu)
 - 
j+1

2
= u - j+1

2
at xj+1

2
(A.1b)500

501
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Table 2461

L2 errors and orders for Example 4.2 using Pk polynomials with different \lambda , \theta on uniform
mesh of N cells. T = \pi .

462

463

N
\lambda = 0.5 \lambda = 0.5 \lambda = 0.5 \lambda = 1.25
\theta =  - 0.25 \theta = 0 \theta = 0.25 \theta = 0

L2 error Order L2 error Order L2 error Order L2 error Order

P 1

20 1.44E-02 -- 1.08E-02 -- 1.33E-02 -- 7.05E-03 --
40 3.60E-03 2.00 2.67E-03 2.02 3.39E-03 1.98 1.84E-03 2.02
80 8.97E-04 2.01 6.64E-04 2.01 8.56E-04 1.98 4.59E-04 2.01
160 2.24E-04 2.00 1.66E-04 2.00 2.15E-04 1.99 1.15E-04 2.00

P 2

20 2.60E-04 -- 3.25E-04 -- 4.17E-04 -- 6.92E-04 --
40 3.32E-05 2.97 3.83E-05 3.08 4.75E-05 3.13 8.43E-05 3.04
80 3.91E-06 3.09 4.46E-06 3.10 5.50E-06 3.11 9.27E-06 3.18
160 4.72E-07 3.05 5.37E-07 3.05 6.64E-07 3.05 1.07E-06 3.11

P 3

20 6.72E-06 -- 5.32E-06 -- 6.98E-06 -- 3.88E-06 --
40 4.29E-07 3.97 3.30E-07 4.01 4.17E-07 4.06 2.38E-07 4.02
80 2.72E-08 3.98 2.07E-08 3.99 2.63E-08 3.99 1.48E-08 4.00
160 1.70E-09 4.00 1.29E-09 4.00 1.64E-09 4.00 9.26E-10 4.00

P 4

20 1.19E-07 -- 1.31E-07 -- 1.56E-07 -- 2.50E-07 --
40 3.74E-09 5.00 4.00E-09 5.03 4.52E-09 5.11 7.15E-09 5.13
80 1.15E-10 5.02 1.22E-10 5.04 1.36E-10 5.06 1.99E-10 5.17
160 3.55E-12 5.02 3.75E-12 5.02 4.15E-12 5.03 5.83E-12 5.09

Table 3473

L2 errors and orders for Example 4.3 using Pk polynomials with different \lambda , \theta on uniform
mesh of N cells. T = \pi .

474

475

N
\lambda = 0.5 \lambda = 0.5 \lambda = 0.5 \lambda = 1.25
\theta =  - 0.25 \theta = 0 \theta = 0.25 \theta = 0

L2 error Order L2 error Order L2 error Order L2 error Order

P 2

20 2.04E-04 -- 2.70E-04 -- 3.50E-04 -- 5.12E-04 --
40 2.52E-05 3.02 3.36E-05 3.01 4.40E-05 2.99 6.66E-05 2.94
80 3.14E-06 3.00 4.19E-06 3.00 5.51E-06 3.00 8.42E-06 2.98
160 3.93E-07 3.00 5.24E-07 3.00 6.89E-07 3.00 1.05E-06 3.00

P 3

20 8.15E-06 -- 5.22E-06 -- 4.36E-06 -- 3.83E-06 --
40 5.26E-07 3.95 3.25E-07 4.01 2.70E-07 4.01 2.37E-07 4.01
80 3.31E-08 3.99 2.03E-08 4.00 1.69E-08 3.00 1.48E-08 4.00
160 2.07E-09 4.00 1.27E-09 4.00 1.05E-09 4.00 9.23E-10 4.00

for j = 1, . . . , N . By the Bramble--Hilbert lemma and scaling arguments [3, 11], if502

u \in Hk+1(\scrI h), then there holds the following optimal approximation property:503

(A.2) \| u - P - 
h u\| L2(I)

+ h
1
2 \| u - P - 

h u\| L2(\Gamma h) \leq Chk+1\| u\| Hk+1(\scrI h),504

where C is independent of h.505

Then we prove the unique existence of \scrP hu. By denoting \scrE = \scrP hu  - P - 
h u, \psi =506

u - P - 
h u, one has \scrP hu - u = \scrE  - \psi . The unique existence of \scrP hu can thus be obtained507

if we can prove existence of \scrE , since \scrP hu = \scrE + P - 
h u. Denote by \scrE j the restriction of508

