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WEIGHTED VARIATION INEQUALITIES FOR DIFFERENTIAL OPERATORS

AND SINGULAR INTEGRALS IN HIGHER DIMENSIONS

TAO MA, JOSÉ LUIS TORREA, AND QUANHUA XU

Abstract. We prove weighted q-variation inequalities with 2 < q < ∞ for differential and sin-
gular integral operators in higher dimensions. The vector-valued extensions of these inequalities
are also given.

1. Introduction and results

We pursue our investigation of weighted variation inequalities for differential operators and
singular integrals. The one dimensional case has been studied in our previous article [18]. In the
present one we consider the higher dimensional case. We show that most results of [18] extend to
higher dimensions. However, the arguments in R

d with d ≥ 2 are more complicated than those in
the case of d = 1. This is particularly true for the weighted weak type (1, 1) inequalities. Their
proofs require a very careful geometrical analysis of the kernels in consideration. On the other hand,
one-sided weighted variation inequalities for one-sided differential operators were obtained in [18].
However, at the time of this writing, it is not clear for us how to show their higher dimensional
extensions.

Variation inequalities have been the subject of numerous recent research papers in probability,
ergodic theory and harmonic analysis. The first variation inequality was proved by Lépingle [17]
for martingales (see also [21] for a different approach and related results). Bourgain [1] proved the
variation inequality for the ergodic averages of a dynamic system. Bourgain’s work has been
considerably improved by subsequent works and largely extended to many other operators in
ergodic theory (see, for instance, [12, 14, 16]) and harmonic analysis (cf. e.g., [3, 5, 8, 13, 19, 20]).

To state our results we need to recall some definitions. Let 1 ≤ q < ∞ and a = {at}t>0 be a
family of complex numbers. The q-variation of a is defined to be

‖a‖vq = sup
( ∞∑

j=0

|atj − atj+1 |q
)1/q

,

where the supremum runs over all increasing sequences {tj} of positive numbers. Let vq denote the
space of all functions on (0, ∞) with finite q-variation. This is a Banach space modulo constant
functions. The norm (or more precisely, seminorm) ‖ ‖vq will be also denoted by Vq: Vq(a) = ‖a‖vq .

Our first result concerns singular integral operators. Let K be a kernel on R
d × R

d \ {(x, x) :
x ∈ R

d}. We will suppose that K satisfies the following regularity conditions. There exist two
constants δ > 0 and C > 0 such that

(K0): |K(x, y)| ≤ C

|x− y|d for x 6= y;

(K1): |K(x, y)−K(z, y)| ≤ C|x− z|δ
|x− y|d+δ

for |x− y| > 2|x− z|;

(K2): |K(y, x)−K(y, z)| ≤ C|x− z|δ
|x− y|d+δ

for |x− y| > 2|x− z|.
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By a slight abuse of notation, we will also use K to denote the associated singular integral operator:

K(f)(x) =

∫

Rd

K(x, y)f(y)dy, x ∈ R
d.

For any t > 0 let Kt be the truncated operator:

Kt(f)(x) =

∫

|x−y|>t

K(x, y)f(y)dy.

Let K(f)(x) = {Kt(f)(x)}t>0. Thus K is an operator mapping functions on R
d to families of

functions on R
d. We will consider the q-variation of Kf (relative to the variable t):

VqK(f)(x) = ‖K(f)(x)‖vq .
Thus the operator VqK sends functions on R

d to nonnegative functions on R
d.

We next recall the definition of Ap weights. Let w be a positive function on R
d.

• w ∈ Ap (with 1 < p < ∞) if

sup
Q

1

|Q|

∫

Q

w(x)dx
( 1

|Q|

∫

Q

w(x)−
1

p−1 dx
)p−1

< ∞,

where the supremum runs over all cubes in R
d; All cubes in this paper are assumed to be open

and with sides parallel to the axes.
• w ∈ A1 if M(w) ≤ Cw for some constant C.

Here M(f) denotes the usual Hardy-Littlewood maximal function of a locally integrable function:

M(f)(x) = sup
x∈Q

1

|Q|

∫

Q

|f(y)|dy.

Muckenhoupt’s celebrated characterization of Ap weights asserts that w ∈ Ap if and only if the
operator M is bounded on Lp(Rd, w) for 1 < p < ∞, and w ∈ A1 if and only if M maps L1(Rd, w)
to L1,∞(Rd, w). We refer to [7] for more information.

As usual, f ♯ denotes the sharp maximal function of f :

f ♯(x) = sup
x∈Q

1

|Q|
∣∣∣
∫

Q

f(x)− 1

|Q|

∫

Q

f(y)dy
∣∣∣dx.

The space BMO(Rd) consists of all f such that f ♯ ∈ L∞(Rd) equipped with ‖f‖∗ = ‖f ♯‖∞.

We are now ready to state the first result of the paper. The symbol A . B will mean an
inequality up to a constant that may depend on the indices p, q, d, the constants C, δ in (K0)-(K2),
the weights w, etc. but never on the functions f on R

d or the points x ∈ R
d in consideration.

Theorem 1. Let K be a kernel on R
d satisfying (K0)-(K2), and let 2 < q < ∞. Assume that the

operator VqK is of type (p0, p0) for some 1 < p0 < ∞:
∫

Rd

(
VqK(f)(x)

)p0
dx .

∫

Rd

|f(x)|p0dx, ∀ f ∈ Lp0(Rd).

Then

(i) for w ∈ A1

w
({

x ∈ R
d : VqK(f)(x) > λ

})
.

1

λ

∫

Rd

|f(x)|w(x)dx, ∀ f ∈ L1(Rd, w), ∀ λ > 0;

(ii) for 1 < p < ∞ and w ∈ Ap
∫

Rd

(
VqK(f)(x)

)p
w(x)dx .

∫

Rd

|f(x)|pw(x)dx, ∀ f ∈ Lp(Rd, w).

(iii) for any weight w such that w−1 ∈ A1

∥∥(VqK(f)
)♯
w
∥∥
∞

.
∥∥fw

∥∥
∞
, ∀ f ∈ L∞

c (Rd),

where L∞
c (Rd) denotes the space of bounded measurable functions with compact support. In

particular, VqK is bounded from L∞
c (Rd) to BMO(Rd).
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Note that a similar result was proved in [11] independently and almost at the same time; however,
the result of [11] concerns only smooth truncations of singular integrals. We would emphasize that
the above theorem is new even in the unweighted case. With regard to this, compare it with [3,
Theorem B]. The main interest of the weighted L∞-BMO boundedness in part (iii) lies in the fact
that it implies, by extrapolation, the type (p, p) estimate in (ii) (see [9]). On the other hand, (i)
and extrapolation yield (ii) too.

The proof of the above theorem can be adapted to the situation of differential operators. For
t > 0 let Bt denote the open ball in R

d of center at the origin and radius t. Given a locally
integrable function f on R

d define

At(f)(x) =
1

|Bt|

∫

Bt

f(x+ y) dy =
1

|Bt|

∫

Rd

f(y)1Bt
(y − x) dy, x ∈ R

d.

These are the central differential operators on R
d. The term “differential operator” refers here

to Lebegue’s classical differential theorem. Let A(f)(x) = {At(f)(x)}t>0. We then consider the
q-variation of the family A(f)(x): VqA(f)(x) = ‖A(f)(x)‖vq . Jones et al proved in [12] that the

operator VqA is bounded on Lp(Rd) for 1 < p ≤ 2 and from L1(Rd) into L1,∞(Rd). The following
theorem extends their result not only to all p > 2 but also to the weighted case.

Theorem 2. Let 2 < q < ∞. Then

(i) for w ∈ A1

w
({

x ∈ R
d : VqA(f)(x) > λ

})
.

1

λ

∫

Rd

|f(x)|w(x)dx, ∀ f ∈ L1(Rd, w), ∀ λ > 0;

(ii) for 1 < p < ∞ and w ∈ Ap∫

Rd

(
VqA(f)(x)

)p
w(x)dx .

∫

Rd

|f(x)|pw(x)dx, ∀ f ∈ Lp(Rd, w).

(iii) for any weight w such that w−1 ∈ A1

∥∥(VqA(f)
)♯
w
∥∥
∞

.
∥∥fw

∥∥
∞
, ∀ f ∈ L∞

c (Rd).

In particular, VqA is bounded from L∞
c (Rd) to BMO(Rd).

Remark 3. In the above theorem, the family {Bt}t>0 of balls can be replaced by the family
{Qt}t>0 of cubes, where Qt is the cube centered at the origin and having side length equal to t.

Fundamental examples to which Theorem 1 applies are the Riesz transforms. More generally, it
also applies to singular integrals with homogeneous kernels.

