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Abstract

In this note, we consider the radial symmetry property of rotating vortex patches for the 2D
incompressible Euler equations in the unit disk. By choosing a suitable vector field to deform
the patch, we show that each simply-connected rotating vortex patch D with angular velocity
Ω, Ω ≥ max{1/2, (2l2)/(1− l2)2} or Ω ≤ −(2l2)/(1− l2)2, where l = supx∈D |x|, must be a
disk. The main idea of the proof, which has a variational flavor, comes from a recent paper
of Gómez-Serrano–Park–Shi–Yao, arXiv:1908.01722, where radial symmetry of rotating vortex
patches in the whole plane was studied.
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1. Introduction

Let Dr be the disk centered at the origin with radius r, that is,

Dr := {x ∈ R2 | x = (x1, x2), |x| := x21 + x22 < r}.

In this note, we shall study the radial symmetry property of solutions to the two-dimensional
incompressible Euler equations in Dr

∂tv + (v · ∇)v = −∇P, (x, t) ∈ Dr × R+,

∇ · v = 0,

v · n = 0, x ∈ ∂Dr,
v|t=0 = v0,

(1.1)

where v = (v1, v2) is the velocity field, P is the scalar pressure and n is the outward unit normal
of ∂Dr. The boundary condition v ·n = 0, which is usually called the impermeability boundary
condition, means that there is no matter flow through ∂Dr. By introducing the scalar vorticity
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ω := (∂x1v2 − ∂x2v1), the Euler system can be simplified as a single equation for the vorticity{
∂tω +∇⊥(Gω) · ∇ω = 0, (x, t) ∈ Dr × R+,

ω|t=0 = ω0, x ∈ Dr,
(1.2)

where ∇⊥ := (∂x2 ,−∂x1) and Grω(x) :=
∫
Dr
Gr(x, y)ω(y)dy, with Gr being the Green function

for −∆ in Dr with zero Dirichlet data

Gr(x, y) = − 1

2π
ln |x− y| − hr(x, y), hr(x, y) = − 1

2π
ln

∣∣∣∣ rx|x| − |x|y
r

∣∣∣∣ .
Equation (1.2) is usually called the vorticity equation. For weak solutions of the vorticity

equation with initial vorticity ω0 ∈ L∞(Dr), the global well-posedness result was proved by
Yudovich [24]. See also [19], Chapter 8. Since ∇⊥(Gω) is a divergence-free vector field, it is easy
to see that the distribution function of the solution of (1.2) is independent of the time variable
t, that is,

|{x ∈ Dr | ω(x, t) > a}| = |{x ∈ Dr | ω0(x) > a}|

for all a ∈ R and t ∈ R+. Here and in the sequel, we use | · | to denote the two-dimensional
Lebesgue measure. As a consequence, if the initial vorticity ω0 is a constant multiple of the
characteristic function of some measurable setD ⊂ Dr, that is, ω0 = λID, where λ ∈ R represents
the vorticity strength, then the evolved vorticity ω(·, t) must be of the form ω(·, t) = λIDt with
|Dt| = |D| for all t > 0. The preservation of regularity for the boundary of an evolving vortex
patch was firstly proved by Chemin [8] for the whole plane case and then was extended to
bounded domains by Depauw [12].

In this paper, we are mainly concerned with rotating solutions, also called V -states, of the
Euler equations, that is, solutions with the form

ω(x, t) = w(e−iΩtx), (1.3)

where e−iΩtx denotes clockwise rotation through Ωt of x, and Ω ∈ R is the angular velocity of
the rotating solution. It is easy to see that the solution rotates clockwisely if Ω < 0, and rotates
anticlockwisely if Ω > 0. If Ω = 0, then obviously w is a steady solution.

For smooth w, we can substitute (1.3) into the vorticity equation (1.2) to obtain

∇ ·
(
w(x)∇⊥

(
Grw(x) +

Ω

2
|x|2
))

= 0. (1.4)

Since we are going to deal with solutions with discontinuity, we need to interpret (1.4) in the
following weak sense∫

Dr

w(x)∇⊥
(
Grw(x) +

Ω

2
|x|2
)
· ∇ϕ(x)dx = 0, ∀ϕ ∈ C∞

c (Dr). (1.5)
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In fact, (1.4) can be obtained by integration by parts (notice that ∇⊥(Grw(x) + Ω
2 |x|

