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We apply the metrical approach to Sobolev spaces, which arise in various evolution 
PDEs. Functions from those spaces are defined on an interval and take values in a 
nested family of Banach spaces. In this case we adapt the definition of Newtonian 
spaces. For a monotone family, we show the existence of weak derivative, obtain an 
isomorphism to the standard Sobolev space, and provide some scalar characteristics.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Various applied problems in biology, materials science, mechanics, etc, involve PDEs with solution spaces 
with internal structure that changes over time. As examples, we review some of the recent research directions: 
[7] by M. L. Bernardi, G. A. Pozzi, and G. Savaré, [24] by F. Paronetto (equations on non-cylindrical 
domains), [28] by M. Vierling, [2] by A. Alphonse, C. M. Elliott, and B. Stinner (equations on evolving 
hypersurfaces), [23] by S. Meier and M. Böhm, [12] by J. Escher and D. Treutler (modeling of processes in 
a porous medium). It is common to all of the mentioned studies that solution spaces could be represented 
as sets of functions valued in a family of Banach spaces. However, different problems impose different 
requirements on the relations between spaces within families, for example, the existence of isomorphisms, 
embeddings, bounded operators and so on.

In this article, we consider Sobolev spaces associated with the above problems from the point of view of 
metric analysis. Although the family of Banach spaces cannot always be represented as a metric space, the 
metric definition of Sobolev classes remains meaningful. Such point of view on the studied spaces will make 
it possible to apply more universal and well-developed methods. In the 90s, several authors (L. Ambrosio [4], 
N.J. Korevaar and R.M. Schoen [22], Yu.G. Reshetnyak [26] and A. Ranjbar-Motlagh [25]) introduced and 
studied Sobolev spaces consisting of functions taking values in metric spaces. The case of functions defined 
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on a non-Euclidean space is described by P. Hajłasz [14] and J. Heinonen, P. Koskela, N. Shanmugalingam, 
J.T. Tyson [19]. In [19] it was shown that all previously developed approaches are equivalent. For a detailed 
treatment and for references to the literature on the subject one may refer to the books [18] by J. Heinonen 
and [15] by P. Hajłasz and P. Koskela.

For our purposes, we adapt the following definition of Sobolev space (Newtonian spaces, for real-valued 
case see [27], and [19] for Banach-valued case). Function f : (M, ρ) → (N , d) from the space Lp(M; N )
belongs to W 1,p(M; N ), if there exists scalar function g ∈ Lp(M) such that

d
(
f(γ(a)), f(γ(b))

)
≤ sup

γ

∫
γ

g dσ. (1.1)

On the one hand, we have all the necessary objects to adapt this definition. On the other hand, in metric 
case, (1.1) allows us to introduce the reach theory of Sobolev-type spaces, including embedding theorems, 
Poincaré inequalities, and approximation technique (see [20]).

The evolution structure of a specific problem could be described with the help of the following objects. 
Let {Xt}t∈(0,T ) be a family of Banach spaces, (0, T ) ⊂ R, and suppose that there is a set of operators 
P (t, s) : Xs → Xt for t ≥ s. We consider functions with the property that f(t) ∈ Xt. Then, inequality (1.1)
turns into

‖f(t) − P (t, s)f(s)‖t ≤
t∫

s

g(τ) dτ,

and defines the space W 1,p((0, T ); {Xt}).
The first natural question that arises from this definition is: what is the meaning of the function g(t)? 

In the case of a monotone family of reflexive spaces, the answer to this question is given by Theorem 4.5. 
Namely, under such assumptions, we can explicitly construct the weak derivative and show that its norm 
coincides with the smallest upper gradient of the original function.

In section 5 we establish the connection of the introduced space to the standard case. More precisely, 
suppose that there is a family of local isomorphisms Φt : Xt → Y . We are interested if there exists a 
global isomorphism between Sobolev spaces W 1,p((0, T ), {Xt}) and W 1,p((0, T ), Y ). Due to Theorem 5.9, 
the necessary and sufficient conditions for the existence of such an isomorphism are the close interconnection 
of Φt and the nesting operators P (t, s).

In section 6, we discuss a possible scalar characterization of the introduced spaces. In particular, we make 
use of the approach by Yu. G. Reshetnyak, which has demonstrated its efficiency for functions valued in 
metric space. However, it seems that this method does not fully respond to our construction.

2. Sobolev space W 1,p((0, T ); {Xt})

In this section, we give the definition of the main object – Sobolev functions valued in the family of 
Banach spaces. We also provide examples of families on which our methods can be applied.

2.1. Nested family of Banach spaces

Here, in bare outlines, we discuss the idea of defining the Sobolev space of functions valued in a nested 
family of Banach spaces. Let (0, T ) ⊂ R be an interval, {Xt}t∈(0,T ) be a family of Banach spaces, and 
{P (t, s)} be a family of bounded operators P (t, s) : Xs → Xt (nestings) such that P (t, r)P (r, s) = P (t, s), 
whenever s ≤ r ≤ t.
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Consider a set XT :=
⋃

t Xt × {t} and define an addition:

(x, s) + (y, t) :=
{

(P (t, s)x + y, t) , if s ≤ t,

(x + P (s, t)y, s), if s > t,
(2.1)

and multiplication by scalars α·(x, s) := (αx, s). One can show that those operations satisfy the associativity, 
commutativity, and distributivity properties. So the pair (XT , +) is a vector space over R.

Just for this moment we say that function u : (0, T ) → XT is measurable if ũ(t) ∈ Xt a.e., where 
u(t) = (ũ(t), t), and function t �→ ‖ũ(t)‖t is measurable. Define Lp((0, T ); {Xt}) as a set of all measurable 
functions such that ‖ũ(t)‖t ∈ Lp((0, T )). Then we define the Sobolev space W 1,p((0, T ); {Xt}) as all functions 
from Lp((0, T ); {Xt}) for which there exists a function g ∈ Lp((0, T )) so that

‖ũ(t) − P (t, s)ũ(s)‖t ≤
t∫

s

g(τ) dτ, (2.2)

for almost all s, t ∈ (0, T ), s ≤ t.
At this stage we can not say much about the introduced space. Indeed, this is even not necessarily a 

vector space. However, if an additional regularity on families {Xt}, {P (t, s)} is involved one could derive a 
more meaningful construction.

In this work regularity assumptions are following. We consider a specific family of Banach spaces obtained 
as a norm-completion of quotients of the same vector space under different semi-norms. Moreover, these 
semi-norms are assumed to form a monotone family, which guarantees the existence of appropriate nestings 
(they are induced by natural embeddings). This allows us to define the Sobolev space as a subspace of 
Lp-direct integral.

2.2. Monotone family {Xt}

Let V be a vector space, (0, T ) be an interval (not necessarily bounded) equipped with the Lebesgue 
measure, and {|| · ||t}t∈(0,T ) be a family of semi-norms on V . We will assume that for each v ∈ V the function 
ρ(t, v) = ‖v‖t is non-increasing:

ρ(t1, v) ≥ ρ(t2, v), if t1 ≤ t2. (2.3)

Define Banach space Xt to be a completion V/ ker(‖ · ‖t) with respect to ‖ · ‖t. Then, {Xt} is said to be a 
monotone family of Banach spaces (or a monotone Banach family).

For t1 ≤ t2 there are the natural embeddings of normed spaces V/ ker(‖ · ‖t1) → V/ ker(‖ · ‖t2), which are 
written as

P (t2, t1)v =
{
v, if ‖v‖t2 	= 0,
0, if ‖v‖t2 = 0.

So ‖P (t2, t1)v‖t2 ≤ ‖v‖t1 , and, thus, there are extensions P (t2, t1) : Xt1 → Xt2 . It is clear that the 
constructed operators are nestings (in sense of subsection 2.1). Then we treat (

⋃
t Xt, +) as a vector space 

while defining addition for xi ∈ Xti

x1 + x2 :=
{
P (t2, t1)x1 + x2, if t1 ≤ t2,

x + P (t , t )x , if t > t .
(2.4)
1 1 2 2 1 2
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Here we omit the notation of previous subsection and use x1 instead of (x1, t1) implicitly assuming that x1
‘knows’ the space it belongs to.

2.3. Lp-direct integral of Banach spaces

We deal with the Lp-spaces of mappings f : (0, T ) →
⋃

t Xt with the property that f(t) ∈ Xt for each 
t ∈ (0, T ) (in other words, f is a section of {Xt}). To make this treatment rigorous, we apply the concept of 
direct integral of Banach spaces. A brief account of the theory of direct integral is given below (for detailed 
presentation see [17] and [10]).

Note that monotonicity condition (2.3) implies that {Xt} is a measurable family of Banach spaces over 
((0, T ), dt, V ) in the sense of [17, Section 6.1].

Definition 2.1. A simple section is a section f for which there exist n ∈ N, v1, . . . , vn ∈ V , and measurable 
sets A1, . . . , An ⊂ (0, T ) such that f(t) =

∑n
k=1 χAk

· vk for all t ∈ (0, T ).

Definition 2.2. A section f of {Xt}t∈(0,T ) is said to be measurable if there exists a sequence of simple sections 
{fk}k∈N such that for almost all t ∈ (0, T ), fk(t) → f(t) in Xt as k → ∞.