Corollary 4. Let Ω be a function on the unit sphere Sd−1 such that

Ω ∈ L1(S
d−1) and

∫

Sd−1

Ω(θ)dσ(θ) = 0,

where dσ denotes surface measure on Sd−1. Assume in addition that Ω belongs to the Hölder class

of order α for some α > 0:

sup
θ1,θ2∈Ω

|Ω(θ1)− Ω(θ2)|
|θ1 − θ2|α

< ∞.

Let

K(x, y) =
Ω((x− y)/|x− y|)

|x− y|d , x, y ∈ R
d, x 6= y.

Then for 2 < q < ∞ the operator VqK is bounded on Lp(Rd, w) for 1 < p < ∞ and w ∈ Ap, and

from L1(Rd, w) to L1,∞(Rd, w) for w ∈ A1.

For the kernel K in this corollary, Campbell et al proved in [3] that VqK is of type (p, p) for
1 < p < ∞ and weak type (1, 1). So the corollary follows immediately from Theorem 1. Note
that the Riesz transforms Rj are included in the family of singular integrals considered in the
corollary. Thus we get weighted variation inequalities for Riesz transforms too. Such inequalities
for Riesz transforms were already obtained in [8] but only for some special weights. More precisely,
if 1 < p < ∞ and w(x) = |x|α with −1 < α < p−1, then VqRj is bounded on Lp(Rd, w). However,
the result of [8] has the additional important feature that the relevant constant is dimension free.



4 TAO MA, JOSÉ LUIS TORREA, AND QUANHUA XU

Let us give an application of Theorem 2 to approximate identities.

Corollary 5. Let ϕ : Rd → [0,+∞) be a radial and radially decreasing integrable function. Let

ϕt(x) =
1
td
ϕ(xt ) and Φ(f)(x) = {ϕt ∗ f(x)}t>0. Then for 2 < q < ∞ the operator VqΦ is bounded

on Lp(Rd, w) for 1 < p < ∞ and w ∈ Ap, and from L1(Rd, w) to L1,∞(Rd, w) for w ∈ A1.

Proof. By approximation we can assume that ϕ is of the form: ϕ =
∑

k αk1Brk
with αk > 0 (the

sum being finite). Then

ϕt ∗ f(x) =
∑

k

αk|Brk |Arkt(f)(x);

whence

VqΦ(f)(x) ≤ ‖ϕ‖1VqA(f)(x).

Then Theorem 2 immediately implies the corollary. �

In particular, for ϕ(x) = e−|x|2 (resp. ϕ(x) = (1+ |x|2)−d/2), the convolutions {ϕt ∗f}t give rise
to the heat (resp. Poisson) semigroup relative to the Laplacian of Rd, up to a multiple constant.
For this two examples, the above corollary goes back to [4]

Both Theorems 1 and 2 can be extended to the vector-valued case. The following result for
the differential operators improves Fefferman-Stein’s celebrated vector-valued. Hong and Ma [10]
extend it to the case where the space ℓρ is replaced by any UMD lattice.

Theorem 6. Let q > 2 and 1 < ρ < ∞.

(i) Let K be a kernel on R
d satisfying (K0)-(K2) and such that the operator VqK is of type (p0, p0)

for some 1 < p0 < ∞. Let 1 ≤ p < ∞ and w ∈ Ap. Then
∫

Rd

(∑

n

(
VqK(fn)(x)

)ρ)p/ρ

w(x)dx .

∫

Rd

(∑

n

|fn(x)|ρ
)p/ρ

w(x)dx

for all finite sequences {fn}n≥1 ⊂ Lp(Rd, w) with 1 < p < ∞, and

w
({

x ∈ R
d :

∑

n

(
VqK(fn)(x)

)ρ
> λρ

})
.

1

λ

∫

Rd

(∑

n

|fn(x)|ρ
)1/ρ

w(x)dx

for all finite sequences {fn}n≥1 ⊂ L1(Rd, w) and any λ > 0.
(ii) A similar statement holds for the operator VqA in place of VqK.

Remark 7. The first version of this paper was written almost at the same time as [18] in the fall
of 2012. All previous results were proved in that version except the weak type (1, 1) inequality
of Theorem 6, which has prevented us from finalizing the paper (more precisely, the obstruction
concerned the proof of (6.5) below). It is only recently that Guixiang Hong pointed to us that an
argument of [15] could help lift this obstruction. Note that the main result of [15] is precisely the
part of Theorem 6 for the differential operators. Although adapted from the pattern set up in [12],
its proof differs from ours. So the overlap between the two papers is not significant.

The paper is organized as follows. In sections 2 and 3 we prove Theorem 1. The proofs of the
two parts (i) and (ii) depend one on another. More precisely, the proof of (ii) depends on the
unweighted version of (i), and that of (i) on (ii). The proof of the weak type (1, 1) inequality is
quite technical and requires a careful geometrical analysis of the kernel. This proof is much more
complicated than the corresponding one in the one dimensional case in [18]. However, the proof
of the type (p, p) inequality does not differ too much from the one dimensional case. In sections 4
and 5, we present the proof of Theorem 2. This proof is similar to that of Theorem 1. The last
section is devoted to the proof of Theorem 6.

2. Proof of Theorem 1: weak type (1, 1)

In this section we prove the weak type (1, 1) inequality of Theorem 1. In fact, only the unweighted
version of part (i), i.e., for w ≡ 1 will be completely proved in this section. The full generality will
be completed in the end of section 3. This proof is long and technical. It is based on a careful
geometrical analysis of the truncated kernels of the singular integral. Although we follow the
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general pattern set up in [3], our argument is subtler than that of [3]. For instance, our treatment
of the long variation is quite complicated, while the one of [3] is rather straightforward.

As usual, the classical Calderón-Zygmund decomposition will play a crucial role in our proof.
Let us state it below for later reference (cf. e.g., [7, Theorem II.1.12]). Given a cube Q ⊂ R

d let

Q̃ = 5
√
dQ, the cube with the same center as Q but 5

√
d times the side length.

Lemma 2.1. Let f be a compactly supported integrable function on R
d and λ > 0. Then there

exists a finite disjoint family {Qi} of dyadic cubes satisfying the following properties

(i) |f | ≤ λ on Ωc, where Ω =
⋃

i

Qi;

(ii) λ <
1

|Qi|

∫

Qi

|f | ≤ 2dλ;

(iiii) Ω ⊂ {x ∈ R
d : M(f)(x) > λ} and {x ∈ R

d : M(f)(x) > 4dλ} ⊂ Ω̃, where Ω̃ =
⋃

i

Q̃i;

Define

g = f on Ωc and g =
1

|Qi|

∫

Qi

f on Qi for each i,

b =
∑

i

bi, where bi =
(
f − 1

|Qi|

∫

Qi

f
)
1Qi

.

Then

(iv) f = g + b;
(v) ‖g‖∞ ≤ 2dλ;

(vi) for each i,

∫

Rd

bi = 0 and
1

|Qi|

∫

Rd

|bi| ≤ 2d+1λ.

We also require the following elementary fact which is to be compared with Cotlar’s almost
orthogonality lemma (see [2] for the case r = 2).

Lemma 2.2. Let {hk,j}k,j∈Z be a family of vectors in a Banach space B and {∆j}j∈Z a family

of nonnegative numbers with
∑

j∈Z
∆j < ∞. Assume that ‖hk,j‖ ≤ ω(k − j)∆

1/r
j with 1 < r < ∞

and ω =
∑

j∈Z
ω(j) < ∞. Then

∑

k∈Z

∥∥∑

j∈Z

hk,j

∥∥r ≤ ωr
∑

j∈Z

∆j .

Proof. The proof is straightforward by the Hölder inequality. Indeed, letting r′ be the conjugate
index of r, we have

∑

k∈Z

∥∥∑

j∈Z

hk,j

∥∥r ≤
∑

k∈Z

(∑

j∈Z

ω(k − j)
)r/r′(∑

j∈Z

ω(k − j)−r/r′‖hk,j

∥∥r)

≤ ωr/r′
∑

k∈Z

∑

j∈Z

ω(k − j)∆j = ωr
∑

j∈Z

∆j .

Thus we are done. �

The following standard lemma will be used several times later on.

Lemma 2.3. Let w be a locally integrable nonnegative function on R
d, x0 ∈ R

d and r > 0, α > 0.
Then ∫

|x−x0|>r

w(x)dx

|x− x0|d+α
.

1

rα
M(w)(y) for y ∈ x0 +Br.

Consequently, if w ∈ A1, then
∫

|x−x0|>r

w(x)dx

|x− x0|d+α
.

1

rα
w(y) for a.e. y ∈ x0 +Br.
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Proof. We have
∫

|x−x0|>r

w(x)dx

|x− x0|d+α
≤ r−α

∞∑

s=0

2−αs
[ 1

(2sr)d

∫

2sr<|x−x0|≤2s+1r

w(x)dx
]

. r−α
∞∑

s=0

2−αs
[ 1

(2s+1r)d

∫

|x−x0|≤2s+1r

w(x)dx
]

. r−αM(w)(y) for y ∈ x0 +Br.