2)) is
divergence-free). We call ω a rotating vortex patch, or just rotating patch for brevity, if it
satisfies (1.5) and has the form

ω(x, t) = w(e−iΩtx), w = λID, (1.6)

where λ is a parameter representing the vorticity strength of the patch. In the sequel we shall
also call the set D in (1.6) a rotating patch. It is not difficult to check that if D is rotating patch
with C1 boundary and λ ̸= 0, then λGrID + Ω

2 |x|
2 is a constant on each connected component

of ∂D (although on different components the constants may be different). In fact, since D is a
rotating patch, we have

λ

∫
D
∇⊥

(
λGrID(x) +

Ω

2
|x|2
)
· ∇ϕ(x)dx = 0, ∀ϕ ∈ C∞

c (Dr). (1.7)

Then by integration by parts, we obtain∫
∂D

ϕ(x)∇⊥
(
λGrID(x) +

Ω

2
|x|2)

)
· ν⃗(x)dH1 = 0, (1.8)

where ν⃗ denotes the outward unit normal of ∂D and dH1 denotes the one-dimensional Hausdorff
measure. Taking into account the fact that ϕ can be chosen arbitrarily in C∞

c (Dr), we get

∇⊥
(
λGrID(x) +

Ω

2
|x|2)

)
· ν⃗(x) ≡ 0, x ∈ ∂D,

which leads to the desired result.
In the literature, there are a large number of results on existence and stability of rotating

patches (including stationary patches) in the whole plane and in the disk. For existence, roughly
speaking, there are mainly two types of rotating patches in the literature. The first one is of
desingularization type. As the name suggests, it is about the desingularization of point vortices.
More precisely, desingularization of point vortices is to construct a family of rotating (steady)
vortex patches of the Euler equations that “shrinks” to a given rotating (steady) system of
point vortices. We point the interested reader to [3][4][23] and the references listed therein. The
second type of rotating patches is of bifurcation type. It consists of finding a new rotating patch
bifurcating from a given one (for example, a disk, an annulus or a Kirchhoff ellipse). Related
references are [1][7][9][10][11][17][18]. There are also many efforts that have been devoted to
establishing the stability or instability of rotating patches. See [15][21][23] for example. It
should be noted that steady patches in general bounded domains have also been studied by
many authors in recent years. See [2][5][6][22] for example.

Now we come back to rotating patches in the disk Dr. It is easy to see that if D is a disk
centered at the origin, then it must be a rotating patch with arbitrary angular velocity. Now a
very natural problem arises: under what conditions on λ, r,Ω must a rotating patch D be a disk
centered at the origin? To answer this question, we first notice the following fact which can be
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easily checked by using the scaling property of the vorticity equation (1.2): D is a rotating patch
in Dr with vorticity strength λ and angular velocity Ω if and only if D/r := {x ∈ R2 | rx ∈ D}
is a rotating patch in D1 with vorticity strength 1 and angular velocity Ω/λ. For this reason,
we will only consider the case λ = 1 and r = 1 in the rest of this paper.

Before we state our main result, we shall briefly review some known results on the radial
symmetry property of rotating patches, both in the whole plane and in the unit disk. For
rotating patches in the whole plane, Hmidi [16] proved that any C1 simply-connected rotating
patch with angular velocity Ω must be radial if Ω = 1/2, or Ω < 0 but with some extra
convexity assumption. For each Ω ∈ (0, 1/2), de la Hoz–Hmidi–Mateu–Verdera [10] proved
existence of non-radial rotating patches with m-fold symmetry bifurcating at Ω. Recently,
Gómez-Serrano–Park–Shi–Yao [14] completely solved the radial symmetry problem for rotating
patches by showing that any C1 rotating patch (which can be non-simply-connected) with
angular velocity Ω ∈ (−∞, 0) ∪ [1/2,+∞) must be radially symmetric, and if Ω = 0, then
this rotating patch must be radially symmetric up to a translation. As for rotating patches
in the unit disk, to our knowledge, there is no result on radial symmetry in the literature by
now. Here we only recall two existence results. In [9], based on bifurcation theory, de la Hoz–
Hassainia–Hmidi–Mateu proved that for any b ∈ (0, 1) and m a positive integer, there exists a
family of m-fold symmetric rotating patches bifurcating from the steady patch Db, b ∈ (0, 1),
with angular velocity Ωm = (m− 1 + b2m)/(2m). These rotating patches are simply-connected,
moreover, the angular velocity lies in the interval (0, 1/2) just as the whole plane case. In [4],
Cao-Wan-Wang-Zhan studied the existence of rotating patches of desingularization type in the
unit disk. They proved that for any fixed Ω > 0, there exists a family of C1 simply-connected
rotating patches ωλ = λIDλ(e−iΩtx) with λ sufficiently large, moreover, Dλ is supported in a
very small region near some point xΩ with |xΩ| = 0 if Ω ≤ (2π)−1 and |xΩ| = (1− (2πΩ)−1)1/2