The space of all equivalence classes of such measurable sections is a direct integral
∫ ⊕
(0,T ) Xt dt of a 

monotone family of Banach spaces {Xt}t∈(0,T ). We will denote this space as L0((0, T ); {Xt}).
Note that for a measurable section f the function t �→ ‖f(t)‖t is measurable in the usual sense. For 

every p ∈ [1, ∞] the space Lp((0, T ); {Xt}) =
(∫ ⊕

(0,T ) Xt dt
)
Lp

(Lp-direct integral) is defined as a space of 
all measurable sections f such that the function t �→ ‖f(t)‖t belongs to Lp((0, T )). In this case

‖f‖Lp((0,T );{Xt}) :=

⎧⎪⎨⎪⎩
(∫ T

0 ‖f(t)‖pt dt
) 1

p

, if p < ∞,

ess sup
(0,T )

|f(t)|, if p = ∞

determines the norm on Lp((0, T ); {Xt}).

Proposition 2.3 ([10, Proposition 3.2]). The space Lp((0, T ); {Xt}) is a Banach space for all 1 ≤ p < ∞.

Define sectional weak convergence fn(t) ⇀ f(t) for a.e. t ∈ (0, T ) as 〈b′(t), fn(t)〉t → 〈b′(t), f(t)〉t a.e. for 
all b′(t) ∈ X ′

t. Then applying a standard technique one can prove the following proposition.

Proposition 2.4. Let fn ∈ Lp((0, T ); {Xt}), ‖fn‖Lp((0,T );{Xt}) ≤ C < ∞ and fn(t) ⇀ f(t) for a.e. t ∈ (0, T ). 
Then f ∈ Lp((0, T ); {Xt}) and ‖f‖Lp((0,T );{Xt}) ≤ C.

2.4. Sobolev space W 1,p((0, T ); {Xt})

As it was pointed out in the introduction, we adapt (1.1) and obtain the definition of Newtonian space 
for functions valued in a monotone family.

Definition 2.5. A measurable section u : (0, T ) →
⋃

t Xt is said to be in the Sobolev space W 1,p((0, T ); {Xt})
if u ∈ Lp((0, T ); {Xt}), and if there exists a function g ∈ Lp((0, T )) so that

‖u(t) − P (t, s)u(s)‖t ≤
t∫
g(τ) dτ, (2.5)
s
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for almost all s, t ∈ (0, T ), s ≤ t (for all s ≤ t from (0, T ) \ Σ, where |Σ| = 0).

A function g satisfying (2.5) is called a p-integrable upper gradient of u (or just upper gradient). If u is 
a function in W 1,p((0, T ); {Xt}), let

‖u‖W 1,p((0,T );{Xt}) := ‖u‖Lp((0,T );{Xt}) + inf
g
‖g‖Lp((0,T )),

where the infimum is taken over all p-integrable upper gradients g of u. It is assumed that W 1,p((0, T ); {Xt})
consists of equivalence classes of functions, where f1 ∼ f2 means ‖f1 − f2‖W 1,p((0,T );{Xt}) = 0. Thus 
W 1,p((0, T ); {Xt}) is a normed space, and it is a subspace of Lp-direct integral of the measurable family 
{Xt}. In the case of reflexive spaces, we prove that it is a Banach space (see Theorem 4.6).

2.5. Examples

Here we will provide some more or less explicit examples of nested families of Banach spaces, which turn 
out to be monotone as well.

Example 2.1. Let {Ωt}t∈(0,T ) be a non-increasing family of measurable sets: Ωt ⊂ Ωs if s < t (see Fig. 1). Let 
Ω0 =

⋃
t Ωt. As a core vector space V , we choose the space of step functions on Ω0 and define semi-norms 

ρ(t, v) = ‖v‖Lq(Ωt). Then, family {Lq(Ωt)} is monotone and operators P (t, s) : Lq(Ωs) → Lq(Ωt) are the 
restriction operators: P (t, s)f = f|Ωt

for f ∈ Lq(Ωs).

Fig. 1. Example 2.1.

Moreover, any element u ∈ Lp((0, T ); {Lq(Ωt)}) could be represented as a function u(t, x) belonging to 
mixed norm Lebesgue space Lp,q(Ω), where Ω =

⋃
t t × Ωt.

Example 2.2 (Evolving spaces). In [3], an abstract framework has been developed for treating parabolic 
PDEs on evolving Hilbert spaces. Some applications of this method are in [1,2,11].

Here we compare the compatibility property from [3] to our construction. As in [3], let {X(t)}t∈[0,T ] be 
a family of Hilbert spaces and φt : X(0) → X(t) a family of linear isomorphisms. For all v ∈ X(0) and 
u ∈ X(t) the following conditions are assumed

(C1) ‖φtv‖X(t) ≤ C‖v‖X(0),
(C2) ‖φ−1

t u‖X(0) ≤ C‖u‖X(t),
(C3) t �→ ‖φtv‖X(t) is continuous.

On the one hand, we can not formulate this structure in our settings straightway. On the other hand, we 
can construct another family of Banach spaces such that L2-direct integral of this family is isomorphic to 
space L2

X form [3, Definition 2.7]. Set V = X(0), ρ(t, v) = ‖φtv‖X(t), and P (t, s) = φtφ
−1
s . Then condition 

(C3) implies that {(X(t), ‖ · ‖X(t))} is a measurable family.
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Example 2.3 (Composition operator). Let Ω0 be a domain in Rn. Let us consider the Sobolev space 
W 1,q(Ω0; R) as a core vector space V . We are going to construct a monotone family of Banach spaces 
which is generated by a family of quasi-isometric mappings ϕ(t, ·) : Ω0 → Ωt. Each of these mappings
induces isomorphism Cϕ(t,·) : W 1,q(Ωt) → W 1,q(Ω0) by the composition rule ([29, Theorem 4]). Define 
ρ(t, v) = ‖C−1

ϕ(t,·)v‖W 1,q(Ωt), and choose mappings ϕ(t, ·) such that the family of norms is monotone. As 
a result, we obtain spaces Xt, which consist of functions from W 1,q(Ω0; R) and endowed with the norm 
‖C−1

ϕ(t,·)v‖W 1,q(Ωt). Thus we can define the Sobolev space W 1,p((0, T ); {Xt}) over this family in the sense 
of 2.5. In that case, operators P (t, s) : W 1,q(Ωs) → W 1,q(Ωt) are composition operators induced by 
ϕ(s, ·) ◦ ϕ−1(t, ·) : Ωt → Ωs.

Example 2.4 (Monotone family of Hilbert spaces). The next example is taken from [7]. In that work, Cauchy-
Dirichlet problems for linear Schrödinger-type equations in non-cylindrical domains are studied. Note that 
the monotonicity condition is important for their considerations. Let Q ⊂ Rn × (0, T ) be an open set and 
its sections Qt = {x ∈ Rn : (x, t) ∈ Q} be a non-decreasing family. Define QT =

⋃
t Qt (see Fig. 2). Let 

V = H1
0 (QT ) and Vt be a completion of {v ∈ C∞

0 (QT ) : supp v ⊂ Qt} with respect to the norm ‖ · ‖H1
0 (QT ). 

Let π(t) : H1
0 (ΩT ) → Vt be an orthogonal projector, then define ρ(t, v) = ‖π(t)v‖H1

0 (QT ). At the same 
time, Vt is a completion V/ ker(ρ(t, ·)) with respect to ρ(t, ·). Therefore, operators P (t, s) are just trivial 
extensions to Qt.

Example 2.5 (Nested Hilbert spaces). In [13], A. Grossmann has introduced nested Hilbert spaces. A simple 
example is the following: for t ∈ (0, T ) let Ht be the Hilbert space of measurable functions such that

‖f‖2
Ht

=
∫
Rn

|f(x)|2 exp(−t|x|) dx < 0.

Then, {Ht} is a nested family with nestings P (t, s) being the natural embeddings which associate to every 
f ∈ Hs the same function considered as an element of Ht. By Grossmann a nested Hilbert space is an 
algebraic inductive limit HT . Note that spaces Ht could be obtained as a norm-completion of the space of 
measurable functions. Thus, {Ht} is a monotone family and we could proceed with our construction upon 
the nested space HT .

There are nested families which do not originate from a monotone family of semi-norms. For example, 
take a family of Euclidean spaces Et = R

1+
[

1
T−t

]
.

3. Calculus of {Xt}-valued functions

Fig. 2. Example 2.4.

In this section and below, we will denote as t1 ∨ t2 the maximum of these numbers and as t1 ∧ t2 the 
minimum.
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3.1. Limit and continuity

Here we introduce the concepts of limit, continuity and differentiability for {Xt}-valued functions. Due 
to the addition defined in (2.4), all basic properties are preserved for those notions.

Definition 3.1. An element ξ ∈ Xt0 is said to be the limit of a section f(t) for t → t0: lim
t→t0

f(t) = ξ, if 
‖f(t) − ξ‖t0∨t → 0 as t → t0.