The assertion is thus proved. �

Before proceeding to the proof of the weak type (1, 1) inequality of the operator VqK, we need
more notation. For an interval I = (s, t] with 0 < s < t < ∞ we denote by RI the annulus
{x ∈ R

d : s < |x| ≤ t} and let

KI(f)(x) = Ks(f)(x)−Kt(f)(x) =

∫

Rd

K(x, y)1RI
(x − y)f(y)dy.

Let f be a compactly supported integrable function on R
d and λ > 0. We must control the

quantity w({x : VqK(f)(x) > λ}) by ‖f‖L1(Rd,w)/λ. By rescaling, we can assume that λ = 2.
Keeping the notation in Lemma 2.1 (with λ = 2), we have

w({x : VqK(f)(x) > 2}) ≤ w({x : VqK(g)(x) > 1}) + w({x : VqK(b)(x) > 1}).
We must control the two terms on the right hand side by

∫
Rd |f(x)|w(x)dx. It is here for the good

part g that we require that w ≡ 1. Thus if w ≡ 1, then by the Lp0-boundedness of VqK we have

w({x : VqK(g)(x) > 1}) = |{x : VqK(g)(x) > 1}| ≤
∫

Rd

(VqK(g))p0 (x)dx

.

∫

Rd

|g(x)|p0dx .

∫

Rd

|f(x)|dx.
(2.1)

We will prove the above inequalities for a general w ∈ A1 in the end of section 3.
In the rest of this section, we again assume that w is a general A1 weight. We will treat the bad

part and show

w({x : VqK(b)(x) > 1}) .
∫

Rd

|f(x)|w(x)dx.

A preliminary step toward this end is the following

w({x : VqK(b)(x) > 1}) ≤ w(Ω̃) + w({x : x /∈ Ω̃,VqK(b)(x) > 1}).
By the doubling property of w and the weak type (1, 1) boundedness of M for A1 weights, we have

w(Ω̃) .
∑

i

w(Qi) = w(Ω) ≤ w({x ∈ R : M(f)(x) > 2}) .
∫

Rd

|f(x)|w(x)dx.

So it remains to treat w({x ∈ Ω̃c : VqK(b)(x) > 1}). For clarity we divide this technical part of the
proof into several steps.

Step 1. Decomposition into interior and boundary sums. Given x /∈ Ω̃ choose an increasing
sequence {tj} such that

VqK(b)(x) ≤ 2
(∑

j

∣∣K(tj , tj+1](b)(x)
∣∣q)1/q.

Note that the sequence {tj} depends on x, as well as the sets I1(I) and I2(I) below. But for
notational simplicity we will not mention x explicitly in {tj} or Ik(I) (k = 1, 2), which should not
cause any ambiguity.

Let Ij = (tj , tj+1]. The intervals Ij ’s are pairwise disjoint. Note that KIj (b)(x) 6= 0 only if
x+RIj meets some cube Qi. We consider two cases according to Qi ⊂ x+RIj orQi∩(x+∂RIj ) 6= ∅.
For a given interval I let

I1(I) = {i : Qi ⊂ x+RI} and I2(I) = {i : Qi ∩ (x+ ∂RI) 6= ∅}.
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Then
(∑

j

∣∣KIj (b)(x)
∣∣q)1/q ≤

(∑

j

∣∣ ∑

i∈I1(Ij)

KIj (bi)(x)
∣∣q)1/q +

(∑

j

∣∣ ∑

i∈I2(Ij)

KIj (bi)(x)
∣∣q)1/q.

According to [3], the first sum on the right-hand side is called the interior sum and the second the
boundary sum. It then follows that

w({x ∈ Ω̃c : VqK(b)(x) > 1}) ≤ w({x ∈ Ω̃c :
∑

j

∣∣ ∑

i∈I1(Ij)

KIj (bi)(x)
∣∣q >

1

2q
})

+ w({x ∈ Ω̃c :
∑

j

∣∣ ∑

i∈I2(Ij)

KIj (bi)(x)
∣∣q >

1

2q
}).

For the two last terms, we will use the ℓ1 and ℓ2 norms instead of the ℓq norm, respectively:
(∑

j

∣∣ ∑

i∈I1(Ij)

KIj (bi)(x)
∣∣q)1/q ≤

∑

j

∣∣ ∑

i∈I1(Ij)

KIj (bi)(x)
∣∣,

(∑

j

∣∣ ∑

i∈I2(Ij)

KIj (bi)(x)
∣∣q)1/q ≤

(∑

j

∣∣ ∑

i∈I2(Ij)

KIj (bi)(x)
∣∣2)1/2.

Thus we are led to proving the following two inequalities

w({x ∈ Ω̃c :
∑

j

∣∣ ∑

i∈I1(Ij)

KIj (bi)(x)
∣∣ > 1

2
}) .

∫

Rd

|f(y)|w(y)dy,

w({x ∈ Ω̃c :
∑

j

∣∣ ∑

i∈I2(Ij)

KIj (bi)(x)
∣∣2 >

1

4
}) .

∫

Rd

|f(y)|w(y)dy.

The first on the interior sum is easy and will be done in step 2. The second on the boundary sum
is much harder and will be handled in steps 3-5.

Step 2. Estimate on the interior sum. Let i ∈ I1(Ij), that is Qi ⊂ x + RIj . Since bi is of
vanishing mean, we have

KIj (bi)(x) =

∫

Rd

K(x, y)bi(y)dy =

∫

Rd

(
K(x, y)−K(x, ci)

)
bi(y)dy,

where ci is the center of Qi. Therefore, for x /∈ Ω̃ by (K2) we get

∑

j

∣∣ ∑

i∈I1(Ij)

KIj (bi)(x)
∣∣ ≤

∑

i

∫

Qi

∣∣K(x, y)−K(x, ci)
∣∣ |bi(y)|dy

.
∑

i

lδi
|x− ci|d+δ

∫

Qi

|bi(y)|dy

.
∑

i

lδi
|x− ci|d+δ

∫

Qi

|f(y)|dy,

where li denotes the side length of Qi. Thus by Lemma 2.3, we deduce

w({x ∈ Ω̃c :
∑

j

∣∣ ∑

i∈I1(Ij)

KIj (bi)(x)
∣∣ > 1

2
}) .

∫

Ω̃c

∑

j

∣∣ ∑

i∈I1(Ij)

KIj (bi)(x)
∣∣w(x)dx

.

∫

Ω̃c

∑

i

lδi
|x− ci|d+δ

∫

Qi

|f(y)|dyw(x)dx

.
∑

i

lδi

∫

Qi

|f(y)|
[ ∫

|x−ci|>li

w(x)dx

|x− ci|d+δ

]
dy

.
∑

i

∫

Qi

|f(y)|w(y)dy

.

∫

Rd

|f(y)|w(y)dy.
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Step 3. Separation of the boundary sum into long and short variations. We will handle
this part by passing through long and short variations. For each j, consider two cases:

• Case 1: Ij does not contain any power of 2;
• Case 2: Ij contains powers of 2.

In case 1, Ij ⊂ (2k, 2k+1] for some k ∈ Z. In case 2, letting mj = min{k : 2k ∈ Ij} and
nj = max{k : 2k ∈ Ij}, we divide Ij into three subintervals: (tj , 2

mj ], (2mj , 2nj ] and (2nj , tj+1]
(noting that if mj = nj, the middle interval is empty). Then

|KIj (b)(x)|2 ≤ 3
(
|K(tj, 2

mj ](b)(x)|2 + |K(2mj , 2nj ](b)(x)|2 + |K(2nj , tj+1](b)(x)|2
)
.

We need only to keep the subintervals whose associated annuli translated by x intersect some Qi.
Accordingly, we introduce two collections of intervals:

• S consists of all intervals in case 1, and all (tj , 2
mj ], (2nj , tj+1] in case 2 if their associated

annuli translated by x intersect some Qi;
• L consists of all intervals (2mj , 2nj ] resulting in case 2 if their associated annuli translated by x
intersect some Qi.

Note that S ∪L is a disjoint family of intervals and for each I ∈ S ∪L we have that x+RI contains
no any Qi but meets some Qi′ .

The above discussion leads to
(∑

j

∣∣ ∑

i∈I2(Ij)

KIj (bi)(x)
∣∣2)1/2 ≤

√
3
(∑

I∈L

∣∣ ∑

i∈I2(I)

KI(bi)(x)
∣∣2)1/2

+
√
3
(∑

I∈S

∣∣ ∑

i∈I2(I)

KI(bi)(x)
∣∣2)1/2.

The first sum on the right is the long variation and the second the short variation. Thus

w({x ∈ Ω̃c :
∑

j

∣∣ ∑

i∈I2(Ij)

KIj (bi)(x)
∣∣2 >

1

4
}) ≤ w({x ∈ Ω̃c :

∑

I∈L

∣∣ ∑

i∈I2(I)

KI(bi)(x)
∣∣2 >

1

48
})

+ w({x ∈ Ω̃c :
∑

I∈S

∣∣ ∑

i∈I2(I)

KI(bi)(x)
∣∣2 >

1

48
}).