if Ω > (2π)−1. It is easy to see that in this situation the angular velocity still lies in the interval
(0, 1/2).

One may ask whether all the non-radial rotating patches in the unit disk possess an angular
velocity in the interval (0, 1/2). This is in general a difficult problem. In this paper, we partially
solve this problem by showing that for any C1 simply-connected rotating patch with vorticity
strength 1 and angular velocity Ω, if Ω ≥ max{1/2, (2l2)/(1− l2)2} or Ω ≤ −(2l2)/(1− l2)2,
where l = supx∈D |x|, then D must be radial.

The proof is inspired by a recent paper [14] by Gómez-Serrano–Park–Shi–Yao. The basic
idea is as follows. Define

EΩ(D) :=
1

2

∫
D

∫
D
G1(x, y)dxdy +

Ω

2

∫
D
|x|2dx, (1.9)

where G1 is the Green function in D1. Since D is a rotating patch, we can easily check that EΩ

is a critical point on the following rearrangement class

R(D) := {K ⊂ D1 | |K| = |D|}

in the sense that if we deform D without changing its area, the variation of EΩ is zero. On
the other hand, we can choose a suitable divergence-free field w to deform D and calculate the
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variation of EΩ. We will show that if D is not a disk centered at the origin, then the variation
of EΩ is not zero for sufficiently large |Ω|.

This paper is organized as follows. In Section 2 we state the main result and give several
remarks. In Section 3 we prove the main result.

2. Main Result

In the rest of this paper, we will only focus on rotating patches in D1 with unit vorticity
strength. For brevity, we will use G (rather than G1) to denote the Green function in D1, that
is,

G(x, y) = − 1

2π
ln |x− y| − h(x, y), h(x, y) = − 1

2π
ln

∣∣∣∣ x|x| − |x|y
∣∣∣∣ .

The corresponding Green operator G is defined by

Gω(x) :=
∫
D
G(x, y)ω(y)dy.

Our main theorem can be stated as follows.

Theorem 2.1. Let D be a C1 simply-connected rotating vortex patch in D1 with vorticity strength
1 and angular velocity Ω, that is, ID(e−iΩtx) is a solution to the vorticity equation (1.2) with
r = 1. If Ω ≥ max{1

2 ,
2l2

(1−l2)2 } or Ω ≤ − 2l2

(1−l2)2 , where l = supx∈D |x|, then D must be a disk
centered at the origin.

Remarks 2.2. We should point out that the conclusion in Theorem 2.1 still holds true if D is a
steady patch, that is, Ω = 0. This can be deduced from the following radial symmetry property
of semilinear elliptic equations with monotone nonlinearity. Fraenkel ([13], Corollary 3.9) proved
that if ψ is the solution to the following semilinear elliptic equation

−∆ψ = f(ψ), in D1,

ψ > 0, in D1,

ψ = 0, on ∂D1,

(2.1)

where f has a decomposition f = f1 + f2 such that f1 : [0,+∞) → R is locally Lipschitz
continuous and f2 : [0,+∞) → R is nondecreasing and f2 ≡ 0 on [0, κ] for some κ > 0, then ψ
must be a radial function. The proof is based on the moving plane method. From Fraenkel’s
result, we can easily get radial symmetry for simply-connected patches if Ω = 0, since in this
situation the stream function ψ := GID satisfies{

−∆ψ = I{ψ>µ}, in D1,

ψ = 0, on ∂D1

(2.2)

for some µ > 0. The above argument has been used by Hmidi in [16] to prove radial symmetry for
simply-connected rotating patches if Ω < 0 for the whole plane case, but with some additional



On radial symmetry of rotating vortex patches 6

convexity assumption. Although radial symmetry for steady patches indeed holds true, our
method in this paper are not able to deal with this simple case, since the boundary of the disk
causes some inevitable trouble as we will see in the proof.