Definition 3.2. A section f(t) is continuous at the point t0 ∈ (0, T ), if

lim
t→t0

f(t) = f(t0) ∈ Xt0 .

By C(J ; {Xt}) we will denote the set of continuous functions at every point of J ⊂ (0, T ).

Definition 3.3 (Fréchet derivative). A section f(t) is differentiable at t0 ∈ (0, T ) if there exists lt0 ∈ Xt0 and, 
for every ε > 0, exists δ > 0 such that

‖f(t0 + h) − f(t0) − lt0h‖t0∨(t0+h) ≤ ε|h|

for all |h| ≤ δ. In what follows we denote lt0 = df

dt
(t0).

Definition 3.4. Let [a, b] ⊂ (0, T ) be a bounded interval. A function f : [a, b] →
⋃

t∈[a,b] Xt is said to be 
absolutely continuous, if for any ε > 0 there exists δ > 0 such that 

∑n
i=1 ‖f(bi) − f(ai)‖bi ≤ ε for any 

collection of disjoint intervals {[ai, bi]} ⊂ [a, b] such that 
∑n

i=1(bi − ai) ≤ δ.

A function f : J →
⋃

t∈J Xt is said to be locally absolutely continuous on a set J , if it is absolutely 
continuous for any interval [a, b] ⊂ J .

3.2. Local Bochner integral

Let there be given a simple function s(t) =
∑m

i=1 viχEi
, where vi ∈ V and {Ei} ⊂ (0, T ) is a disjointed 

collection of measurable sets of finite measure. Then the integral is defined as

T∫
0

s(t) dt =
m∑
i=1

vi|Ei|.

Now we introduce the notion of local integrability for a measurable section.

Definition 3.5. A measurable function f ∈ L0((0, T ); {Xt}) is called locally integrable, if for every compact 
set J ⊂ (0, T ) there exists a sequence of simple functions {sk(t)} such that

T∫
0

‖χJ(t) · f(t) − sk(t)‖t dt → 0 for k → ∞. (3.1)

Note that if the function f is locally integrable, then for the sequence from Definition 3.5 we have 
lim

∫ T

0 ‖sk(t)‖t dt =
∫ T

0 ‖χJ(t) · f(t)‖t dt.

k→∞
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Proposition 3.6. Let f ∈ L0((0, T ); {Xt}) be locally integrable. Then, for every compact set J ⊂ (0, T ), 
there exists x ∈ Xt∗ , t∗ = supJ , such that, for any sequence of simple functions sk(t) with the property ∫ T

0 ‖χJ(t) · f(t) − sk(t)‖t dt → 0, the following convergence holds

∥∥∥∥
T∫

0

sk(t) dt− x

∥∥∥∥
t∗

→ 0 for k → ∞.

Proof. 1) Let J ⊂ (0, T ) be a compact set and t∗ = supJ . Next, we prove that the sequence 
∫ T

0 sk(t) dt is 
fundamental in Xt∗ .

∥∥∥∥
T∫

0

sk(t) dt−
T∫

0

sm(t) dt
∥∥∥∥
t∗

≤
T∫

0

‖sk(t) − sm(t)‖t∗ dt

≤
T∫

0

‖χJ(t) · f(t) − sm(t)‖t dt +
T∫

0

‖χJ(t) · f(t) − sk(t)‖t dt → 0

for k, m → ∞. Hence, there is x ∈ Xt∗ such that lim
k→∞

∫ T

0 sk(t) dt = x in Xt∗ .

2) If, for another sequence of simple functions rk(t), it is true that 
∫ T

0 ‖χJ(t) · f(t) − rk(t)‖t dt → 0 for 
k → ∞, then

∥∥∥∥
T∫

0

rk(t) dt− x

∥∥∥∥
t∗

≤
T∫

0

‖χJ(t) · f(t) − rk(t)‖t dt

+
T∫

0

‖χJ(t) · f(t) − sk(t)‖t dt +
∥∥∥∥

T∫
0

sk(t) dt− x

∥∥∥∥
t∗

→ 0. �

Definition 3.7. The integral over compact set J ⊂ (0, T ) of a locally integrable function is an element x from 
Proposition 3.6, i.e.

∫
J

f dt =
T∫

0

χJ(t) · f(t) dt := lim
k→∞

T∫
0

sk(t) dt = x ∈ Xt∗ , (3.2)

where t∗ = supJ .

We say that f ∈ L1
loc((0, T ); {Xt}) if ‖f(t)‖t ∈ L1

loc((0, T )). In essence, the introduced integral is a local 
version of the Bochner integral. Integral (3.2) has the usual additivity property. Thus, for two intervals 
(a, b1) ⊂ (a, b2) ⊂ (0, T ), we have the equality

b1∫
a

f(t) dt−
b2∫
a

f(t) dt = −
b2∫

b1

f(t) dt

Let us prove an analog of Bochner’s theorem:

Theorem 3.8. A measurable function f ∈ L0((0, T ); {Xt}) is locally integrable if and only if f ∈
L1
loc((0, T ); {Xt}). For any compact set J ⊂ (0, T ), the estimate holds
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∥∥∥∥ ∫
J

f(t) dt
∥∥∥∥
t∗

≤
∫
J

‖f(t)‖t∗ dt ≤
∫
J

‖f(t)‖t dt,

where t∗ = supJ .

Proof. Let f(t) be locally integrable. For arbitrary compact set J ⊂ (0, T ) there is a sequence of simple 
functions sk(t) such that convergence (3.1) holds. Then

∫
J

‖f(t)‖t dt ≤
T∫

0

‖χJ(t) · f(t) − sk(t)‖t dt +
T∫

0

‖sk(t)‖t dt.

The right hand of inequality is finite, thus f ∈ L1
loc((0, T ); {Xt}).

Now let f ∈ L1
loc((0, T ); {Xt}). Consider a sequence of simple functions {sk(t)} such that ‖f(t) −sk(t)‖t →

0 a.e. Let J ⊂ (0, T ) be a compact set. Define a new sequence of simple functions

rk(t) =
{
sk(t), if ‖sk(t)‖t ≤ 2‖f(t)‖t and t ∈ J,

0, otherwise.

Then ‖χJ(t) · f(t) − rk(t)‖t → 0 a.e. Further, ‖χJ(t) · f(t) − rk(t)‖t ≤ ‖rk(t)‖t + ‖χJ(t) · f(t)‖t ≤
3χJ(t) · ‖f(t)‖t a.e. So ‖χJ(t) · f(t) − rk(t)‖t has an integrable majorant, and by the Lebesgue theorem we 
obtain

T∫
0

‖χJ(t) · f(t) − rk(t)‖t dt → 0 for k → ∞.

Hence, the function f(t) is locally integrable. �
Remark 3.9. Let f(t) be locally integrable. Then, for any compact set J ⊂ (0, T ) a sequence of simple 
functions {sk(t)} as in Definition 3.5 can be chosen so that supp sk(t) ⊂ J and ‖sk(t)‖t ≤ 2‖f(t)‖t.

Proposition 3.10 (Dominated convergence theorem). Let fn ∈ L0((0, T ); {Xt}) be a sequence such that fn(t)
converges to f(t) in Xt and ‖fn(t)‖t ≤ g(t), g(t) ∈ L1((0, T )), for almost all t ∈ J , J is a compact subset 
of (0, T ). Then

lim
n→∞

∫
J

fn dt =
∫
J

f dt.

Proof. Due to the Theorem 3.8, fn is locally integrable. As a pointwise limit of measurable functions, f is 
also measurable, and ‖f(t)‖t is dominated by g(t), which implies locally integrability of f .

Applying Fatou lemma, we obtain

lim sup
n→∞

∫
J

‖f(t) − fn(t)‖t dt ≤
∫
J

lim sup
n→∞

‖f(t) − fn(t)‖t dt = 0,

which implies lim
n→∞

∫
J
‖f(t) − fn(t)‖t dt = 0.

Therefore,

lim
n→∞

∥∥∥∥∫ f(t) dt−
∫

fn(t) dt
∥∥∥∥
t∗

= lim
n→∞

∥∥∥∥∫ (f(t) − fn(t)) dt
∥∥∥∥
t∗

≤ lim
n→∞

∫
‖f(t) − fn(t)‖t dt.
J J J J
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Then, we conclude that lim
n→∞

∫
J
fn dt =

∫
J
f dt. �

Proposition 3.11 (Lebesgue’s differentiation theorem). Let f ∈ L1
loc((0, T ); {Xt}). Then, for h > 0,

lim
h→0

1
h

t∫
t−h

‖f(s) − f(t)‖t ds = 0. (3.3)

In particular,

f(t) = lim
h→0

1
h

t∫
t−h

f(s) ds. (3.4)

Proof. Let us choose a sequence {xn(t)}n∈N that is dense in Xt. For every n ∈ N, we consider real-valued 
function ‖f(t) − xn(t)‖t. Applying the real-valued Lebesgue’s differentiation theorem, we can find a set 
En ⊂ R for all n ∈ N such that

‖f(t) − xn(t)‖t = lim
h→0

1
h

t∫
t−h

‖f(s) − xn(t)‖t ds

for all t /∈ En. Further, for arbitrary ε > 0 and t /∈
⋃

n∈N En, there is a number n such that ‖f(t) −xn(t)‖t <
ε
2 . Using the inequality from Remark 3.9, we have

0 ≤ lim
h→0

1
h

t∫
t−h

‖f(s) − f(t)‖t ds

≤ lim
h→0

1
h

t∫
t−h

‖f(s) − xn(t)‖t + ‖xn(t) − f(t)‖t ds = 2‖f(t) − xn(t)‖t < ε.