\scrE on each Ij ; then509

(A.3) \scrE j(x) =
k\sum 

\ell =0

\alpha j,\ell Pj,\ell (x) =

k\sum 
\ell =0

\alpha j,\ell P\ell (s), j \in \BbbZ +
N ,510

where P\ell (s) is the \ell th order standard Legendre polynomial on [ - 1, 1] with s =
2(x - xj)

hj
511

and Pj,\ell (x) is the scaled Legendre polynomial on Ij .512
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From (3.1a) and (A.1a), there holds
\int 
Ij
\scrE \varphi dx = 0 \forall \varphi \in P k - 1(Ij), j \in \BbbZ +

N . Then,513

due to the orthogonality properties of the Legendre polynomials, we obtain514

\alpha j,\ell = 0, \ell = 0, . . . , k  - 1, j \in \BbbZ +
N .515

Hence, we have \scrE j(x) = \alpha j,kPk(s). Noting that analysis of \alpha j,k is the key factor to516

unique existence, we thus consider \alpha j,k when j is taken as different values, which are517

divided into the following three cases.518

When j = \gamma , we can easily obtain that \scrE j(x - \gamma + 1
2

) = 0 by (3.1b) and (A.1b), which519

yields \alpha \gamma ,k = 0.520

When j \in b+, by (3.1c) and (A.1b), one has521

\widehat \scrE p
j+1

2
=

\biggl( 
1

2
 - (\lambda +\theta )

\biggr) 
\psi +
j+1

2
\forall j \in b+,522

which implies523

(A.4)\biggl( 
1

2
+(\lambda +\theta )

\biggr) 
\alpha j,k +

\biggl( 
1

2
 - (\lambda +\theta )

\biggr) 
( - 1)k\alpha j+1,k =

\biggl( 
1

2
 - (\lambda +\theta )

\biggr) 
\psi +
j+1

2
, j \in b+.524

We see that the above system can be decoupled starting from the cell I\gamma by letting525

j = \gamma  - 1 and using \alpha \gamma ,k = 0. Moreover, it can be written into the form526

\BbbA b+\alpha b+ = \Theta b+\psi b+ ,527

where the vectors \alpha b+ = (\alpha \beta ,k, . . . , \alpha \gamma  - 1,k)
\top , \psi b+ = (\psi +

\beta +1
2
, . . . , \psi +

\gamma  - 1
2
)\top , the diagonal528

matrix \Theta b+ = diag
\bigl( 
1
2  - (\lambda +\theta ), . . . , 12  - (\lambda +\theta )

\bigr) 
is of size | b+| \times | b+| , and the upper529

triangular matrix530

\BbbA b+ =

\left(       
1
2+(\lambda +\theta ) ( 12 - (\lambda +\theta ))( - 1)k

. . .
. . .

1
2+(\lambda +\theta ) ( 12 - (\lambda +\theta ))( - 1)k

1
2+(\lambda +\theta )

\right)       531

is also of size | b+| \times | b+| .532

When j \in b - , by (3.1d) and (A.1b), one has533

\widehat \scrE n
j - 1

2
=

\biggl( 
1

2
+(\lambda  - \theta )

\biggr) 
\psi +
j - 1

2
\forall j \in b - ,534

which implies535

(A.5)\biggl( 
1

2
 - (\lambda  - \theta )

\biggr) 
\alpha j - 1,k +

\biggl( 
1

2
+(\lambda  - \theta )

\biggr) 
( - 1)k\alpha j,k =

\biggl( 
1

2
+(\lambda  - \theta )

\biggr) 
\psi +
j - 1

2
, j \in b - .536

Similarly, \alpha \gamma ,k = 0 is still involved in (A.5), indicating that the above system can be537

decoupled starting from the cell I\gamma by letting j = \gamma +1 and using \alpha \gamma ,k = 0. Moreover,538

it can be written into the form539

\BbbA b - \alpha b - = \Theta b - \psi b - ,540
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where the vectors \alpha b - = (\alpha \gamma +1,k, . . . , \alpha \beta  - 1,k)
\top , \psi b - = (\psi +

\gamma +1
2
, . . . , \psi +

\beta  - 3
2

)\top , the diag-541

onal matrix \Theta b - = diag( 12+(\lambda  - \theta ), . . . , 12+(\lambda  - \theta )) is of size | b - | \times | b - | , and the lower542

triangular matrix543

\BbbA b - =

\left(       
( 12+(\lambda  - \theta ))( - 1)k

1
2 - (\lambda  - \theta ) ( 12+(\lambda  - \theta ))( - 1)k

. . .
. . .