As mentioned in Section 1, D is a rotating patch in Dr with vorticity strength λ and angular
velocity Ω if and only if D/r := {x ∈ R2 | rx ∈ D} is a rotating patch in D1 with vortic-
ity strength 1 and angular velocity Ω/λ. Therefore we can easily deduce the following radial
symmetry property for rotating patches in Dr.

Corollary 2.3. Let D be a C1 simply-connected rotating vortex patch in Dr with vorticity strength
λ and angular velocity Ω. If Ω ≥ max{λ2 ,

2λl2r2

(r2−l2)2 } or Ω ≤ − 2λl2r2

(r2−l2)2 , where l = supx∈D |x|, then
D must be a disk centered at the origin.
Remark 2.4. By letting r tend to infinity, we can easily get the result proved by Gómez-Serrano–
Park–Shi–Yao in [14].

If D is a C1 rotating patch in D1 with vorticity strength 1 and angular velocity Ω, then
Dc := {x ∈ D1 | x /∈ D} is a rotating patch with angular velocity 1/2 − Ω. In fact, we need
only notice that GID + Ω

2 |x|
2 =constant on ∂D implies GIDc + (14 − Ω

2 )|x|
2 =constant on ∂Dc.

Taking into account Theorem 2.1, we can easily get the following corollary.
Corollary 2.5. Let D ⊂ D1 be the complement of a C1 simply-connected domain. If D is a
rotating vortex patch with vorticity strength 1 and angular velocity Ω with Ω ≤ max{0, 12−

2l2

(1−l2)2 }
or Ω ≥ 1

2 + 2l2

(1−l2)2 , l = supx∈Dc |x|, then D must be an annulus.

3. Proof

In this section, we give the proof of Theorem 2.1. To begin with, let us explain the basic idea
of the proof. As mentioned in Section 1, we need to deform D under a suitable area-preserving
flow, and show that if D is not a disk centered at the origin, then the variation of the energy
function EΩ(defined by (1.9)) is strictly positive or strictly negative if |Ω| is very large, which
will lead to a contradiction. More specifically, for any divergence-free vector field w, we define
the area-preserving flow Φs by solving the following ordinary differential equation{

dΦs(x)
ds = w(Φs(x)), s ∈ R,

Φ0(x) = x.
(3.1)

We consider the variation of EΩ along the flow Φs, that is, dEΩ(Ds)
ds

∣∣
s=0

with

Ds = Φs(D) := {Φs(x) | x ∈ D}.

By direct calculation, we have
dEΩ(Ds)

ds

∣∣∣∣
s=0

=

∫
D
∇
(
GID(x) +

Ω

2
|x|2
)
·wdx.

For sufficiently smooth w defined in D1, we can easily check dEΩ(Ds)
ds

∣∣
s=0

= 0 by integration by
part. In the following lemma, we show that w ∈ H1(D;R2) is sufficient.
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Lemma 3.1. Let w ∈ H1(D;R2) be a divergence-free vector field in D. Then∫
D
∇
(
GID(x) +

Ω

2
|x|2
)
·w(x)dx = 0. (3.2)

Proof. Since D is a rotating patch with angular velocity Ω, we have GID + Ω
2 |x|

2 = µ on ∂D
for some µ ∈ R. Moreover, by elliptic regularity theory we have GID + Ω

2 |x|
2 ∈ C1(D;R2). To

verify (3.2), we firstly assume w ∈ C1(D;R2). By integration by parts we have∫
D
w(x) · ∇

(
GID(x) +

Ω

2
|x|2
)
dx

=

∫
D
∇ ·
(
w(x)

(
GID(x) +

Ω

2
|x|2
))

dx−
∫
D
∇ ·w(x)

(
GID(x) +

Ω

2
|x|2
)
dx

=

∫
∂D

(
GID(x) +

Ω

2
|x|2
)
w(x) · ν⃗(x)dH1 −

∫
D
∇ ·w(x)

(
GID(x) +

Ω

2
|x|2
)
dx

=µ

∫
∂D

w(x) · ν⃗(x)dH1 −
∫
D
∇ ·w(x)

(
GID(x) +

Ω

2
|x|2
)
dx

=µ

∫
D
∇ ·w(x)dx−

∫
D
∇ ·w(x)

(
GID(x) +

Ω

2
|x|2
)
dx,

(3.3)

where ν⃗ is the outward unit normal of ∂D. Since C1(D;R2) is dense in H1(D;R2), so by density
argument (3.3) in fact holds for any w ∈ H1(D;R2). Therefore the lemma is proved by the fact
that w is a divergence-free field.