Due to arbitrariness of choosing ε, statement (3.3) of the theorem is proven. The second assertion follows 
from the first and from Theorem 3.8. �
Proposition 3.12. Let f belong to Lp(R; {Xt}), 1 ≤ p < ∞. For every h > 0 we define a new function Mhf

as

Mhf(t) = 1
h

t∫
t−h

f(s) ds.

Then Mhf belongs to Lp(R; {Xt}) ∩ C(R; {Xt}) and lim
h→0

Mhf = f a.e. and in Lp(R; {Xt}).

Proposition 3.13. Let g ∈ L1
loc((0, T ); {Xt}) and t0 ∈ (0, T ). Define a function f(t) =

∫ t

t0
g(s) ds for t ≥ t0. 

Then
1) f ∈ C({t ≥ t0} ∩ (0, T ); {Xt}),
2) f is locally absolutely continuous on {t ≥ t0} ∩ (0, T ),
3) 

∫ T

0 ϕ′(t)f(t) dt =
∫ T

0 ϕ(t)g(t) dt for all ϕ ∈ C∞
0 ({t ≥ t0} ∩ (0, T )),

4) f is differentiable a.e. on {t ≥ t0} ∩ (0, T ) and 
df (t) = g(t).

dt
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Proof. 1) According to Definition 3.2 of continuity for any t1 ∈ {t ≥ t0} ∩ (0, T ), we obtain

∥∥∥∥
t∫

t0

g(s) ds−
t1∫

t0

g(s) ds
∥∥∥∥
t1∨t

=
∥∥∥∥

t∨t1∫
t∧t1

g(s) ds
∥∥∥∥
t1∨t

≤
t∨t1∫

t∧t1

‖g(s)‖s ds → 0 for t → t1.

2) This assertion is also verified by definition

n∑
i=1

‖f(bi) − f(ai)‖bi =
n∑

i=1

∥∥∥∥
bi∫

ai

g(s) ds
∥∥∥∥
bi

≤
n∑

i=1

bi∫
ai

‖g(s)‖s ds.

Thus, the statement follows from the absolute continuity of the Lebesgue integral.
3) Let ϕ ∈ C∞

0 ({t ≥ t0} ∩ (0, T )). We choose h∗ > 0 so that suppϕ(t + h∗) ⊂ {t ≥ t0} ∩ (0, T ). By 
Proposition 3.12

T∫
0

ϕ′(t)f(t) dt =
T∫

0

lim
h→0,h<h∗

ϕ(t + h) − ϕ(t)
h

f(t) dt

= lim
h→0,h<h∗

( T∫
0

ϕ(t + h)
h

f(t) dt−
T∫

0

ϕ(t)
h

f(t) dt
)

= lim
h→0,h<h∗

( T∫
0

ϕ(t)
h

f(t− h) dt−
T∫

0

ϕ(t)
h

f(t) dt
)

= − lim
h→0,h<h∗

( T∫
0

ϕ(t)f(t− h) − f(t)
h

dt

)

= − lim
h→0,h<h∗

( T∫
0

ϕ(t)Mhg(t) dt
)

= −
T∫

0

ϕ(t)g(t) dt.

4) Let us verify differentiability by Definition 3.3. Fix ε > 0 and t1 ∈ {t ≥ t0} ∩ (0, T ). By Lebesgue 
Theorem 3.11, there is δ > 0 such that, for all |h| < δ,

1
h

t1+h∫
t1

‖g(s) − g(t1)‖t1+h ds < ε. (3.5)

Then, for h > 0 (the case h < 0 can be considered similarly), we obtain

‖f(t1 + h) − f(t1) − hg(t1)‖t1∨(t1+h) =
∥∥∥∥

t1+h∫
t1

g(s) ds− hg(t1)
∥∥∥∥
t1+h

∥∥∥∥
t1+h∫
t1

g(s) − g(t1) ds
∥∥∥∥
t1+h

≤ |h| 1
|h|

t1+h∫
‖g(s) − g(t1)‖t1+h ds ≤ |h|ε. �
t1
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4. Sobolev space W 1,p((0, T ); {Xt}) via weak derivative

Here we show that for a Sobolev function from W 1,p((0, T ); {Xt}) there exists a weak derivative, which 
is a section of {Xt} and belongs to Lp((0, T ); {Xt}). To do that, we adapt the classical scheme for Banach 
valued functions by using the concept of local Bochner integral, for example, see [9].

4.1. Weak derivatives

Definition 4.1. Let f ∈ L1
loc((0, T ); {Xt}). A function g ∈ L1

loc((0, T ); {Xt}) is called a weak derivative of f
(the usual notation g = f ′), if for all ϕ ∈ C∞

0 ((0, T )) the next equality holds

∥∥∥∥
T∫

0

ϕ′(t)f(t) dt +
T∫

0

ϕ(t)g(t) dt
∥∥∥∥
t∗

= 0, (4.1)

where t∗ = sup{suppϕ}.

Proposition 4.2. Let f ∈ L1
loc((0, T ); {Xt}) and a weak derivative f ′(t) = 0 a.e. on interval J ⊂ (0, T ). 

Then, there exists an element x0 ∈
⋂
t∈J

Xt such that

T∫
0

ϕ(t)f(t) dt = x0

T∫
0

ϕ(t) dt

for all ϕ ∈ C∞
0 (J). In other words, f(t) = x0 a.e. on J .

Proof. Let b ∈ J . Let us choose ϑ ∈ C∞
0 (J) such that b = sup{suppϕ(t)} and 

∫
J
ϑ(t) dt = 1. Let x0 =∫

J
ϑ(t)f(t) dt ∈ Xb.
For an arbitrary function ϕ ∈ C∞

0 (J), we define a new function

ψ(t) =
t∫

t0

(
ϕ(s) − ϑ(s)

T∫
0

ϕ(σ) dσ
)
ds,

where t0 = inf{suppϕ}. Then, ψ ∈ C∞
0 (J) and ψ′(t) = ϕ(t) − ϑ(t) 

∫ T

0 ϕ(σ) dσ. By the hypothesis of the 
theorem

0 =
T∫

0

ψ(t)f ′(t) dt =
T∫

0

ψ′(t)f(t) dt

=
T∫

0

ϕ(t)f(t) dt−
T∫

0

ϕ(σ) dσ ·
T∫

0

ϑ(t)f(t) dt.

Therefore 
∫ T

0 ϕ(t)f(t) dt = x0
∫ T

0 ϕ(σ) dσ. Due to arbitrariness of b, we conclude that x0 ∈
⋂
t∈J

Xt. �
Proposition 4.3. Let 1 ≤ p ≤ ∞ and let u ∈ Lp((0, T ); {Xt}) have a weak derivative u′ ∈ Lp((0, T ); {Xt}). 
Then, the equality
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u(t) = u(t0) +
t∫

t0

u′(s) ds

holds for almost all t0, t ∈ (0, T ), t0 ≤ t. Moreover

‖u(t) − u(t0)‖t ≤
t∫

t0

‖u′(s)‖t ds ≤
t∫

t0

‖u′(s)‖s ds, (4.2)

and particularly u ∈ W 1,p((0, T ); {Xt}).

Proof. Let t1 ∈ (0, T ). Define functions f(t) =
∫ t

t1
u′(s) ds and r(t) = u(t) − f(t) for all t > t1. By 

Proposition 3.13

T∫
0

ϕ′(t)r(t) dt =
T∫

0

ϕ′(t)u(t) dt−
T∫

0

ϕ′(t)f(t) dt

= −
T∫

0

ϕ(t)u′(t) dt +
T∫

0

ϕ′(t)u(t) dt = 0

for all ϕ ∈ C∞
0 ({t0 ≤ t}).

Due to Proposition 4.2 there exists x0 ∈ Xt1 such that w(t) = x0 for almost all t ≥ t1. Hence u(t) =
u(t0) +

∫ t

t1
u′(s) ds for almost all t ≥ t1. Choose such a point t0 ≥ t1 which satisfies the equation. �

Proposition 4.4. Let u ∈ Lp((0, T ); {Xt}) for some 1 ≤ p ≤ ∞, then the following statements are equivalent
(i) There exists a weak derivative u′ ∈ Lp((0, T ); {Xt}).
(ii) Function u locally absolutely continuous on (0, T ), differentiable a.e. and the derivative 

du

dt
∈

Lp((0, T ); {Xt}).
(iii) There exists a function v ∈ Lp((0, T ); {Xt}) such that for a.e. b ∈ (0, T ) and each x′(b) ∈ X ′

b the 
function ψb(t) = 〈x′(b), u(t)〉b is locally absolutely continuous and ψ′

b(t) = 〈x′(b), v(t)〉b for a. e. t ≤ b.
(iv) There exists a function v ∈ Lp((0, T ); {Xt}) such that for a.e. b ∈ (0, T ) and each e′(b) ∈ E′

b ⊂ X ′
b

(E′
b is a countable dense subset of X ′

b) the function ψb(t) = 〈e′(b), u(t)〉b is locally absolutely continuous and 
ψ′
b(t) = 〈e′(b), v(t)〉b for a.e. t ≤ b.