The last two measures on the long and short variations will be estimated in step 4 and step 5,
respectively.

Step 4. Estimate of the long variation. Let I = (2m, 2n] ∈ L (with m < n) and i ∈ I2(I).
Then Qi intersects one (and only one) of the two spheres x+ {y : |y| = 2m} and x+ {y : |y| = 2n}.
If Qi intersects the former, then 2m > 2

√
d li. Indeed, there exists y ∈ Qi such that |y − x| = 2m.

Since x /∈ Ω̃, we have

2m = |x− y| ≥ |x− c| − |y − c| > 5
√
d
li
2
−
√
d
li
2
= 2

√
d li.

Thus for any z ∈ Qi,

|z − x| ≤ |y − x|+ |z − y| ≤ 2m +
√
d li < 2m+1,

|z − x| ≥ |y − x| − |z − y| ≥ 2m −
√
d li > 2m−1 .

Consequently,

Qi ⊂ x+R(2m−1, 2m+1] ⊂
m+1⋃

k=m−1

(x+R(2k, 2k+1]) .

We have a similar assertion if Qi ∩ (x + {y : |y| = 2n}) 6= ∅. Also note that if the latter case
happens, Qi cannot intersect x+ {y : |y| = 2m}. Hence

Qi ⊂
m+1⋃

k=m−1

(x +R(2k, 2k+1]) or Qi ⊂
n+1⋃

k=n−1

(x+R(2k, 2k+1]).

This shows that Qi does not meet x+R(2k, 2k+1] for any integer k ∈ [m+ 1, n− 1). Thus for such
a k we must have

K(2k, 2k+1](bi)(x) = 0.
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Therefore, we deduce that

∣∣ ∑

i∈I2(I)

KI(bi)(x)
∣∣2 ≤ 2

n−1∑

k=m

∣∣ ∑

i∈I2(I)

K(2k, 2k+1](bi)(x)
∣∣2

≤ 2

n−1∑

k=m

( ∑

i∈I2(Dk)

∣∣KDk
(bi)(x)

∣∣)2,

where Dk = (2k, 2k+1]. Note that if i ∈ I2(I), then the above term K(2k, 2k+1](bi)(x) 6= 0 only if
k = m or n − 1. We do this procedure for every I ∈ L and sum up all inequalities so obtained.
Consequently, we have

∑

I∈L

∣∣ ∑

i∈I2(I)

KI(bi)(x)
∣∣2 ≤ 2

∑

I∈L

n(I)−1∑

k=m(I)

( ∑

i∈I2(Dk)

∣∣KDk
(bi)(x)

∣∣)2,

where I = (2m(I), 2n(I)]. For any k ∈ Z, let I2,k = I2(Dk). Noting that the intervals in L are
pairwise disjoint, we get

(2.2)
∑

I∈L

∣∣ ∑

i∈I2(I)

KI(bi)(x)
∣∣2 ≤ 2

∑

k∈Z

( ∑

i∈I2,k

∣∣KDk
(bi)(x)

∣∣)2.

Thus

w({x ∈ Ω̃c :
∑

I∈L

∣∣ ∑

i∈I2(I)

KI(bi)(x)
∣∣2 >

1

48
}) .

∫

Ω̃c

∑

k∈Z

( ∑

i∈I2,k

∣∣KDk
(bi)(x)

∣∣)2w(x)dx.

Now let Ij = {i : li = 2j} (recalling that li is the side length of Qi) and define

hk,j(x) =
∑

i∈I2,k∩Ij

∣∣KDk
(bi)(x)

∣∣.

It is important to note that if hk,j(x) 6= 0, then k > j. We have
∑

k∈Z

∣∣ ∑

i∈I2,k

KDk
(bi)(x)

∣∣2 ≤
∑

k∈Z

(∑

j

hk,j(x)
)2
.

Therefore, we are led to proving

∑

k∈Z

∫

Ω̃c

(∑

j

hk,j(x)
)2
w(x)dx .

∑

i

∫

Qi

|f(y)|w(y)dy

=
∑

j

∑

i∈Ij

∫

Qi

|f(y)|w(y)dy

def
=

∑

j

∆j .

Thus we are in the situation of applying Lemma 2.2 (with r = 2). By that lemma, it suffices to
show ∫

Ω̃c

hk,j(x)
2w(x)dx . 2j−k∆j

for all k > j. Let x ∈ Ω̃c. By (K0) and Lemma 2.1, we have

hk,j(x)
2 .

1

22dk
( ∑

i∈I2,k∩Ij

∫

Qi

|bi(y)|dy
)2

.
( ∑

i∈I2,k∩Ij

|Qi|
)
·
( 1

22dk

∑

i∈I2,k∩Ij

∫

Qi

|f(y)|dy
)

. 2(d−1)k+j
∑

i∈I2,k∩Ij

1

|x− ci|2d
∫

Qi

|f(y)|dy
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(recalling that ci is the center of Qi). Here we have used two facts. The first is that if I2,k 6= ∅
(then necessarily k > j), then

(2.3)
∑

i∈I2,k∩Ij

|Qi| ≤
∑

i∈I2(Dk)∩Ij

|Qi| . 2(d−1)k+j.

The second one is that for i ∈ I2,k ∩ Ij 6= ∅

(2.4)
1

|x− ci|
≈ 1

2k
.

On the other hand, by the discussion at the beginning of the present step, we have

|x− ci| > 2k−1, ∀ i ∈ I2,k ∩ Ij .

Therefore, by Lemma 2.3

∫

Ω̃c

hk,j(x)
2w(x)dx . 2(d−1)k+j

∑

i∈I2,k∩Ij

∫

Qi

|f(y)|
[ ∫

Ω̃c

1|x−ci|>2k−1

|x− ci|2d
w(x)dx

]
dy

. 2(d−1)k+j
∑

i∈I2,k∩Ij

∫

Qi

|f(y)|
[ ∫

|x−ci|>2k−1

w(x)dx

|x− ci|2d
]
dy

. 2j−k
∑

i∈I2,k∩Ij

∫

Qi

|f(y)|w(y)dy

≤ 2j−k∆j .

This is the announced estimate on the weighted L2 norm of hk,j . We have thus finished the proof
for the long variation part.

Step 5. Estimate of the short variation. The argument for this part is similar to that of the
preceding step. Let Sk = {I ∈ S : I ⊂ (2k, 2k+1]} and define

gk,j(x)
2 =

∑

I∈Sk

∣∣ ∑

i∈I2(I)∩Ij

KI(bi)(x)
∣∣2.

The indices k and j again satisfy k > j. Then

∑

I∈S

∣∣ ∑

i∈I2(I)

KI(bi)(x)
∣∣2 =

∑

k

∑

I∈Sk

∣∣ ∑

i∈I2(I)

KI(bi)(x)
∣∣2 ≤

∑

k

(∑

j

gk,j(x)
)2
.

Thus

w({x ∈ Ω̃c :
∑

I∈S

∣∣ ∑

i∈I2(I)

KI(bi)(x)
∣∣2 >

1

48
}) .

∫

Ω̃c

∑

I∈S

∣∣ ∑

i∈I2(I)

KI(bi)(x)
∣∣2w(x)dx

.

∫

Ω̃c

∑

k

(∑

j

gk,j(x)
)2
w(x)dx.

Thanks again to Lemma 2.2, we only need to show

∫

Ω̃c

gk,j(x)
2w(x)dx . 2j−k∆j ,
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where ∆j is the same as in the previous step. For x ∈ Ω̃c, by (2.3), (2.4) and the discussion
following (2.4), we get

gk,j(x)
2 .

1

22dk

∑

I∈Sk

( ∑

i∈I2(I)∩Ij

∫

Qi

1x+RI
(y)|bi(y)|dy

)2

.
1

22dk

∑

I∈Sk

( ∑

i∈I2(I)∩Ij

|Qi|
)
·
( ∑

i∈I2(I)∩Ij

∫

Qi

1x+RI
(y)|bi(y)|dy

)

. 2(d−1)k+j
∑

I∈Sk

∑

i∈I2(I)∩Ij

1

22dk

∫

Qi

1x+RI
(y)|bi(y)|dy

. 2(d−1)k+j
∑

I∈Sk

∑

i∈I2(I)∩Ij

1|x−ci|>2k−1

|x− ci|2d
∫

Qi

1x+RI
(y)|bi(y)|dy

. 2(d−1)k+j
∑

i∈Ij

1|x−ci|>2k−1

|x− ci|2d
∑

I∈Sk

∫

Qi

1x+RI
(y)|bi(y)|dy.