To continue, we need to choose a suitable w. Here we follow the choice in [14], that is,
w = x+∇p, where p ∈ H1

0 (D) is the solution of the following elliptic problem{
−∆p = 2, x ∈ D,

x = 0, x ∈ ∂D.
(3.4)

In the following we begin to calculate the quantity
∫
D∇

(
GID(x) + Ω

2 |x|
2
)
· w(x)dx. For sim-

plicity, we denote
IΩ :=

∫
D
∇
(
GID(x) +

Ω

2
|x|2
)
· (x+∇p(x))dx,

ψΩ(x) := GID +
Ω

2
|x|2.

We will show that if D is not a disk centered at the origin and |Ω| is sufficiently large, then
|IΩ| > 0, which leads to a contradiction.
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By direct calculation, we have

IΩ =

∫
D
(x+∇p) · ∇ψΩdx

=

∫
D
x · ∇x

∫
D
G(x, y)dydx+Ω

∫
D
|x|2dx+

∫
D
∇p(x) · ∇ψΩ(x)dx

=

∫
D
x · ∇x

∫
D
− 1

2π
ln |x− y| − h(x, y)dydx+Ω

∫
D
|x|2dx−

∫
D
p(x)∆ψΩ(x)dx

= − 1

2π

∫
D

∫
D

x · (x− y)

|x− y|2
dxdy −

∫
D
x · ∇x

∫
D
h(x, y)dydx+Ω

∫
D
|x|2dx−

∫
D
p(x)∆ψΩ(x)dx

= − 1

4π

∫
D

∫
D

|x− y|2

|x− y|2
dxdy −

∫
D
x · ∇x

∫
D
h(x, y)dydx+Ω

∫
D
|x|2dx−

∫
D
p(x)∆ψΩ(x)dx

= − 1

4π
|D|2 −

∫
D
x · ∇x

∫
D
h(x, y)dydx+Ω

∫
D
|x|2dx+ (1− 2Ω)

∫
D
p(x)dx

= (2Ω− 1)

(
1

4π
|D|2 −

∫
D
p(x)dx

)
+Ω

(∫
D
|x|2dx− 1

2π
|D|2

)
−
∫
D
x · ∇x

∫
D
h(x, y)dydx,

(3.5)

where we used the antisymmetry of the function x·(x−y)
|x−y|2 and the fact −∆ψΩ = 1 − 2Ω in D.

Therefore we need to deal the following three terms in (3.5)

JΩ := (2Ω− 1)

(
1

4π
|D|2 −

∫
D
p(x)dx

)

KΩ := Ω

(∫
D
|x|2dx− 1

2π
|D|2

)
L := −

∫
D
x · ∇x

∫
D
h(x, y)dydx.

To deal with JΩ, we need the following result proved by Talenti in [20].

Proposition 3.2 ([20], Theorem 1). Let D be a planar bounded domain with C1 boundary, and
let p be the solution of the following equation{

−∆p = 2, x ∈ D,

p = 0, x ∈ ∂D.
(3.6)

Then we have ∫
D
p(x)dx ≤ 1

4π
|D|2.

Moreover, the equality is achieved if and only if D is a disk.

To deal with KΩ, we need the following lemma.
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Lemma 3.3. Let D be a measurable set in R2. Then we have∫
D
|x|2dx ≥ 1

2π
|D|2 + 1

π
|D \B|2,

where B is the disk centered at the origin with the same area as D. Moreover, the equality is
achieved if and only if D is an annulus centered at the origin.

Proof. Notice that∫
D
|x|2dx =

∫
B
|x|2dx+

∫
D\B

|x|2dx−
∫
B\D

|x|2dx =
1

2π
|D|2 +

∫
D\B

|x|2dx−
∫
B\D

|x|2dx.

So it suffices to prove ∫
D\B

|x|2dx−
∫
B\D

|x|2dx ≥ 1

π
|D \B|2.