Proof. (i) ⇒ (ii) Thanks to Proposition 4.3 u(t) = u(t0) +
∫ t

t0
u′(s) ds for almost all t, t0 ∈ (0, T ), t0 ≤ t. 

Then it follows from Proposition 3.13 that function u locally absolutely continuous and differentiable a.e.
on (0, T ). As well du

dt
= u′ ∈ Lp((0, T ); {Xt}).

(ii) ⇒ (iii) Note that

|〈x′(b), u(t2)〉b − 〈x′(b), u(t1)〉b| ≤ ‖x′(b)‖ · ‖u(t2) − u(t1)‖

holds for t1 ≤ t2 ≤ b. This implies that function ψb(t) is locally absolutely continuous. Compute the 
derivative:

ψ′
b(t) = lim

h→0+

ψb(t) − ψb(t− h)
h

= lim 〈x′(b), u(t) − u(t− h) 〉b = 〈x′(b), du (t)〉b.

h→0+ h dt
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Take v = du
dt ∈ Lp((0, T ); {Xt}).

(iii) ⇒ (iv) clear.
(iv) ⇒ (i) We show that v = u′. Let ϕ ∈ C∞

0 ((0, T )) and b = sup{suppϕ}. Then for any e′(b) ∈ E′
b ⊂ X ′

b

〈e′(b),
T∫

0

ϕ′u dt〉b =
T∫

0

ϕ′〈e′(b), u(t)〉b dt = −
T∫

0

ϕ〈e′(b), v(t)〉b dt.

Consequently, 
∫ T

0 ϕ′u dt =
∫ T

0 ϕv dt in Xb as desired. �
We are now ready to formulate and prove our first main result.

Theorem 4.5. Let {Xt} be a monotone family of reflexive Banach spaces. If u ∈ W 1,p((0, T ); {Xt}), 
then there exists a section v(t) ∈ Lp((0, T ); {Xt}) such that ‖v(t)‖t is an upper gradient of u and 
‖v‖Lp((0,T );{Xt}) = inf

g
‖g‖Lp((0,T )).

Proof. 1. Prove that we can choose a continuous representative u. Let Σ ⊂ (0, T ) be the null set where (2.5)
fails. Observe that thanks to inequality (2.5) for any convergence sequence {sn} ⊂ (0, T ) \ Σ we have

‖u(sn) − u(sm)‖sn∨sm → 0 when n,m → ∞. (4.3)

For each point t ∈ Σ we choose an increasing sequence {sn(t)} ⊂ (0, T ) \Σ such that lim
n→∞

sn(t) = t. Due to 

(4.3) P (t, sn(t))u(sn(t)) is a Cauchy sequence in Xt, and, hence, there is a limit lim
n→∞

P (t, sn(t))u(sn(t)) ∈
Xt. Note that for any other increasing sequence {ζn} ⊂ (0, T ) \Σ converging to t it is true that lim

n→∞
u(ζn) =

lim
n→∞

u(sn(t)). The function

ū(t) :=

⎧⎨⎩u(t), if t ∈ (0, T ) \ Σ,

lim
n→∞

P (t, sn(t))u(sn(t)), if t ∈ Σ

coincides with u(t) a.e. on (0, T ).
Now prove that (2.5) holds for the function ū(t) everywhere on (0, T ). Suppose that t, t0 ∈ (0, T ) and 

t0 < t. Then sn(t0) < sn(t) for large n and

‖ū(t) − ū(t0)‖t ≤ ‖ū(t) − ū(sn(t))‖t + ‖ū(t0) − ū(sn(t0))‖t + ‖ū(s(t)) − ū(sn(t0))‖t

≤ ‖ū(t) − ū(sn(t))‖t + ‖ū(t0) − ū(sn(t0))‖t +
sn(t)∫

sn(t0)

g(s) ds →
t∫

t0

g(s) ds, as n → ∞.

This also implies the continuity of the function ū(t) on (0, T ). Thus, we can assume that the function u(t)
is continuous, and the inequality (2.5) is valid everywhere on the interval (0, T ). Due to the continuity, 
u((0, T )) ∩Xt1 = u({t ≤ t1} ∩ (0, T )) is a separable space for any t1 ∈ (0, T ). From now, we will deal with 
X̃t1 = u({t ≤ t1} ∩ (0, T )). Note that thanks to the reflexivity of Xt1 , X̃ ′

t1 is separable.
2. Here we will show that the family of difference quotients is bounded in Lp. Moreover, it is bounded 

uniformly.
For h > 0, define the function uh(t) = u(t)−u(t−h)

h ∈ Xt. Let J ⊂ (0, T ) and dist(J, {0, T}) > h. Applying 
(2.5) and Hölder’s inequality, derive
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‖uh(t)‖pt = 1
hp

‖u(t) − u(t− h)‖pt ≤ 1
hp

( t∫
t−h

g(s) ds
)p

≤ 1
h

t∫
t−h

|g(s)|p ds

for all t ∈ J . Next, with the help of Fubini’s theorem we obtain ‖uh‖Lp(J;{Xt}) ≤ ‖g‖Lp((0,T )), which means 
that {uh} is a bounded family in Lp(J ; {Xt}).

Let F ⊂ (0, T ) be such a set of null measure that

g(t) = lim
h→0

1
h

t∫
t−h

g(s) ds, for all t ∈ (0, T ) \ F.

Then, the inequality ‖uh(t)‖t ≤ 1
h

∫ t

t−h
g(s) ds guarantees the uniform estimate ‖uh(t)‖t ≤ Kt for all 

t ∈ (0, T ) \ F and small h.
3. To apply Proposition 4.4 (i ⇔ iv), we will show that sequence uh(t) has a weak limit in Lp, which is 

the desired derivative.
Fix b ∈ (0, T ). Let {x′

n(b)}n∈N be a dense sequence in X̃ ′
b (it is possible due to step 1). For x′

n(b) and 
t ≤ b, define the function ψn,b(t) = 〈x′

n(b), u(t)〉b. Note that

|ψn,b(t) − ψn,b(t0)| ≤ ‖x′
n(b)‖

t∫
t0

g(s) ds.

Therefore, the function ψn,b(t) is locally absolutely continuous on t ≤ b.
Since X̃b is reflexive, there exists a sequence hk → 0 and an element w(t) ∈ Xt such that uhk

(t) ⇀ w(t). 
Particularly,

〈x′
n(b), w(t)〉b = lim

k→∞
〈x′

n(b), uhk
(t)〉b = ψ′

n,b(t) for all t ∈ (0, T ) \ F,

namely ψ′
n,b(t) = 〈x′

n(b), w(t)〉b a.e. on t ≤ b.
It only remains to verify that w ∈ Lp((0, T ); {Xt}). For any sequence hm → 0 we have

lim
m→∞

〈x′
n(b), uhm

(t)〉b = ψ′
n,b(t) = 〈x′

n(b), w(t)〉b.

Let x′(b) ∈ X ′
b and ε > 0. Choose x′

n(b) such that ‖x′(b) − x′
n(b)‖ ≤ ε. For small h > 0 infer

|〈x′(b), uh(b) − w(b)〉b| ≤ |〈x′(b) − x′
n(b), uh(b) − w(b)〉b|

+ |〈x′
n(b), uh(b) − w(b)〉b| ≤ ε(Kb + ‖w(b)‖b) + ε.

Consequently, uh(b) ⇀ w(b), and, as b was chosen arbitrarily, uh(t) ⇀ w(t) for all t ∈ (0, T ). By Proposi-
tion 2.4, w ∈ Lp((0, T ); {Xt}). And by Proposition 4.4, there exists a weak derivative u′ = w.

4. From step 2 ‖‖u′(t)‖t‖Lp((0,T )) = ‖u′‖Lp((0,T );{Xt}) ≤ ‖g‖Lp((0,T )) for any function g which satisfy 
(2.5). On the other hand, by inequality (4.2) we have

‖u(t) − u(t0)‖t ≤
t∫

t0

‖u′(s)‖s ds.

Thus, ‖u′‖Lp((0,T );{Xt}) = inf ‖g‖Lp((0,T )). �

g
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From the above proof, we obtain

‖u‖W 1,p((0,T );{Xt}) = ‖u‖Lp((0,T );{Xt}) + ‖u′‖Lp((0,T );{Xt}).

Therefore, in the case of reflexive Banach spaces, our Definition 2.5 is equivalent to the definition in the 
standard form: space W 1,p((0, T ); {Xt}) is a set of all functions in Lp((0, T ); {Xt}) with weak derivatives 
which are also in Lp((0, T ); {Xt}). Now, in the usual manner one can prove the following.