Since the intervals in S are disjoint, so are the associated annuli. Thus

gk,j(x)
2 . 2(d−1)k+j

∑

i∈Ij

1|x−ci|>2k−1

|x− ci|2d
∫

Qi

|bi(y)|dy

. 2(d−1)k+j
∑

i∈Ij

1|x−ci|>2k−1

|x− ci|2d
∫

Qi

|f(y)|dy.

Integrating over Ω̃c and using Lemma 2.3, we then get the desired weighted L2 norm estimate of
gk,j . Hence, the estimate for the short variation is done.

Combining the results proved in all preceding steps, we get

w({x ∈ Ω̃c : VqK(b)(x) > 1}) .
∫

Rd

|f(x)|w(x)dx,

so

w({x : VqK(b)(x) > 1}) .
∫

Rd

|f(x)|w(x)dx.

This is the announced weighted estimate for the bad part b. Together with the unweighted estimate
for the good part g in the beginning of this proof, we finally prove the unweighted weak type (1, 1)
of VqK.

The weighted weak type (1, 1) of VqK will be proved in the end of section 3. �

Remark 2.4. The Lp0 boundedness in the assumption of Theorem 1 and the unweighted weak
type (1, 1) of VqK just proved imply, via Marcinkiewicz’s interpolation, that VqK is of type (p, p)
for any 1 < p < p0.

3. Proof of Theorem 1: type (p, p) and L∞-BMO boundedness

This section is devoted to the proof of parts (ii) and (iii) of Theorem 1. For a function f on
R

d and r > 1 let Mr(f) = M(|f |r)1/r. Both (ii) and (iii) will easily follow from the following
inequality

(3.1)
(
VqK(f)

)♯
. Mr(f)

for 1 < r < min(p0, q). Assuming (3.1) for the moment, let us show (ii) and (iii). Let w ∈ Ap. It
is well known that w ∈ Ap/r too for some r > 1. Then by [7, Theorem IV.2.20], we have

∫

Rd

(
VqK(f)(x)

)p
w(x)dx .

∫

Rd

(
(VqK(f))♯(x)

)p
w(x)dx

.

∫

Rd

(
Mr(f)(x)

)p
w(x)dx .

∫

Rd

|f(x)|pw(x)dx.
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Thus (ii) is proved. On the other hand, assume that w−1 ∈ A1. Choose r > 1 such that w−r ∈ A1

too. Then for any cube Q we have

1

|Q|

∫

Q

|f(y)|rdy ≤
∥∥fw

∥∥r
∞

1

|Q|

∫

Q

w(y)−rdy .
∥∥fw

∥∥r
∞

w(x)−r for a.e. x ∈ Q.

It follows that

∥∥(VqK(f)
)♯
w
∥∥
∞

.
∥∥Mr(f)w

∥∥
∞

.
∥∥fw

∥∥
∞
.

This is the desired estimate in (iii)

Now we must prove (3.1). To this end fix a compactly supported integrable function f on R
d

and a point x0 ∈ R
d. We want to show

(VqK(f))
♯
(x0) . Mr(f)(x0).

Recall that

(VqK(f))♯(x0) = sup
Q

1

|Q|

∫

Q

∣∣∣VqK(f)(x) − 1

|Q|

∫

Q

VqK(f)(y)dy
∣∣∣dx,

where the supremum runs over all cubes Q containing x0. Fix such a cube Q and let c denote its
center. Write f = f1 + f2 with f1 = f1Q̃ and f2 = f1Q̃c . Then

1

|Q|

∫

Q

∣∣∣VqK(f)(x) − 1

|Q|

∫

Q

VqK(f)(y)dy
∣∣∣dx

≤ 2

|Q|

∫

Q

∣∣∣ VqK(f)(x) − VqK(f2)(c)
∣∣∣dx

≤ 2

|Q|

∫

Q

VqK(f1)(x)dx +
2

|Q|

∫

Q

‖K(f2)(x) −K(f2)(c)‖vqdx

def
= D1 +D2.

We must show that max(D1, D2) . Mr(f)(x0). This is easy for D1. Indeed, by the Hölder
inequality and the Lr-boundedness of Vq already observed in Remark 2.4, we have

D1 .
( 1

|Q|

∫

Q

(
VqK(f1)(x)

)r
dx

)1/r

.
( 1

|Q|

∫

Q

|f1(x)|rdx
)1/r

. Mr(f)(x0).

To handle D2 we will show

(3.2)
∥∥K(f2)(x) −K(f2)(c)

∥∥
vr

. Mr(f)(x0), ∀ x ∈ Q.

This will imply D2 . Mr(f)(x0) since ‖ ‖vq ≤ ‖ ‖vr for r < q. Fix an increasing sequence {tj}j≥0

of positive numbers and let Ij = (tj , tj+1]. Then

KIj (f2)(x) −KIj (f2)(c) =

∫

Rd

[
K(x, y)1RIj

(x − y)−K(c, y)1RIj
(c− y)

]
f2(y)dy

=

∫

Rd

[
K(x, y)−K(c, y)

]
1RIj

(x− y)f2(y)dy

+

∫

Rd

K(c, y)
[
1RIj

(x− y)− 1RIj
(c− y)

]
f2(y)dy

def
= αj + βj .
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The first term αj is easy to estimate. Indeed, by (K1) and Lemma 2.3

( ∞∑

j=0

|αj |r
)1/r ≤

∞∑

j=0

|αj |

≤
∞∑

j=0

∫

Rd

∣∣K(x, y)−K(c, y)
∣∣1RIj

(x− y)|f2(y)|dy

.

∞∑

j=0

∫

Rd

|x− c|δ
|y − c|d+δ

1RIj
(x− y)|f2(y)|dy

≤ |x− c|δ
∫

|y−c|>l

1

|y − c|d+δ
|f(y)|dy

. M(f)(x0) ≤ Mr(f)(x0).

where l denotes the side length of Q. Thus

(3.3)
( ∞∑

j=0

|aj |r
)1/r

. Mr(f)(x0).

To deal with the second term βj we introduce the following sets

(3.4) J1 =
{
j : tj+1 − tj ≤ |x− c|

}
and J2 =

{
j : tj+1 − tj > |x− c|

}
.

Then

(3.5)
∣∣1RIj

(x− y)− 1RIj
(c− y)

∣∣ ≤ 1RIj
(x− y) + 1RIj

(c− y), j ∈ J1

and
∣∣1RIj

(x− y)− 1RIj
(c− y)

∣∣ ≤ 1R(tj , tj+|x−c|](x− y) + 1R(tj+1, tj+1+|x−c|]
(x− y)

+ 1R(tj , tj+|x−c|]
(c− y) + 1R(tj+1, tj+1+|x−c|]

(c− y), j ∈ J2.

We first consider the part on J1. By (K0) and the Hölder inequality

∑

j∈J1

|βj |r .
∑

j∈J1

( ∫

Rd

∣∣K(c, y)|
(
1RIj

(x − y) + 1RIj
(c− y)

)
|f2(y)|dy

)r

.
∑

j∈J1

(tdj+1 − tdj )
r−1

∫

Rd

1

|y − c|dr
(
1RIj

(x− y) + 1Rj
(c− y)

)
|f2(y)|rdy

. |x− c|r−1
∑

j∈J1

t
(d−1)(r−1)
j+1

∫

Rd

1

|y − c|dr
(
1RIj

(x− y) + 1RIj
(c− y)

)
|f2(y)|rdy.

For any y ∈ Q̃c let j(y) be the unique j ∈ J1 such that tj < |x− y| ≤ tj+1 (if such a j exists). Here
we have used the pairwise disjointness of the annuli RIj ’s. Then

tj(y)+1 ≤ tj(y) + |x− c| ≤ 2|x− y| . |y − c|.

Thus by Lemma 2.3

∑

j∈J1

t
(d−1)(r−1)
j+1

∫

Rd

1

|y − c|dr 1RIj
(x− y)|f2(y)|rdy =

∫

Rd

t
(d−1)(r−1)
j(y)+1

|y − c|dr |f2(y)|rdy

.

∫

Rd

1

|y − c|d+r−1
|f2(y)|rdy

.

∫

|y−c|>l

1

|y − c|d+r−1
|f(y)|rdy

. l1−r(Mr(f)(x0))
r .
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This yields the desired estimate on the terms containing 1RIj
(x − y). Taking x = c, we get the

same estimate for the terms containing 1RIj
(c− y). Therefore,

(3.6)
( ∑

j∈J1

|βj |r
)1/r

. Mr(f)(x0).

The part on J2 is treated in a similar way. Indeed,

∑

j∈J2

|βj |r .
∑

j∈J2

( ∫

Rd

∣∣K(c, y)|
(
1Rtj ,tj+|x−c|

(x− y) + 1Rtj ,tj+|x−c|
(c− y)

)
|f2(y)|dy

)r

. |x− c|r−1
∑

j∈J2

(tj + |x− c|)(d−1)(r−1)

·
∫

|y−c|>l

1

|y − c|dr
(
1Rtj ,tj+|x−c|

(x− y) + 1Rtj ,tj+|x−c|
(c− y)

)
|f2(y)|rdy.