1
2 - (\lambda  - \theta ) ( 12+(\lambda  - \theta ))( - 1)k

\right)       544

is also of size | b - | \times | b - | .545

By the condition (2.2b), namely \lambda > | \theta | , we see that 1
2 + (\lambda + \theta ) \not = 0 and546 \bigl( 

1
2 +(\lambda  - \theta )

\bigr) 
( - 1)k \not = 0; then due to the special form of \BbbA b+ and \BbbA b - , we deduce that547

| \BbbA b+ | \not = 0, | \BbbA b - | \not = 0, from which we can prove the unique existence of projection \scrP hu.548

In what follows let us prove the optimal approximation property of projection549

\scrP hu. By denoting \BbbM + = \BbbA  - 1
b+\Theta b+ and \BbbM  - = \BbbA  - 1

b - \Theta b - , we find it is sufficient to prove550

that the matrix norms \| \BbbM \pm \| 2 are bounded. Here we pay attention to the fact that,551

when \lambda > | \theta | , there always holds552 \bigm| \bigm| \bigm| \bigm| 
\bigl( 
1
2  - (\lambda + \theta )

\bigr) 
( - 1)k

1
2 + (\lambda + \theta )

\bigm| \bigm| \bigm| \bigm| < 1,

\bigm| \bigm| \bigm| \bigm| 1
2  - (\lambda  - \theta )\bigl( 

1
2 + (\lambda  - \theta )

\bigr) 
( - 1)k

\bigm| \bigm| \bigm| \bigm| < 1,553

which are involved in the entries of \BbbM + and \BbbM  - . Then we can obtain that \| \BbbM \pm \| 2 are554

bounded if we follow the same lines as that in the analysis of \| \BbbM \pm \| 2 in [17, Lemma555

3.1]. Since there is no essential difference, we do not present a detailed proof to save556

space.557

Consequently, by (A.2)558

\| \alpha b+\| 22 = \| \BbbM +\psi b+\| 22 \leq \| \BbbM +\| 22 \cdot \| \psi b+\| 22 \leq C\| \psi b+\| 22559

\leq C\| u - P - 
h u\| 

2
L2(\Gamma h)

\leq Ch2k+1\| u\| 2Hk+1(\scrI h),560

\| \alpha b - \| 22 = \| \BbbM  - \psi b - \| 22 \leq \| \BbbM  - \| 22 \cdot \| \psi b - \| 22 \leq C\| \psi b - \| 22561

\leq C\| u - P - 
h u\| 

2
L2(\Gamma h)

\leq Ch2k+1\| u\| 2Hk+1(\scrI h).562
563

By denoting \alpha = (\alpha 1,k, . . . , \alpha N,k)
\top and using \alpha \gamma ,k = 0, one has564

(A.6) \| \alpha \| 22 = \| \alpha b+\| 22 + \| \alpha b - \| 22 \leq Ch2k+1\| u\| 2Hk+1(\scrI h),565

since \alpha \gamma ,k = 0. Thus,566

\| \scrE \| 2L2(I) =

N\sum 
j=1

\alpha 2
j,k\| Pj,k(x)\| 2L2(Ij)

=

N\sum 
j=1

hj\alpha 
2
j,k

2k + 1
\leq Ch\| \alpha \| 22,

\| \scrE \| 2L2(\Gamma h)
= 2

N\sum 
j=1

\alpha 2
j,k = 2\| \alpha \| 22,

567

which, in combination with (A.6), gives us568

(A.7) \| \scrE \| L2(I) + h
1
2 \| \scrE \| L2(\Gamma h) \leq Chk+1\| u\| Hk+1(\scrI h),569

where C is independent of h. Then the optimal approximation property (3.2) for \scrP hu570

follows by combining (A.2) and (A.7).571
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