Theorem 4.6. Let {Xt} be a monotone family of reflexive Banach spaces. The space W 1,p((0, T ); {Xt}) is a 
Banach space for all 1 ≤ p < ∞. In the case of Hilbert spaces Xt, W 1,2((0, T ); {Xt}) is also a Hilbert space.

4.2. Difference quotient criterion

We are going to make use of the so-called difference quotient criterion. This property is well known in the 
real-valued case [8, Proposition 9.3] and for vector case (see [21, Proposition 2.5.7] and [5, Theorem 2.2]). 
In our settings, we should additionally assume that Banach space Lp((0, T ); {Xt}) has the Radon–Nikodým 
property. We use the following definition of this property. A Banach space Y has the Radon–Nikodým 
property if each Lipschitz continuous function f : I → Y is differentiable almost everywhere (a good 
account on this notion see in [6, Section 1.2] and in [21, Section 1.3]).

Define operator u �→ τhu by the rule τhu(t) = u(t + h).

Proposition 4.7. 1) If u ∈ W 1,p((0, T ); {Xt}), then for all J ⊂ (0, T ) and h ∈ R, |h| < dist(J, {0, T})

‖τhu− u‖Lp(J;{Xt∨t+h}) ≤ Ch.

2) Let Lp((0, T ); {Xt}) has the Radon–Nikodým property. If u ∈ Lp((0, T ); {Xt}) and there exists a 
constant C such that for all J ⊂ (0, T ) and h ∈ R, |h| < dist(J, {0, T})

‖τhu− u‖Lp(J;{Xt∨t+h}) ≤ Ch

then u ∈ W 1,p((0, T ); {Xt}).

Although the proof of this proposition is a fairly straightforward adaptation of the proof of [5, Theo-
rem 2.2], we will examine whether it goes through our setting or not.

Proof. 1) This part follows from step 2 of the proof of Theorem 4.5.
2) Let J ⊂ J ′ ⊂ (0, T ) and δ > 0 s.t. δ < dist(J, ∂J ′) define function G : (0, δ) → Lp(J ; {Xt}) by 

t �→ u(· − t). Then, for t, s ∈ (0, δ)

‖G(t) −G(s)‖Lp(J;{Xt}) =
(∫

J

‖u(ξ − t) − u(ξ − s)‖pξ dξ
) 1

p

=
( ∫
J+s

‖u(ξ − t + s) − u(ξ)‖pξ+s dξ

) 1
p

≤
(∫

J ′

‖u(ξ − t + s) − u(ξ)‖pξ∨(ξ+s−t) dξ

) 1
p

= ‖τs−tu− u‖Lp(J ′;{Xξ∨(ξ+s−t)}) ≤ C|s− t|.

Thus, function G is Lipschitz continuous, and due to the Radon–Nikodým property of Lp((0, T ); {Xt}), 
there exists a derivative for almost all s ∈ (0, δ):
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G′(s) = lim
h→0

u(· − s + h) − u(· − s)
h

∈ Lp(J ; {Xt}). (4.4)

Then, there exists a sequence of negative numbers hn → 0 such that u(ξ+hn)−u(ξ)
hn

converges to gJ(ξ) in Xξ

for almost all ξ ∈ J . Here we use the fact that almost all ξ ∈ J can be written as ξ = ξ′− s, for some ξ′ ∈ J

and s ∈ (0, δ). Thanks to (4.4), gJ belongs to Lp(J ; {Xt}) and ‖gJ‖Lp(J;{Xt}) ≤ C. Given ϕ ∈ C∞
0 (J), 

Lebesgue’s dominated convergence theorem (Proposition 3.10)

∫
J

ϕ(t)gJ (t) dt = lim
n→∞

∫
J

ϕ(t)u(t + hn) − u(t)
hn

dt

= − lim
n→∞

∫
J

u(t)ϕ(t− hn) − ϕ(t)
hn

dt =
∫
J

ϕ′(t)u(t) dt. (4.5)

Now let Jn ⊂ Jn+1 ⊂ (0, T ) be such that 
⋃

n Jn = (0, T ) and let gJn
correspond to Jn as in the previous 

step. For any m, n functions gJm
, gJn

agree on Jm∩Jn, and this allows us define g(t) = gJn
(t) whenever t in 

some Jn. Note that g is a measurable section and by the Fatou lemma ‖g‖Lp((0,T );{Xt}) ≤ C. With the help 
of (4.5) we conclude that g is a weak derivative of u. Finally, by Proposition 4.3 u ∈ W 1,p((0, T ); {Xt}).

For p = ∞ use the first part and p → ∞. �
5. Isomorphism between W 1,p((0, T ); {Xt}) and W 1,p((0, T ); Y )

Here we establish requirements to the regularity of the family {Xt}, which allows us to construct the 
isomorphism W 1,p((0, T ); {Xt}) onto a standard Sobolev space. To demonstrate these conditions, we give 
positive and negative examples.

5.1. Measurable family of operators

To introduce operators on {Xt}-valued functions, we need a notion of measurability for a family of 
operators. Let {Yt} be another measurable family of Banach spaces, originating from the measurable family 
of semi-norms {‖ · ‖Yt

}t∈(0,T ) on a vector space Ṽ .

Definition 5.1. A map t �→ Φt ∈ L(Xt, Yt) defines a measurable family of bounded linear operators if

1. For any v ∈ V , a map t �→ Φtv is a measurable section of {Yt}t∈(0,T );
2. ‖Φt‖B(Xt,Yt) < ∞ almost everywhere on (0, T ).

Lemma 5.2. Let Φt : Xt → Yt be a measurable family of bounded linear operators, then for any measurable 
section ζ(t) of {Xt} the image Φtζ(t) is a measurable section of {Yt}.

Proof. Let ζ(t) be a measurable section, then there is a sequence of simple sections fk(t) → ζ(t) in Xt a.e. 
on (0, T ). From Definition 5.1, we have Φtfk(t) is a measurable section, and Φtfk(t) → Φtζ(t) in Yt a.e. on 
(0, T ). Thus, Φtζ(t) is a measurable section of {Yt}t∈(0,T ). �

In particular, Lemma 5.2 guarantees that the operator ζ �→ Φζ, acting by the rule Φζ(t) = Φtζ(t), is well 
defined in the sense that the image of some measurable section is again a measurable section.

To define an appropriate norm of measurable operator family, we apply the concept of lattice supremum 
(this technique we have learned from [16, Section 2]).
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Definition 5.3. Let F be a family of measurable functions on (0, T ). The lattice supremum 
∨
F is a function 

that satisfies the following two properties:

1. For any f ∈ F , we have f ≤
∨
F a.e. on (0, T );

2. If g is a measurable function such that for all f ∈ F f ≤ g a.e. on (0, T ), then 
∨

F ≤ g a.e. on (0, T ).

The set M of all measurable families of bounded linear operators as in Definition 5.1 is an L∞-module. 
Define a mapping N : M → L0((0, T ))+ which maps a measurable family to a nonnegative measurable 
function by the rule

N(Φ)(t) :=
∨{

‖Φtv‖Yt

‖v‖Xt

: v ∈ V

}
,

with the convention that ‖Φtv‖Yt

‖v‖Xt
= 0 whenever ‖v‖Xt

= 0. M equipped with the random norm N is a 
randomly normed space [17, Chapter 5].

Remark 5.4. Here we briefly explain the necessity of using the lattice supremum. Observe that ‖Φtf(t)‖Yt
≤

C‖f(t)‖Xt
a.e. does not imply an estimate ‖Φt‖B(Xt,Yt) ≤ C a.e., because each f could have its own null-set. 

Otherwise, it does imply that N(Φ) ≤ C a.e.

Lemma 5.5. Let Φt : Xt → Yt be a measurable family of bounded linear operators, then its norm can be 
calculated in the following way

N(Φ)(t) =
∨{

‖Φtζ(t)‖Yt

‖ζ(t)‖Xt

: ζ is a measurable section of {Xt}
}
. (5.1)

Proof. Denote the right hand side of (5.1) as K(t). It is clear that for any v ∈ V

‖Φtv‖Yt

‖v‖Xt

≤ K(t). (5.2)

Let g : (0, T ) → R be a measurable function such that for any v ∈ V an inequality ‖Φtv‖Yt

‖v‖Xt
≤ g(t) holds a.e. 

on (0, T ). For any simple section f(t) =
∑n

k=1 χAk
(t) · vk, we have

‖Φtf(t)‖Yt

‖f(t)‖Xt

=
n∑

k=1

‖Φtvk‖Yt

‖vk‖Xt

χAk
(t) ≤ g(t) a.e. on (0, T ).

Now if ζ(t) is a measurable section then there is a sequence of simple sections which converges a.e. on (0, T ). 
Therefore, ‖Φtζ(t)‖Yt

‖ζ(t)‖Xt
≤ g(t) a.e. and

K(t) ≤ g(t). (5.3)

Thus, by Definition 5.3 equations (5.2), (5.3) imply (5.1). �
A useful consequence from above lemma is that for any measurable section ζ

‖Φtf(t)‖Yt
≤ N(Φ)(t)‖ζ(t)‖Xt

a.e. on (0, T ).
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5.2. Embeddings between edges

Let

‖v‖T := lim
t→T−

‖v‖t and ‖v‖0 := lim
t→0+

‖v‖t,

for v ∈ V . Define (XT , ‖ · ‖T ) and (X0, ‖ · ‖0) as completions of corresponding quotient spaces. However, in 
critical cases, the first one could contain only zero, while the last one would be empty. Then, we have the 
following trivial embeddings.