Since the family {x + Rtj ,tj+|x−c|}j∈J2 is disjoint, for any y there exists at most one j ∈ J2 such
that tj < |x− y| ≤ tj + |x− c|. Denote such a j still by j(y). Then we have tj + |x − c| . |y − c|
as in the preceding case for J1. Thus we conclude as before that

(3.7)
( ∑

j∈J2

|βj |r
)1/r

. Mr(f)(x0).

Combining (3.3), (3.6) and (3.7), we get

(∑

j

∣∣KIj (f2)(x) −KIj (f2)(c)
∣∣r)1/r . Mr(f)(x0).

Taking the supremum over all increasing sequences {tj} yields (3.2). We have thus proved part (ii)
of Theorem 1. �

End of the proof of part (i). Let us go back to the full generality of part (i). As already
noted in section 2, the only missing point is the weighted estimate for the good part g in (2.1).
The ingredient for this estimate is the weighted type (p0, p0) of VqK with respect to any weighted
w ∈ Ap0 . Now part (ii) makes this at our disposal. So for w ∈ A1 ⊂ Ap, by the properties of g in
Lemma 2.1 and the weak type (1, 1) of the maximal operator M , we have

w({x : VqK(g)(x) > 1}) ≤
∫

Rd

(VqK(g))p0 (x)w(x)dx .

∫

Rd

|g(x)|p0w(x)dx

.

∫

Ωc

|g(x)|w(x)dx + w(Ω) .

∫

Rd

|f(x)|w(x)dx.

Thus (2.1) also holds in the weighted case, so we have proved part (i) too. Thus the proof of
Theorem 1 is complete. �

Reexamining the proof of Theorem 1 we get the following

Remark 3.1. Assume that VqK is bounded on Lp0(Rd) for some 1 < p0 < ∞.

(i) If the kernel K satisfies (K0) and (K2), then VqK is bounded on Lp(Rd, w) for 1 < p < p0
and w ∈ Ap, and from L1(Rd, w) to L1,∞(Rd, w) for w ∈ A1.

(ii) If the kernel K satisfies (K0) and (K1), then VqK is bounded Lp(Rd, w) for p0 < p < ∞ and
w ∈ Ap/p0

4. Proof of Theorem 2: type (p, p) and L∞-BMO boundedness

In this section we prove parts (ii) and (iii) of Theorem 2. As in section 3, it suffices to show

(4.1) (VqA(f))
♯
. Mr(f)

for r > 1 close to 1. Fix a compactly supported integrable function f on R
d and a point x0 ∈ R

d.
Let Q be a cube containing x0. Let c and l denote respectively the center and side length of Q.
We then decompose f as f = f1 + f2 with f1 = f1Q̃ and f2 = f1Q̃c . The part on f1 is treated by
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using the boundedness of VqA on L2(Rd) from [12]. For the part on f2 we will prove the following
pointwise estimate

(4.2)
∥∥A(f2)(x) −A(f2)(c)

∥∥
vr

. Mr(f)(x0) ∀ x ∈ Q,

which, in turn, will imply (4.1).

Fix x ∈ Q. Note that At(f2)(x) = 0 for t ≤ l (in fact, for t ≤ 2
√
d l). So only the values of t

greater than l are relevant. Given an interval I = (s, t], put AI(f) = At(f)− As(f) as before for
singular integral operators. Let {tj}j be an increasing sequence with t0 > l. Set Ij = (tj , tj+1].
Then

(4.3) AIj (f2)(x) −AIj (f2)(c) = ξj + ηj ,

where

ξj =
1

|Btj+1 |

∫

Rd

f2(y)
[
1RIj

(y − x)− 1RIj
(y − c)

]
dy,

ηj =
( 1

|Btj+1 |
− 1

|Btj |
) ∫

Rd

f2(y)
[
1Btj

(y − x) − 1Btj
(y − c)

]
dy.

To handle the ξj ’s. we use the partition given by (3.4). Then we have to show

(4.4)
( ∑

j∈J1

|ξj |r
)1/r

. Mr(f)(x0) and
( ∑

j∈J2

|ξj |r
)1/r

. Mr(f)(x0).

Let us deal with only the part on J1. Using (3.5), we need only to consider the terms on x since those
on c are their special cases when x = c. Let j(y) be the unique j satisfying tj(y) ≤ |y−x| < tj(y)+1

for a given y ∈ Q̃c. Then

∑

j∈J1

1

|Btj+1 |r
∣∣∣
∫

Rd

f2(y)1RIj
(y − x)dy

∣∣∣
r

.
∑

j∈J1

1

|tj+1|dr
(tdj+1 − tdj )

r−1

∫

Rd

|f2(y)|r1RIj
(y − x)dy

. |x− c|r−1
∑

j∈J1

1

td+r−1
j+1

∫

Rd

|f2(y)|r1RIj
(y − x)dy

. |x− c|r−1

∫

Rd

|f2(y)|r
1

td+r−1
j(y)+1

dy

. |x− c|r−1

∫

|y−c|>l

|f(y)|r 1

|y − c|d+r−1
dy

. (Mr(f)(x0))
r.

This finishes the estimate on the ξj ’s.
Now we turn to the ηj ’s. Observe that

∣∣1Btj
(y − x)− 1Btj

(y − c)
∣∣ ≤ 1R(tj , tj+|x−c|]

(y − x) + 1R(tj , tj+|x−c|]
(y − c)

Recall that tj > l ≥ |x − c|/
√
d for every x ∈ Q by the assumption on the sequence {tj} at the

beginning of the proof. Then by the Hölder inequality

∣∣∣
∫

Rd

f2(y)
[
1Btj

(y − x)− 1Btj
(y − x0)

]
dy

∣∣∣
r

.
(
(tj + |x− c|)d − tdj

)r−1
∫

Rd

|f2(y)|r
(
1R(tj , tj+|x−c|]

(y − x) + 1R(tj , tj+|x−c|]
(y − c)

)
dy.
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Hence as before, we deduce

∑

j

|ηj |r .
∑

j

|x− c|r−1

td+r−1
j

∫

Rd

|f2(y)|r
(
1R(tj , tj+|x−c|]

(y − x) + 1R(tj , tj+|x−c|]
(y − c)

)
dy

. |x− c|r−1

∫

|y−c|>l

|f(y)|r 1

|y − c|d+r−1
dy

. (Mr(f)(x0))
r.

Therefore, we have treated both ξj and ηj in (4.3). Combining this inequality with (4.3) and (4.4),
we finally get (∑

j

|AIj (f2)(x) −AIj (f2)(c)|r
)1/r

. Mr(f)(x0);

whence (4.2). Thus parts (ii) and (iii) of Theorem 2 is proved. �

5. Proof of Theorem 2: weak type (1, 1)

This section is devoted to the proof of the weak type (1, 1) inequality of Theorem 2. This proof
is similar to the one presented in section 2. So we will only give the main lines and indicate the
differences.

Let w ∈ A1 and f be a compactly supported integrable function on R
d. We want to show

w({x : VqA(f)(x) > λ}) . 1

λ

∫

Rd

f(x)w(x)dx, ∀ λ > 0.

Let f = g+b be the Calderón-Zygmund decomposition of f given by Lemma 2.1 with the associated
dyadic cubes {Qi}. We keep all notation introduced in section 2 relative to this decomposition.

As in the end of section 3, the good part w({x : VqA(g)(x) > λ/2}) is estimated by the
boundedness of the operator VqA on L2(Rd, w) proved in section 4. For the bad part we need only

to majorize the part of w({x : VqA(b)(x) > λ/2}) outside of Ω̃c. Thus our remaining task is to
show the following inequality

w({x ∈ Ω̃c : VqA(b)(x) >
λ

2
}) . 1

λ

∫

Rd

f(x)w(x)dx.

Considering 4f/λ instead of f , we can assume that λ = 4 in the rest of the section.

We start our majorization of w({x ∈ Ω̃c : VqA(b)(x) > 2}) with an analysis of AI(bi)(x) for an
interval I = (s, t]. Clearly, AI(bi)(x) = 0 if Qi is outside of the ball x + Bt. On the other hand,
since bi is of vanishing mean, AI(bi)(x) = 0 if Qi is contained in the ball x+Bs or in the annulus
x+RI . Thus AI(bi)(x) 6= 0 only if Qi meets the boundary of x+RI . This is a difference with the
singular integrals: the interior sum disappears. So we denote I2(I) simply by I(I):

I(I) = {i : Qi ∩ (x+ ∂RI) 6= ∅}.
I(I) depends on x too. But for notational simplicity, we omit x as an index in I(I) as well as in
the sequence {tj} below.

Now for every x ∈ Ω̃c choose an increasing sequence {tj} such that

VqA(b)(x) ≤ 2
(∑

j

∣∣A(tj , tj+1](b)(x)
∣∣q)1/q.