To this end, we notice that for |D \B| being fixed,
∫
D\B |x|2dx attains its minimum value if and

only if D \ B is an annulus with its inner boundary coinciding with ∂B. Similarly, for |B \D|
being fixed,

∫
B\D |x|2dx attains its maximum value if and only if B \D is an annulus contained

in B with its outer boundary coinciding with ∂B. Therefore by direct calculation we can easily
get ∫

D\B
|x|2dx ≥ 2|B||D \B|+ |D \B|2

2π
,

∫
B\D

|x|2dx ≤ 2|B||D \B| − |D \B|2

2π
.

Now we can subtract the above two inequalities to get the desired result.

By Proposition 3.2 and Lemma 3.3 we see that if Ω ≥ 1/2, then JΩ +KΩ ≥ Ω
π |D \B|2, and

if Ω ≤ 0 and |Ω| is sufficiently large, then JΩ + KΩ ≤ Ω
π |D \ B|2. If |D \ B| > 0, in order to

get a contradiction, we need to show that |L| is controlled by a reasonable constant multiple of
|D \B|2. This is exactly what we will do in the following lemma.

Lemma 3.4. For any measurable set D ⊂ D1, define l = supx∈D|x|. Then the following
inequality holds

|L| ≤ 2l2

π(1− l2)2
|D \B|2.

Proof. Recall
h(x, y) = − 1

2π
ln

∣∣∣∣ x|x| − |x|y
∣∣∣∣ .
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By direct calculation, we have

L = −
∫
D
x · ∇x

∫
D
h(x, y)dydx =

1

2π

∫
D
x · ∇x

∫
D
ln

∣∣∣∣ x|x| − |x|y
∣∣∣∣ dydx

=
1

4π

∫
D
x · ∇x

∫
D
ln(1− 2x · y + |x|2|y|2)dydx

=
1

2π

∫
D

∫
D

|x|2|y|2 − x · y
1− 2x · y + |x|2|y|2

dxdy

So it suffices to prove∣∣∣∣ 12π
∫
D

∫
D

|x|2|y|2 − x · y
1− 2x · y + |x|2|y|2

dxdy

∣∣∣∣ ≤ 2l2

π(1− l2)2
|D \B|2. (3.7)

For simplicity we denote

L(x, y) :=
1

2π

|x|2|y|2 − x · y
1− 2x · y + |x|2|y|2

.

We divide the integral in (3.7) into the following nine parts∫
D

∫
D
L(x, y)dxdy

=

∫
B

∫
B
L(x, y)dxdy −

∫
B

∫
B\D

L(x, y)dxdy +

∫
B

∫
D\B

L(x, y)dxdy

−
∫
B\D

∫
B
L(x, y)dxdy +

∫
B\D

∫
B\D

L(x, y)dxdy −
∫
B\D

∫
D\B

L(x, y)dxdy

+

∫
D\B

∫
B
L(x, y)dxdy −

∫
D\B

∫
B\D

L(x, y)dxdy +

∫
D\B

∫
D\B

L(x, y)dxdy

=

∫
B

∫
B
L(x, y)dxdy − 2

∫
B

∫
B\D

L(x, y)dxdy + 2

∫
B

∫
D\B

L(x, y)dxdy

+

∫
B\D

∫
B\D

L(x, y)dxdy +

∫
D\B

∫
D\B

L(x, y)dxdy − 2

∫
D\B

∫
B\D

L(x, y)dxdy,

(3.8)

where we used the symmetry of the function L.
Now we claim that∫

B

∫
B
L(x, y)dxdy =

∫
B

∫
B\D

L(x, y)dxdy =

∫
B

∫
D\B

L(x, y)dxdy = 0. (3.9)

To prove (3.9), we prove a more general result, that is, for any measurable set E ⊂⊂ D there
holds ∫

B

∫
E
L(x, y)dxdy =

∫
E

∫
B
L(x, y)dxdy = 0. (3.10)
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In fact, by using the polar coordinates we have∫
E

∫
B
L(x, y)dxdy =

1

2π

∫
E

∫ b

0

∫ 2π

0

ρ2|y|2 − ρ|y| cos θ
1− 2ρ|y| cos θ + ρ2|y|2

ρdθdρdy

=
1

2π

∫
E

∫ b

0
ρ2|y|

∫ 2π

0

ρ|y| − cos θ

1− 2ρ|y| cos θ + ρ2|y|2
dθdρdy,

where b is the radius of B. Notice that ρ|y| ∈ (0, 1). Thus to prove (3.10), it suffices to show
that ∫ 2π