Proposition 5.6. The maps

u(t) �→ P (t, 0)u(t) from W 1,p((0, T );X0) to W 1,p((0, T ); {Xt})

u(t) �→ P (T, t)u(t) from W 1,p((0, T ); {Xt}) to W 1,p((0, T );XT )

are both bounded operators.

Proof. First, note that both families are measurable (in the sense of Definition 5.1). Let u ∈ W 1,p((0, T ); X0). 
Then, ‖P (t, 0)u(t)‖t ≤ ‖u(t)‖0 and thus P (t, 0)u(t) ∈ Lp((0, T ); {Xt}). By assumption, there is the deriva-
tive u′(t) ∈ Lp((0, T ); X0). Then

‖P (t, 0)u(t) − P (t, s)P (s, 0)u(s)‖t ≤ ‖P (t, 0)u(t) − P (t, 0)u(s)‖t

≤ ‖u(t) − u(s)‖0 ≤
t∫

s

‖u′(τ)‖0 dτ.

Now, let u ∈ W 1,p((0, T ); {Xt}). Then ‖P (T, t)u(t)‖T ≤ ‖u(t)‖t for all t ∈ (0, T ). So P (T, t)u(t) ∈
Lp((0, T ); XT ). Check that there is a derivative in Lp

‖P (T, t)u(t) − P (T, s)u(s)‖T = ‖P (T, t)u(t) − P (T, t)P (t, s)u(s)‖T
≤ ‖u(t) − P (t, s)u(s)‖T

≤ ‖u(t) − P (t, s)u(s)‖t ≤
t∫

s

g(τ) dτ.

Consequently, P (T, t)u ∈ W 1,p((0, T ); X0). �
5.3. Isomorphism with a standard Sobolev space

We say that {Φt} is a measurable family of isomorphisms between measurable families {Xt} and {Yt}
if Φt : Xt → Yt is an isomorphism for almost all t ∈ (0, T ), and families {Φt} and {Φ−1

t } are measurable 
(in the sense of Definition 5.1). Under isomorphism between normed spaces, we mean a bijective bounded 
linear operator with bounded inverse.

Proposition 5.7. Let Φt : Xt → Yt be a measurable family of isomorphisms. If N(Φ) is in L∞((0, T )) then 
operator (Φu)(t) = Φtu(t) is an isomorphism from Lp((0, T ); {Xt}) to Lp((0, T ); {Yt}).
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Proof. It is clear that if Φt are bijective, then so is Φ. If u ∈ Lp((0, T ); {Xt}), then

‖Φu‖pLp((0,T );{Yt}) =
T∫

0

‖Φtu(t)‖Yt
dt ≤

T∫
0

N(Φ)(t)‖u(t)‖Xt
dt

≤ ‖N(Φ)‖L∞‖u‖pLp((0,T );{Xt}).

Thus operator Φ is bounded and by the Open Mapping theorem, we have that Φ−1 is bounded. �
Corollary 5.8. Let Φt : Xt → Y be a measurable family of isomorphisms, and Y possesses the Radon–
Nikodým property. If N(Φ) is in L∞((0, T )), then Lp((0, T ); {Xt}) has the Radon–Nikodým property.

We want to know when the operator Φ : W 1,p((0, T ); {X(t)}) → W 1,p((0, T ); Y ) defined by the rule 
(Φu)(t) = Φtu(t) is an isomorphism. Necessary and sufficient conditions are given in the following.

Theorem 5.9. Let 1 < p ≤ ∞ and Y has the Radon–Nikodým property. Then a measurable family of 
isomorphisms Φt : Xt → Y induces an isomorphism Φ : W 1,p((0, T ); {Xt}) → W 1,p((0, T ); Y ) defined by 
the rule (Φu)(t) = Φtu(t) if and only if N(Φ), N(Φ−1) ∈ L∞((0, T )) and

N(ΦtP (t, s) − Φs)(s) ≤ M(t− s) (5.4)

for almost all s < t, and some constant M .

Proof. Necessity. First, we show that N(Φ) is essentially bounded. Fix a cut-off function η ∈ C∞
0 (R) equal 

to 1 on B(0, 1) and 0 outside the ball B(0, 2). By substituting the functions ur(t) = η( t−z
r )v, where v ∈ V

and B(z, 2r) ⊂ (0, T ), into the inequality ‖Φur‖Lp(Y ) ≤ K‖ur‖W 1,p((0,T );{Xt}), derive∫
|z−t|<r

‖Φtv‖pY dt ≤ CK

∫
|z−t|<2r

‖v‖pXt
dt.

Applying the Lebesgue differentiation theorem, we infer for every v ∈ V

‖Φzv‖Y
‖v‖Xz

≤ C1 a.e. on (0, T ), (5.5)

and this means N(Φ) ∈ L∞((0, T )). Similarly N(Φ−1) ∈ L∞((0, T )).
Now, note that (Φur)′(t) = 1

rη
′( t−z

r )Φtv + η( t−z
r )(Φtv)′. In the same manner as in the previous step, we 

obtain for every v ∈ V

‖(Φzv)′‖Y ≤ C1‖v‖Xz
a.e. on (0, T ). (5.6)

Next, from (5.6) and the fact that Φv ∈ W 1,p((0, T ); Y ), for v ∈ V we have

‖(ΦtP (t, s) − Φs)v‖Y = ‖Φtv − Φsv‖Y ≤
t∫

s

‖(Φτv)′‖Y dτ

≤ C1

t∫
‖v‖Xτ

dτ ≤ C1‖v‖Xs
(t− s), (5.7)
s
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which holds for all t > s from (0, T ) \ Σ, and |Σ| = 0. Observe that for each t ∈ (0, T ) \ Σ the family of 
operators ΦtP (t, s) −Φs is measurable. Therefore, by (5.7) N(ΦtP (t, s) −Φs)(s) ≤ C1(t − s) for almost all 
t > s.

Sufficiency. First, we prove that (5.8) ensues control for inverse

N(Φ−1
t − P (t, s)Φ−1

s )(t) ≤ M ′(t− s). (5.8)

Indeed,

‖Φ−1
t − P (t, s)Φ−1

s v‖Xt
= ‖

(
Φ−1

t − P (t, s)Φ−1
s

)
ΦsΦ−1

s v‖Xt

= ‖Φ−1
t (Φs − ΦtP (t, s))Φ−1

s v‖Xt
≤ N(Φ−1)(t)‖ (Φs − ΦtP (t, s))Φ−1

s v‖Y
≤ N(Φ−1)(t)N(ΦtP (t, s) − Φs)(s)‖Φ−1

s v‖Xs

≤ N(Φ−1)(t)N(ΦtP (t, s) − Φs)(s)N(Φ−1)(t)‖v‖Y ≤ ‖N(Φ−1)‖2
L∞M(t− s)‖v‖Y .

Due to Proposition 5.7, Φ is an isomorphism from Lp((0, T ); {Xt}) to Lp((0, T ); Y ). In particular, this 
implies that Lp((0, T ); {Xt}) has the Radon–Nikodým property. Now, let u ∈ W 1,p((0, T ); {X(t)}), then

‖Φs+hu(s + h) − Φsu(s)‖Y
≤ ‖Φs+h(u(s + h) − P (s, s + h)u(s))‖Y + ‖Φs+hP (s, s + h)u(s) − Φsu(s)‖Y

≤ C(s + h)‖u(s + h) − P (s, s + h)u(s)‖Xs+h
+ N(Φs+hP (s, s + h) − Φs)(s) · ‖u(s)‖Xs

≤ C(s + h)
s+h∫
s

g(τ) dτ + Mh‖u(s)‖Xs
.

Calculating Lp-norm on J � (0, T ) such that |h| < dist(J, {0, T}), we obtain

‖Φ·+hu(· + h) − Φ·u(·)‖Lp(J;Y ) ≤
(

ess sup
(0,T )

N(Φ)(t)‖g‖Lp((0,T )) + M‖u‖Lp((0,T ),{Xt})

)
h.

Due to [5, Theorem 2.2] or Proposition 4.7 Φu ∈ W 1,p((0, T ); Y ).
In the same manner for operator (Φ−1u)(t) = Φ−1

t u(t) we have inequality

‖Φ−1
·+hu(· + h) − Φ−1

· u(·)‖Lp(J;{Xt∨(t+h)}) ≤
(

ess sup
(0,T )

N(Φ−1)(t)‖‖u′‖Y ‖Lp((0,T )) + M ′‖u‖Lp((0,T ),Y )

)
h,

for any u ∈ W 1,p((0, T ); Y ). Applying Corollary 5.8 and Proposition 4.7, we conclude Φ−1u ∈
W 1,p((0, T ); {Xt}). �

We point out that the above proof significantly uses the fact that functions from W 1,p((0, T ); Y ) possess 
weak derivatives. Thus, additional considerations should be made to replace Y by {Yt}.