Let Ij = (tj , tj+1]. By the above analysis, we have

AIj (b)(x) =
∑

i∈I(Ij)

AIj (bi)(x).

Then
VqA(b)(x) ≤ 2

(∑

j

∣∣ ∑

i∈I(Ij)

AIj (bi)(x)
∣∣2)1/2.

Thus we must show

w({x ∈ Ω̃c :
∑

j

∣∣ ∑

i∈I(Ij)

AIj (bi)(x)
∣∣2 > 1}) .

∫

Rd

f(x)w(x)dx.

Like in the case of singular integrals, we will do this via long and short variations.
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Let L and S be the two collections of intervals associated to {tj} introduced in step 3 of section 2.
Then

(∑

j

∣∣ ∑

i∈I(Ij)

AIj (bi)(x)
∣∣2)1/2 ≤

√
3
(∑

I∈L

∣∣ ∑

i∈I(I)

AI(bi)(x)
∣∣2)1/2

+
√
3
(∑

I∈S

∣∣ ∑

i∈I(I)

AI(bi)(x)
∣∣2)1/2.

Hence

w({x ∈ Ω̃c :
∑

j

∣∣ ∑

i∈I(Ij)

AIj (bi)(x)
∣∣2 > 1}) ≤ w({x ∈ Ω̃c :

∑

I∈L

∣∣ ∑

i∈I(I)

AI(bi)(x)
∣∣2 >

1

12
})

+ w({x ∈ Ω̃c :
∑

I∈S

∣∣ ∑

i∈I(I)

AI(bi)(x)
∣∣2 >

1

12
}).

We first deal with the long variation. The geometrical analysis made at the beginning of step 4
in section 2 remains valid now. Maintaining the notation there, we then have

∑

I∈L

∣∣ ∑

i∈I(I)

AI(bi)(x)
∣∣2 ≤ 2

∑

k∈Z

∣∣ ∑

i∈I2,k

ADk
(bi)(x)

∣∣2.

Recalling that Ij = {i : li = 2j}, define again

hk,j(x) =
∑

i∈I2,k∩Ij

∣∣ADk
(bi)(x)

∣∣.

In order to apply Lemma 2.2, we have to estimate hk,j(x). Note that the argument in step 4 of
section 2 for this estimate is purely geometrical except one place where (K0) of the kernel K is
used. Now the corresponding differential operator kernel is

1

|B2k+1 | 1B
2k+1

(x− y)− 1

|B2k |
1B

2k
(x− y)

and

ADk
(bi)(x) =

1

|B2k+1 |

∫

Rd

1B
2k+1

(x− y)bi(y)dy − 1

|B2k |

∫

Rd

1B
2k
(x− y)bi(y)dy.

Thus we still have

|ADk
(bi)(x)| .

1

2dk

∫

Qi

|bi(y)|dy.

Then as in step 4 of section 2, we deduce
∫

Ω̃c

hk,j(x)
2w(x)dx . 2j−k∆j = 2j−k

∑

i∈Ij

∫

Qi

|f(y)|w(y)dy.

Therefore, by Lemma 2.2, we get the desired estimate on the long variation:

w({x ∈ Ω̃c :
∑

I∈L

∣∣ ∑

i∈I(I)

AI(bi)(x)
∣∣2 >

1

12
})

.

∫

Ω̃c

∑

k∈Z

(∑

j

hk,j(x)
)2
w(x)dx

.

∫

Rd

|f(y)|w(y)dy.

We turn to the short variation. Define

gk,j(x) =
( ∑

I∈Sk

∣∣ ∑

i∈I(I)∩Ij

AI(bi)(x)
∣∣2)1/2

(recalling that Sk = {I ∈ S : I ⊂ (2k, 2k+1]}). As in step 5 of section 2 and the above argument
for the long variation, we need only to show the following inequality

gk,j(x)
2 . 2(d−1)k+j

∑

i∈Ij

1|x−ci|>2k−1

|x− ci|2d
∫

Qi

|f(y)|dy, ∀ x ∈ Ω̃c.
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Let I = (l(I), r(I)] ∈ Sk. Then

AI(bi)(x) =
1

|Br(I)|

∫

Rd

1RI
(x− y)bi(y)dy +

( 1

|Br(I)|
− 1

|Bl(I)|
) ∫

Rd

1Bl(I)
(x− y)bi(y)dy

def
= A

(1)
I (bi)(x) +A

(2)
I (bi)(x).

Let

g
(α)
k,j (x) =

( ∑

I∈Sk

∣∣ ∑

i∈I(I)∩Ij

A
(α)
I (bi)(x)

∣∣2)1/2, α = 1, 2.

Then gk,j(x) ≤ g
(1)
k,j(x)+ g

(2)
k,j(x). Thus we are reduced to estimating g

(1)
k,j(x) and g

(2)
k,j(x) separately.

The estimate of g
(1)
k,j(x) is done in the same way as before for the singular integrals, since the kernel

of A
(1)
I behaves like a singular kernel as far as such an estimate is concerned.

Compared with the situation of section 2, the second term is new. We have

|A(2)
I (bi)(x)| .

r(I) − l(I)

2(d+1)k

∫

Qi

|bi(y)|dy.

Thus by (2.3),

g
(2)
k,j(x)

2 .
1

22(d+1)k

∑

I∈Sk

(
r(I)− l(I)

)2( ∑

i∈I2(I)∩Ij

∫

Qi

|bi(y)|dy
)2

.
1

2(2d+1)k

∑

I∈Sk

(
r(I)− l(I)

)( ∑

i∈I2(I)∩Ij

|Qi|
)
·
( ∑

i∈I2(I)∩Ij

∫

Qi

|bi(y)|dy
)

.
2(d−1)k+j

2(2d+1)k

∑

I∈Sk

(
r(I) − l(I)

) ∑

i∈Ij

∫

Qi

|bi(y)|dy

.
2(d−1)k+j

22dk

∑

i∈Ij

∫

Qi

|bi(y)|dy

. 2(d−1)k+j
∑

i∈Ij

1|x−ci|>2k−1

|x− ci|2d
∫

Qi

|f(y)|dy.

Here we have used the fact the intervals I in Sk are disjoint subintervals of (2k, 2k+1]. So
∑

I∈Sk

(
r(I) − l(I)

)
≤ 2k.

Therefore, we obtain the announced estimate of gk,j(x). Along with Lemma 2.2, this yields

w({x ∈ Ω̃c :
∑

I∈S

∣∣ ∑

i∈I(I)

AI(bi)(x)
∣∣2 >

1

12
})

.

∫

Ω̃c

∑

k

(∑

j

gk,j(x)
)2
w(x)dx ≤

∫

Rd

|f(y)|w(y)dy.

This is the desired estimate for the short variation. Thus we have proved the weak type (1, 1)
inequality of Theorem 2. �

6. Proof of Theorem 6

This section is devoted to the proof of Theorem 6. We will only consider the case of singular
integrals, that of the differential operators being handled in a similar way.

First note that Theorem 6 clearly holds for p = ρ thanks to Theorem 1. Then we deduce the
type (p, p) inequality for any 1 < p < ∞ by extrapolation techniques described in sections IV.5
and V.6 of [7] (see, in particular, Remark V.6.5 there).

We are thus left to prove the weak type (1, 1) inequality. This proof is similar to but more
complicated than that of the same inequality in the scalar case presented in section 2. We will
follow the structure of that proof. The steps 1-5 mentioned in the sequel are those in section 2.
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Let f : R
d → ℓρ be a compactly supported integrable function, so f = {fn}n. Let ϕ be

the function given by ϕ(x) = ‖f(x)‖ρ (the norm here is, of course, that of ℓρ). We now apply
Lemma 2.1 to λ = 2 and ϕ, and keep all notation introduced in section 2. In particular, f is
written as the sum of its good and bad parts: f = g + b. Both g and b take values in ℓρ. We set
g = {gn}n, b = {bn}n and bi = {bn,i}n. Note that each bn,i is supported on the cube Qi and its
mean vanishes.

We must show

w
({

x ∈ R
d :

∑

n

(
VqK(gn)(x)

)ρ
> 1

})
.

∫

Rd

‖f(x)‖ρw(x)dx,

w
({

x ∈ R
d :

∑

n

(
VqK(bn)(x)

)ρ
> 1

})
.

∫

Rd

‖f(x)‖ρw(x)dx.

The first inequality on g is proved by the type (ρ, ρ) of VqK already observed above. The measure

on the left hand side of the second one is split into two parts, one on Ω̃ and another on Ω̃c. The

part on Ω̃ is estimated as in section 2. Thus it remains to show

(6.1) w
({

x ∈ Ω̃c :
∑

n

(
VqK(bn)(x)

)ρ
> 1

})
.

∫

Rd

‖f(x)‖ρw(x)dx.

To this end we will follow steps 1-5 and indicate only the necessary modifications.