0

η − cos θ

1− 2η cos θ + η2
dθ = 0

for any η ∈ (0, 1). Letting z = eiθ (thus cos θ = 1
2(z+ z−1) and dθ = dθ

iz ), we can turn the above
real integral into a complex integral on the unit circle∫ 2π

0

η − cos θ

1− 2η cos θ + η2
dθ =

1

2i

∫
|z|=1

−z2 + 2ηz − 1

z(z − η)(1− ηz)
dz,

where the direction of the righthand integral is anticlockwise. Denote

f(z) =
1

2i

−z2 + 2ηz − 1

z(z − η)(1− ηz)
,

By using Cauchy’s residue theorem we obtain∫
|z|=1

f(z)dz = 2πi

(
Res
z=0

f(z) + Res
z=η

f(z)

)
= 2πi

(
zf(z)

∣∣∣∣
z=0

+ (z − η)f(z)

∣∣∣∣
z=η

)
= 0.

We continue to estimate L. From (3.8) and (3.9) we deduce

|L| =

∣∣∣∣∣
∫
B\D

∫
B\D

L(x, y)dxdy +

∫
D\B

∫
D\B

L(x, y)dxdy − 2

∫
D\B

∫
B\D

L(x, y)dxdy

∣∣∣∣∣ .
By simple calculation, we can obtain the following upper bound and lower bound for L(x, y)

L(x, y) ≥ − l2

2π(1− l2)
, ∀x, y ∈ B ∪D,

L(x, y) ≤ l2(1 + l2)

2π(1− l2)2
, ∀x, y ∈ B ∪D,

where l = supx∈D |x|. Thus we obtain

|L| ≤ 2l2

π(1− l2)2
|D \B|2,

which completes the proof.
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Proof of Theorem 2.1. Assume that D is not a disk centered at the origin, or equivalently |D \
B| > 0. We will deduce a contradiction if Ω ≥ max{1

2 ,
2l2

(1−l2)2 } or Ω ≤ − 2l2

(1−l2)2 .
First we consider the case Ω ≥ max{1

2 ,
2l2

(1−l2)2 }. By Proposition 3.2, Lemma 3.3 and Lemma
3.4, we obtain

0 = IΩ = JΩ +KΩ + L ≥ Ω

π
|D \B|2 − |L| ≥ Ω

π
|D \B|2 − 2l2

π(1− l2)2
|D \B|2.

If Ω > 2l2

(1−l2)2 , then we get an obvious contradiction. If Ω = 2l2

(1−l2)2 , then D must be an annulus
centered at the origin. In fact, if D is not an annulus centered at the origin, then the inequality
in Lemma 3.3 is strict, which leads to the following contradiction

0 = IΩ = JΩ +KΩ + L >
Ω

π
|D \B|2 − |L| ≥ Ω

π
|D \B|2 − 2l2

π(1− l2)2
|D \B|2 = 0.

But once D is an annulus centered at the origin, we can repeat the calculation of (3.10) to obtain
L = 0, thus

0 = IΩ = JΩ +KΩ + L >
Ω

π
|D \B|2 − |L| = Ω

π
|D \B|2 > 0,

which is also a contradiction.
Now we consider the case Ω ≤ − 2l2

(1−l2)2 . By Proposition 3.2, Lemma 3.3 and Lemma 3.4, we
obtain

0 = IΩ = JΩ +KΩ + L ≤ Ω

π
|D \B|2 + |L| ≤ Ω

π
|D \B|2 + 2l2

π(1− l2)2
|D \B|2.

If Ω < − 2l2

(1−l2)2 , then we get an obvious contradiction. If Ω = − 2l2

(1−l2)2 , we can still deduce that
D is an annulus centered at the origin. If otherwise, by Lemma 3.3 we have

0 = IΩ = JΩ +KΩ + L <
Ω

π
|D \B|2 + |L| ≤ Ω

π
|D \B|2 + 2l2

π(1− l2)2
|D \B|2 = 0,

which is a contradiction. But once D is an annulus centered at the origin, we immediately know
L = 0, therefore

0 = IΩ = JΩ +KΩ + L ≤ Ω

π
|D \B|2 + L =

Ω

π
|D \B|2 < 0,

which also leads to a contradiction.

From the proof, we see that the bound Ω ≥ max{1
2 ,

2l2

(1−l2)2 } or Ω ≤ − 2l2

(1−l2)2 is not optimal.
In fact, one can improve this bound by estimating L more accurately. But for a general domain
D this is usually very difficult.
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