5.4. Examples

Let us apply the last theorem to the two examples from section 2.

Example 5.1 (Composition operator). First, we examine Example 2.3. Since all spaces Xt from this example 
consist of the same functions as space W 1,q(Ω0), we want to check if the constructed space W 1,p((0, T ); {Xt})
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Fig. 3. φ maps a cylindrical domain to a non-cylindrical one, and it preserves the order of layers. Operator Φ acts between Sobolev 
spaces, but fails to be bounded.

is isomorphic to space W 1,p((0, T ); W 1,q(Ω0)) under operator (Φu)(t) = w(t)u(t) (here w : (0, T ) → R is 
some weight function, which we use just for the demonstration of Theorem 5.9). So we choose operators of 
multiplication by constant w(t)I : W 1,q(Ωt) → W 1,q(Ω0) as Φt : Xt → Y , Y = W 1,q(Ω0). Then, applying 
5.9, we obtain the conditions: w is Lipschitz function bounded from 0.

Example 5.2 (Monotone family of Hilbert spaces). As in Example 2.4, let {Qt} be a non-decreasing family 
in Rn, and W 1,2((0, T ); {H1

0 (Qt)}) is a Sobolev space in a non-cylindrical domain (see Fig. 3). We want to 
ask the following question: if is it possible to construct isomorphism Φu(t) = Cϕ(t,·)u(t) from this space to a 
Sobolev space in a cylindrical domain with the help of composition operators between inner spaces Cϕ(t,·) :
H1

0 (Qt) → H1
0 (QT )? To answer this question, we consider the mapping ϕ(t, x) : (0, T ) × QT →

⋃
t × Qt

with the property that for every t ∈ (0, T ) mapping ϕ(t, ·) : QT → Qt is a quasi-isometry. Then, for each t, 
operator Cϕ(t,·) is an isomorphism [29, Theorem 4].

Unfortunately, Theorem 5.9 gives us a negative answer to the above question. The essential obstacle 
is that assumption (5.4) in the case of composition operators is equivalent to the demand on additional 
derivatives. To demonstrate this, we consider a simple example. Let Qt be line segments [0, 1/2 + t/2], 
where t ∈ (0, 1), and ϕ(t, x) = (1+t)x

2 .
We will show that (5.4) fails. To do this, we fix 0 < s < t < 1 and a point a ∈ (0, 1/2 + s/2). Take a 

sequence fn(x) = C|x − a| 23 η0(x)ηn(x), n ∈ N, where:

• η0 ∈ C∞
0 (Qs) and η0 = 1 on [δ, 1/2 + s/2 − δ],

• ηn ∈ C∞(Qs) and ηn(x) = 0 for x ∈ [a − 1/n, a + 1/n] and ηn(x) = 1 for x ∈ Qs \ [a − 2/n, a + 2/n],
• the constant C such that ‖fn‖H1

0 (Qs) ≤ 1.

Then L2-norm of f ′′
n tends to infinity. Using this fact and the Taylor expansion in 1/2(1 + s)x we obtain

1
t− s

∥∥(Cϕ(t,·)P (t, s) − Cϕ(s,·))fn
∥∥
H1

0 (QT )

= 1
t− s

∥∥fn(1/2(1 + t)x) − fn(1/2(1 + s)x)
∥∥
H1

0 (QT )

≥ 1
2

1
t− s

∥∥(1 + t)f ′
n(1/2(1 + t)x) − (1 + s)f ′

n(1/2(1 + s)x)‖L2(QT )

= 1
2

1
t− s

∥∥f ′′
n (1/2(1 + s)x)1

2(t− s)x + o((t− s)x)

+ (t− s)f ′
n(1/2(1 + s)x) + tf ′′

n (1/2(1 + s)x)1
2(t− s)x + o(t(t− s)x)

∥∥
L2(QT )

= 1∥∥(1 + t)f ′′
n (1/2(1 + s)x)1

x + f ′
n(1/2(1 + s)x) + o(x)

∥∥
2 → ∞ as n → ∞.
2 2 L (QT )
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6. Scalar characterization

The space Lp((0, T ); {Xt}) admits a scalar description: a measurable section u(t) belongs to Lp((0, T );
{Xt}) iff ‖u(t)‖t ∈ Lp((0, T )). In general case, there is no such characterization for the Sobolev space 
W 1,p((0, T ); {Xt}). Nevertheless, if u ∈ W 1,p((0, T ); {Xt}), then the norm ‖u(t)‖t enjoys some regular-
ity properties. For example, in general settings by rather standard methods one can prove the following 
inequality:

‖u(t)‖L∞((0,T );{Xt}) ≤ C‖u‖1,p + ‖∂tρ(t, u(t))‖Lp((0,T );{Xt})

for any u ∈ W 1,p((0, T ); {Xt}), 1 ≤ p < ∞.
We can obtain the scalar characterization in the simplest form when additional conditions are imposed 

on the norm function. Namely, the following theorem holds.

Theorem 6.1. Let u ∈ W 1,p((0, T ); {Xt}) and assume that
(1) For any v ∈ V function t �→ ρ(t, v) belongs to W 1,p((0, T ));
(2) Weak derivatives ∂tρ(t, v) have a majorant H(t) ∈ Lp((0, T )).
Then ‖u(t)‖t ∈ W 1,p((0, T )).

Proof. ‖u(t)‖t ∈ Lp((0, T )) by the definition.
Suppose that t > s. Then

∣∣‖u(t)‖t − ‖u(s)‖s
∣∣ ≤ ∣∣‖u(t)‖t − ‖u(s)‖t

∣∣ +
∣∣‖u(s)‖t − ‖u(s)‖s

∣∣
≤ ‖u(t) − u(s)‖t + |ρ(t, u(s)) − ρ(s, u(s))|

≤
t∫

s

gu(τ) dτ +
t∫

s

|∂tρ(τ, u(s))| dτ ≤
t∫

s

gu(τ) + H(τ) dτ. �

Corollary 6.2. Suppose (1) and (2) from Theorem 6.1 hold true. Then there exists a constant C such that

‖u‖L∞((0,T );{Xt}) ≤ C‖u‖W 1,p((0,T );{Xt})

for any u ∈ W 1,p((0, T ); {Xt}).

The following theorem gives us another scalar characteristic and establishes a link with the approach of 
Yu. G. Reshetnyak to define Sobolev spaces of functions with values in a metric space [26].

Theorem 6.3. If u ∈ L0((0, T ); {Xt}) and the following two assumptions hold:
(A) for any v ∈ V the function ψv(t) = ‖u(t) − v‖t ∈ W 1,p((0, T )),
(B) the family of derivatives {ψ′

v(t)}v∈V has a majorant ψ′ ∈ Lp((0, T )),
then u ∈ W 1,p((0, T ); {Xt}).

Proof. When v = 0, from (A) we derive ‖u(t)‖t ∈ Lp((0, T )), which implies u ∈ Lp((0, T ); {Xt}). Next, (A) 
and (B) imply that for any v ∈ V

∣∣‖u(t) − v‖t − ‖u(t0) − v‖t0
∣∣ ≤ t∫

|ψ′
v(s)| ds ≤

t∫
|ψ′(s)| ds. (6.1)
t0 t0
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Let t ≥ t0. Choose a sequence {vk} ⊂ V that ‖u(t0) − vk‖t0 → 0 as k → ∞. Then, proceeding to the limit 
in (6.1), we derive

‖u(t) − u(t0)‖t ≤
t∫

t0

|ψ′(s)| ds. �

The converse to 6.3 does not hold in general. The following example shows that condition (A) fails in 
some cases.

Example 6.1. Let V be the vector space of all continuous functions defined on (0, 1), and T = 1. Define a 
family of norms on V

‖x‖t =

⎧⎪⎨⎪⎩
sup
(0,1)

|x(s)|, 0 < t < 0.5

sup
(0,0.5)

|x(s)|, 0.5 ≤ t < 1,

where x(s) ∈ C((0, 1)). Let Dt be a completion of C(0, 1)/ ker ‖ · ‖t with respect to ‖ · ‖t. Then, the function 
u(t)(s) = s belongs to W 1,p((0, 1); {Dt}), u′(t) = 0. On the other hand,

‖u(t)‖t =
{

1, 0 < t < 0.5
0.5, 0.5 ≤ t < 1,

is obviously out of space W 1,p((0, 1)).

Remark 6.4. An alternative way for applying Reshetnyak’s approach is the following. Define the space 
R1,p((0, T ); {Xt}) is the class of all functions f ∈ Lp((0, T ); {Xt}) such that:

(A) for every x′(t) ∈ X ′
t, ‖x′(t)‖t ≤ 1, the function ψx′(t) := 〈x′(t), f〉t belongs to W 1,p((0, T )); and

(B) there is a nonnegative function g ∈ Lp((0, T )) such that |ψ′
x′ | ≤ g a.e. on (0, T ) for every x′(t) ∈ X ′

t

with ‖x′(t)‖t ≤ 1.

For correctness, one should introduce some notion of measurability for sections x′ : (0, T ) →
⋃

t X
′
t. Then, 

a natural question arises: under what conditions spaces W 1,p and R1,p coincides.
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