As in step 1, for every x /∈ Ω̃ and n choose an increasing sequence {tn,j} such that

VqK(bn)(x) ≤ 2
(∑

j

∣∣K(tn,j, tn,j+1](bn)(x)
∣∣q)1/q.

Let In,j = (tn,j , tn,j+1]. Choose r such that 1 < r ≤ min(q, ρ). Then

(∑

n

[∑

j

∣∣KIn,j
(bn)(x)

∣∣q]ρ/q
)1/ρ

≤
(∑

n

[∑

j

∣∣ ∑

i∈I1(In,j)

KIn,j
(bn,i)(x)

∣∣q]ρ/q
)1/ρ

+
(∑

n

[∑

j

∣∣ ∑

i∈I2(In,j)

KIn,j
(bn,i)(x)

∣∣q]ρ/q
)1/ρ

≤
(∑

n

[∑

j

∣∣ ∑

i∈I1(In,j)

KIn,j
(bn,i)(x)

∣∣]ρ
)1/ρ

+
(∑

n

[∑

j

∣∣ ∑

i∈I2(In,j)

KIn,j
(bn,i)(x)

∣∣r]ρ/r
)1/ρ

def
= A(x) +B(x).

Thus (6.1) is reduced to

(6.2) w
({

x ∈ Ω̃c : A(x) >
1

2

})
.

∫

Rd

‖f(x)‖ρw(x)dx.

and

(6.3) w
({

x ∈ Ω̃c : B(x) >
1

2

})
.

∫

Rd

‖f(x)‖ρw(x)dx.

By step 2, we have

∑

j

∣∣ ∑

i∈I1(In,j)

KIn,j
(bn,i)(x)

∣∣ .
∑

i

lδi
|x− ci|d+δ

∫

Qi

|fn(y)|dy.

Thus by the Minkowski inequality,

A(x) .
∑

i

lδi
|x− ci|d+δ

∫

Qi

‖f(y)‖ρdy

As in step 2, we then deduce (6.2).
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The proof of (6.3) on the boundary sum is more complicated. As in step 3, for each n we
separate the boundary sum into the long and short variations:

(∑

j

∣∣ ∑

i∈I2(In,j)

KIn,j
(bn,i)(x)

∣∣r)1/r ≤ 31/r
′( ∑

I∈Ln

∣∣ ∑

i∈I2(I)

KI(bn,i)(x)
∣∣r)1/r

+ 31/r
′( ∑

I∈Sn

∣∣ ∑

i∈I2(I)

KI(bn,i)(x)
∣∣r)1/r.

Accordingly,

B(x) ≤ 31/r
′(
B1(x) +B2(x)

)
,

where

B1(x) =
(∑

n

[ ∑

I∈Ln

∣∣ ∑

i∈I2(I)

KI(bn,i)(x)
∣∣r]ρ/r

)1ρ

B2(x) =
(∑

n

[ ∑

I∈Sn

∣∣ ∑

i∈I2(I)

KI(bn,i)(x)
∣∣r]ρ/r

)1ρ

.

Thus (6.3) is split into two inequalities

(6.4) w
({

x ∈ Ω̃c : B1(x) >
1

4 · 31/r′
})

.

∫

Rd

‖f(x)‖ρw(x)dx.

and

(6.5) w
({

x ∈ Ω̃c : B2(x) >
1

4 · 31/r′
})

.

∫

Rd

‖f(x)‖ρw(x)dx.

We now apply (2.2) to each Ln (with r instead of 2). Let In
2,k be the subset associated to Ln

defined just before (2.2). Then we have
∑

I∈Ln

∣∣ ∑

i∈I2(I)

KI(bn,i)(x)
∣∣r ≤ 2r−1

∑

k∈Z

∣∣ ∑

i∈In
2,k

KDk
(bn,i)(x)

∣∣r

≤ 2r−1
∑

k∈Z

(∑

j

∑

i∈In
2,k∩Ij

∣∣KDk
(bn,i)(x)

∣∣)r.

Therefore, by the Minkowski inequality (recalling that r ≤ ρ),

B1(x) .
(∑

k∈Z

(∑

j

[∑

n

∑

i∈In
2,k∩Ij

∣∣KDk
(bn,i)(x)

∣∣ρ]1/ρ)r
)1/r

=
(∑

k∈Z

(∑

j

hk,j(x)
)r)1/r

,

where

hk,j(x) =
[∑

n

∑

i∈In
2,k∩Ij

∣∣KDk
(bn,i)(x)

∣∣ρ]1/ρ.

Hence

w
({

x ∈ Ω̃c : B1(x) >
1

4 · 31/r′
})

.

∫

Ω̃c

∑

k∈Z

(∑

j

hk,j(x)
)r
w(x)dx.

However,

hk,j(x) .
1

2dk
[∑

n

( ∑

i∈In
2,k∩Ij

∫

Qi

|bn,i(y)|dy
)ρ]1/ρ

≤ 1

2dk
[∑

n

( ∑

i∈I2(Dk)∩Ij

∫

Qi

|bn,i(y)|dy
)ρ]1/ρ

≤ 1

2dk

∑

i∈I2(Dk)∩Ij

∫

Qi

‖bi(y)‖ρdy.
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We can now apply the argument in step 4 to get the following inequality
∫

Ω̃c

hk,j(x)
rw(x)dx . 2(r−1)(j−k)∆j , k > j,

where

∆j =
∑

i∈Ij

∫

Qi

‖f(y)‖ρw(y)dy.

Therefore, by Lemma 2.2, we deduce
∫

Ω̃c

∑

k∈Z

(∑

j

hk,j(x)
)r
w(x)dx .

∑

j

∆j ≤
∫

Rd

‖f(y)‖ρw(y)dy.

Combining the preceding inequalities, we get (6.4).
To complete the proof of Theorem 6, it only remains to show (6.5). It is this part that had

prevented us from completing the paper since its first draft was written in the fall of 2012. We are
very grateful to Guixiang Hong who kindly communicated to us the following argument, inspired
by [15].

By the weak type (1, 1) of the Hardy-Littlewood maximal function with respect to A1 weights,
(6.5) will follow from the following inequality

(6.6)

∫

Ω̃c

B2(x)
rw(x)dx .

∑

i

w(Qi).

Let Sn,k = {I ∈ Sn : I ⊂ (2k, 2k+1]}. As already observed before, for I ∈ Sn,k and i ∈ I2(I) ∩ Ij ,
we have that k > j and 2k < d(x, Qi) < 2k+1. Now choose α such that (d − 1)/r′ < α < d/r′.
Then for any I ∈ Sn,k, by the Hölder inequality,

∣∣ ∑

i∈I2(I)∩Ij

KI(bn,i)(x)
∣∣r ≤

(∑

j<k

∑

i∈I2(I)∩Ij

2(k−j)αr|KI(bn,i)(x)|r
) (∑

j<k

∑

i∈I2(I)∩Ij

2(j−k)αr′
) r

r′

For every i ∈ I2(I) ∩ Ij , Qi is a dyadic cube of side length 2j and intersects the boundary of the

annulus x + RI ; so the number of a disjoint collection of such cubes is controlled by 2(d−1)(k−j).
Thus by the choice of α, the second double series on the above right-hand side is convergent.
Therefore, letting Uk = {i : li < 2k, d(x, Qi) < 2k+1}, we then deduce

∑

I∈Sn,k

∣∣ ∑

i∈I2(I)∩Ij

KI(bn,i)(x)
∣∣r .

∑

I∈Sn,k

∑

j<k

∑

i∈I2(I)∩Ij

2(k−j)αr |KI(bn,i)(x)|r

.
∑

i∈Uk

l−αr
i 2kαr

∑

I∈Sn,k

|KI(bn,i)(x)|r

.
∑

i∈Uk

l−αr
i 2k(α−d)r

(∫

Qi

|bn,i(y)|dy
)r

.

Then by the Minkowski inequality and Lemma 2.1, we have

B2(x)
r .

∑

k

∑

i∈Uk

l−αr
i 2k(α−d)r

(∫

Qi

‖bi(y)‖ρdy
)r

.
∑

k

∑

i∈Uk

l
(d−α)r
i 2k(α−d)r .

Using the properties of A1 weights and by the choice of α, we finally get
∫

Ω̃c

B2(x)
rw(x)dx .

∑

i

l
(d−α)r
i

∑

k:2k>li

2k(α−d)r

∫

Ω̃c∩{x:d(x,Qi)<2k+1}

w(x)dx

.
∑

i

l
(d−α)r
i

∑

k:2k>li

2k(α−d)r 2kd inf
x∈Qi

w(x)

.
∑

i

l
(d−α)r
i l

(α−d)r+d
i inf

x∈Qi

w(x)

.
∑

i

ldi inf
x∈Qi

w(x) ≤
∑

i

w(Qi).
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This is the desired inequality (6.6). So Theorem 6 is completely proved. �
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